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GROWTH DIAGRAMS AND NON-SYMMETRIC CAUCHY

IDENTITIES ON NW OR SE NEAR STAIRCASES

O. AZENHAS AND A. EMAMI

Abstract: Mason has introduced an analogue of the Robinson-Schensted-Knuth
(RSK) correspondence to produce a bijection between biwords and pairs of semi-
skyline augmented fillings whose shapes, compositions, are rearrangements of each
other. That pair of shapes encode the right keys for the pair of semi-standard Young
tableaux produced by the usual Robinson-Schensted-Knuth (RSK) correspondence.
We have shown that this analogue of RSK restricted to multisets of cells in staircases
or truncated staircases allows expansions of non-symmetric Cauchy kernels in the
basis of Demazure characters of type A, and the basis of Demazure atoms. One
considers now a near staircase, in French convention, where the top leftmost and the
bottom rightmost boxes of a staircase are deleted and also possibly some boxes in the
diagonal layer. The conditions imposed on the pairs of shapes for the semi-skyline
augmented fillings are described by inequalities in the Bruhat order, w.r.t. the
symmetric group. The bijection is then used to provide a combinatorial expansion
of an expansion formula, due to A. Lascoux, of a non-symmetric Cauchy kernel,
over near staircases, in the basis of Demazure characters of type A, and the basis of
Demazure atoms, under the action of appropriate Demazure operators. The analysis
is made in the framework of Fomin’s growth diagrams for Robinson-Schensted-
Knuth correspondences. On one hand, one gives a formulation of the analogue of
RSK, via reverse RSK, to obtain pairs of semi-skyline augmented fillings, and, on
the other hand, an interpretation of the action of crystal operators on biwords whose
biletters are cells on a Ferrers shape. This sheds light on the aforesaid expansion
provided by A. Lascoux.

Keywords: Non-symmetric Cauchy kernels, Demazure character, key polynomial,
Demazure operator, semi-skyline augmented filling, RSK analogue, crystal.
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1. Introduction

The Robinson-Schenested-Knuth (RSK) correspondence [12] is a bijection
between biwords (an array of two words), on two finite totally ordered al-
phabets, and pairs of semi-standard Young tableaux (SSYT), of the same
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shape, with entries in the same alphabets [12]. Let N denote the set of non-
negative integers, and, as usual, if n is a positive integer, let [n] be the set
{1, . . . , n}. Given a positive integer n, let m and k be fixed positive integers
where 1 ≤ m ≤ n, 1 ≤ k ≤ n, m + k ≥ n + 1, and let x = (x1, . . . , xn) and
y = (y1, . . . , yn) be two sequences of indeterminates. The well-known Cauchy

identity [24] expresses the Cauchy kernel
∏k

i=1

∏m
j=1(1− xiyj)

−1 as a sum of
products of Schur polynomials sλ in (x1, x2, . . . , xk) and (y1, y2, . . . , ym), re-
spectively,

k∏

i=1

m∏

j=1

(1− xiyj)
−1 =

∑

λ

sλ(x1, . . . , xk)sλ(y1, . . . , ym), (1)

over all partitions λ of length ≤ min{k,m}. Schur polynomials in a fi-
nite number of indeterminates (x1, x2, . . . , xk) are indexed by partitions λ
of length ≤ k. They are combinatorially described by semistandard Young
tableaux, SSYTs, of shape λ, over the alphabet [k], [7, 30, 31],

sλ(x1, . . . , xk) =
∑

T SSY T
sh(T )=λ

xT ,

where sh(T ) denotes the shape of the SSYT, T , and xT = xc1
1 · · ·x

ck
k , with ci

the multiplicity of i in T . Thereby, the right hand side of (1) can be written

as
∑

(P,Q)

xPyQ, where the sum runs over all pairs (P,Q) of SSYTs of the same

shape with length ≤ min{k,m}. On the other hand, expanding the product
of formal power series, on the left hand side, of (1), and identifying each
monomial xiyj, i ∈ [k], j ∈ [m], with the biletter

(
j
i

)
, the RSK correspon-

dence, over the finite alphabets [k] and [m], provides a bijective proof for
identity (1). Key polynomials, or Demazure characters, κα, with α ∈ Nn,
[4, 16, 28], and Demazure atoms κ̂α, with α ∈ Nn, [16, 26], both of each are
indexed by weak compositions and form a Z-linear basis for the ring of integer
polynomials Z[x1, . . . , xn]. When the vectors α ∈ Nn are anti-dominant, key
polynomials lift the basis of Schur polynomials for the subring of symmetric
polynomials Z[x1, . . . , xn]

Sn, where Sn denotes the symmetric group of de-

gree n. The Cauchy kernel
∏k

i=1

∏m
j=1(1 − xiyj)

−1 in (1) can be written as∏
(i,j)∈(mk) (1− xiyj)

−1, an expansion over the rectangle shape (mk) of height

k and width m. Cauchy kernels over arbitrary Ferrers shapes are no more
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symmetric in the indeterminates and their expansions are not on the basis
of Schur polynomials but rather over the basis of key polynomials and the
basis of Demazure atoms. A. Lascoux has studied Cauchy kernels expansions
over staircases which he then generalized for arbitrary Ferrers shapes [19].
For staircases the expansion is explicit in the SSYTs for which he provided
both an algebraic proof, with Fu, [6], and a combinatorial proof based on
the fact that, in type A, – not known for other Weyl groups [21]–, RSK can
be translated in the language of bicrystals [19, 11, 14, 22]. For other shapes
the expansion is not entirely explicit in the SSYTs and only an algebraic
explanation was provided in [19].
Mason [25, 26] has defined an analogue of RSK where the output is a pair

of semi-skyline augmented fillings (SSAFs) whose shapes, vectors of Nn, are a
rearrangement of each other. The SSAFs, combinatorial objects introduced
in [9], are in bijection with SSYTs in a way that the shape assigns to each
SSYT its right key [16]. Key polynomials and Demazure atoms (or standard
bases) were first described combinatorially by Lascoux and Schützenberger
in [15, 16], for which they have introduced the key notion of the right key of
a SSYT. Thus, they can also be combinatorially described by semi-skylines
(SSAF) [26]

κ̂ν(x) =
∑

F SSAF
sh(F )=ν

xF , κν(x) =
∑

F SSAF
sh(F )≤ν

xF , (2)

where the inequality regarding the shape of F , sh(F ), is in the Bruhat order.
In [1, 2], we have proved that the analogue of RSK correspondence, restricted
to multisets of cells in a staircase of size n, gives pairs (F,G) of semi-skylines,
with entries≤ n, whose shapes satisfy sh(G) ≤ ωsh(F ) in Bruhat order, with
ω the longest permutation of Sn. As a consequence, using (2), we can write

∏

i+j≤n+1
1≤i, j≤n

(1− xiyj)
−1 =

∑

(F,G)
sh(G)≤ωsh(F )

xFyG =
∑

ν∈Nn

κ̂ν(x)κων(y), (3)

where the sum runs over pairs of semi-skylines (F,G) with entries ≤ n. More
generally, the restriction of the analogue of RSK [1, 2] can be considered to
the cells (i, j) with i ∈ [k], j ∈ [m], that is, to the truncated staircases
with height k and width m. This allows a bijective proof for the following
non-symmetric Cauchy kernel expansion, over a truncated staircase of size n,
with height k and width m ≥ k, a special shape of the more general formula
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for Ferrers shapes, due to A. Lascoux [19],
∏

(i,j)∈

(1− xiyj)
−1 =

∑

µ∈Nk

κ̂µ(x)πσ(λ,SE)κωµ(y), (4)

where πσ(λ,SE) is the Demazure operator indexed by the reduced expression

σ(λ, SE) =
∏k−(n−m)−1

i=1 (si+n−k−1 . . . si)
∏n−m

i=0 (sm−1 . . . sk−(n−m)+i) of Sn, and
as usual si denotes the simple transposition (i i+ 1). Recall that Demazure
operators πi act on key polynomials κµ via elementary bubble sorting oper-
ators on the entries of the vector µ [28], that is,

πiκµ =

{
κsiµ if µi > µi+1

κµ if µi ≤ µi+1

. (5)

It is possible then to determine explicitly πσ(λ,SE)κωµ, and obtain the explicit
expansion

(4) =
∑

µ∈Nk

κ̂µ(x)κ(0m−k,α)(y), (6)

where α depends on µ in a certain way as explained in [2]. In particular,
when k = m = n, one recovers the identity for staircases (3).
In this work, we give a combinatorial expansion for the non-symmetric

Cauchy kernel
∏

(i,j)∈λ (1 − xiyj)
−1, being the product over all cells (i, j) of

the near staircase λ, in French convention, as shown below,

n

n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r1

.

.

.

rp

(7)

where one layer of p green boxes, 1 ≤ p < n, is sited on the stairs of the
staircase of size n, at most one box in each stair, avoiding the top and the
basement. The label ri indicates that the row index is ri+1. The analogue of
RSK analogue restricted to the multiset of cells in the near staircase produces
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pairs (F,G) of SSAFs with entries ≤ n where the shapes satisfy inequalities
in the Bruhat order regarding the p boxes sited on the stairs of staircase (7)

sh(G) � ωsrp · · · ŝri · · · sr2sr1sh(F ), i = 1, 2, . . . , p,

sh(G) ≤ ωsrp · · · sr2sr1sh(F ),

where ̂ means omission. Recalling the action of Demazure operators on
Demazure atoms κ̂µ

πiκ̂µ =





κ̂siµ + κ̂µ if µi > µi+1

κ̂µ if µi = µi+1

0 if µi < µi+1

, (8)

this bijection produces the following combinatorial formula expansion in
terms of pairs of SSAFs

∏

(i,j)∈λ

(1− xiyj)
−1 =

∑

(F,G)∈A

xFyG +
∑

1≤z≤p

∑

Hz

∑

(F,G)∈AHz
z

xFyG

=
∑

ν∈Nn

(πr1 . . . πrpκ̂ν(x))κων(y), (9)

where Hz = {i1 < i2 < · · · < iz} ∈
(
[p]
z

)
, and, for 0 ≤ z ≤ p,

AHz

z :=

{
(F,G)∈SSAF 2

n :
sh(G)�ωsriz

···ŝrim ···sri1
sh(F ), m=1,2,...,z

sh(G)≤ωsriz ···sri1
sh(F )

}
,

where SSAFn denotes the set of all SSAFs with entries ≤ n. In particular,
A := A∅0 := { (F,G)∈SSAF 2

n : sh(G)≤ωsh(F ) } .

2. SSYT, reverse SSYT and SSAF

Semi-skyline augmented fillings (SSAFs) have been introduced in [9, 10], to
describe combinatorially (non-symmetric) Macdonald polynomials. Mason
has defined in [26] a weight preserving bijection, ̺, between RSSYTs and
SSAFs. We shall use this map to define SSAFs which allows later to translate
the analogue of RSK [25] for growth diagrams via the usual reverse RSK.

2.1. SSYT and reverse SSYT. A weak composition γ = (γ1 . . . , γn) is a
vector in Nn. A weak composition γ whose entries are in weakly decreasing
order, that is, γ1 ≥ · · · ≥ γn, is said to be a partition. Every weak com-
position γ determines a unique partition obtained by arranging the entries
in weakly decreasing order. More precisely, it is the unique partition in the
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orbit of γ regarding the usual action of symmetric group Sn on Nn. A parti-
tion λ = (λ1, . . . , λn) is identified with its Young diagram (or Ferrers shape)
dg(λ) in French convention, an array of left-justified cells (boxes) with λi

cells in row i from the bottom, for 1 ≤ i ≤ n. The cells are located in the
diagram dg(λ) by their row and column indices (i, j), where 1 ≤ i ≤ n and
1 ≤ j ≤ λi.
A filling of shape λ (or a filling of dg(λ)), in the alphabet [n], is a map T :

dg(λ)→ [n]. A semi-standard Young tableau (SSYT) T of shape sh(T ) = λ,
in the alphabet [n], is a filling of dg(λ) which is weakly increasing in each row
from left to right and strictly increasing up in each column. The column word
of SSYT T is the word, which consists of the entries of each column, read
top to bottom and left to right. The content or weight of T is the content or
weight of its column word, which is the weak composition c(T ) = (α1, . . . , αn)
such that αi is the multiplicity of i in the column word of T . A key tableau is
a SSYT such that the set of entries in the (j +1)th column is a subset of the
set of entries in the jth column, for all j. There is a bijection [28] between
weak compositions in Nn and keys in the alphabet [n] given by γ → key(γ),
where key(γ) is the SSYT such that for all j, the first γj columns contain
the letter j. Any key tableau is of the form key(γ) where γ is the content
and the shape is the unique partition in its Sn-orbit.
A reverse semi-standard Young tableau (RSSYT), T̃ , of shape sh(T̃ ) = λ,

in the alphabet [n], is a filling of dg(λ) such that the entries in each row are
weakly decreasing from left to right, and strictly decreasing from bottom to
top.

Example 1. The Ferrers diagram of λ = (4, 2, 1), a SSYT and a RSSYT

of shape λ = (4, 2, 1), with respectively c(T ) = (2, 2, 1, 1, 1) and c(T̃ ) =
(1, 2, 2, 1, 1),

dg(λ)

1 1 2 3
2 5
4

SSYT T

5 3 3 2
4 2
1

RSSYT T̃

2.2. SSAFs are in bijection with RSSYTs. A weak composition γ =
(γ1, . . . , γn) is visualised as a diagram consisting of n columns, with γj boxes
in column j, for 1 ≤ j ≤ n. Formally, the column diagram of γ is the
set dg′(γ) = {(i, j) ∈ N2 : 1 ≤ j ≤ n, 1 ≤ i ≤ γj} where the coordinates
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are in French convention, i indicates the vertical coordinate, indexing the
rows, and j the horizontal coordinate, indexing the columns. (The prime
reminds that the components of γ are the columns.) The number of cells
in a column is called the height of that column, and a cell a in a column
diagram is written a = (i, j), where i is the row index and j the column

index. The augmented diagram of γ, d̂g(γ) = dg′(γ) ∪ {(0, j) : 1 ≤ j ≤ n},
is the column diagram with n extra cells adjoined in row 0. This adjoined
row is called the basement and it always contains the numbers 1 through n

in strictly increasing order. The shape of d̂g(γ) is defined to be γ. The empty
augmented diagram consists of the basement elements from 1 through n.
We introduce now the semi-skyline augmented filling (SSAF) object as

the output of the injective map ̺, in [26], acting on RSSYTs. Let P̃ be
a RSSYT. Define the empty semi-skyline augmented filing (SSAF) as the
empty augmented diagram with basement elements from 1 through n, where
n is the maximum element of RSSYT, P̃ . Pick the first column of P̃ , say, P1.
Put the largest element of the first column in the top of the leftmost basement
to avoid increasing columns from bottom to top, then put the next largest
element in the top of the leftmost basement to have a weakly decreasing
columns property, continue this manner to put all the elements of the first
column of P̃ to the top of the same basement elements. The new diagram is
called the semi-skyline augmented filling corresponding to the first column
of P̃ and is denoted by SSAF. Assume that the first i columns of P̃ , denoted
{P1, P2, . . . , Pi} have been mapped to a SSAF. Consider the largest element,
α1, in the (i + 1)-th column Pi+1. There exists an element greater than or
equal to α1 in the i-th row of the SSAF. Place α1 on top of the leftmost
such element. Assume that the largest k− 1 entries in Pi+1 have been placed
into the SSAF. The k-th largest element, αk, of Pi+1 is then placed into the
SSAF. Place αk on top of the leftmost entry β in row k− 1 such that β ≥ αk

and the cell immediately above β is empty. Continue this procedure until all
entries in Pi+1 have been mapped into the (i+1)-th row and then repeat for

the remaining columns of P̃ to obtain the semi-skyline augmented filling F .
It is clear that rotating 90 degrees F , sliding down the boxes in each column,

and reordering them, in decreasing order from bottom to top, we obtain P̃ .
We can associate to each SSAF, F , a weak composition that records the

length of the columns of F , and defines the shape of F , sh(F ). The content
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of the SSAF F is the vector c(F ) = c(P̃ ) ∈ Nn whose i-th entry is the
multiplicity of the letter i in the SSAF F .

Example 2. The SSAF corresponding to the RSSYT P̃ defined by ̺

5 3 3 2
4 2
1

P̃

sh(P̃ ) = (4, 2, 1)

1 2 3 4 5
1 4

3
3
2

5
2

F = ̺(P̃ )

sh(F ) = (1, 0, 0, 4, 2)

c(F ) = (1, 2, 2, 1, 1) = c(P̃ )

3. Reverse RSK, analogue of RSK and growth diagrams

The formulation of RSK in terms of growth diagrams is due to Fomin
[5], subsequently developed by Roby [29] and van Leewven [23], and applied
to enumeration by Krattenthaler [13]. The bijection ̺ between SSAFs and
RSSYTs allows a growth diagrammatic formulation of the analogue of RSK
for SSAFs [25] via reverse Schensted insertion.

3.1. The reverse RSK. The reverse Schensted insertion applied to the
word b1 . . . bm, over the alphabet [n], consists of reversing the roles of ≤ and
≥ in defining the Schensted insertion of b1 . . . bm, to get the reverse SSYT,
P̃ . Equivalently, apply Schensted insertion to −bm, . . . ,−b1 to get the SSYT,
P (−bm, . . . ,−b1), and then change the sign back to positive in all entries of

P (−bm, . . . ,−b1), to obtain the reverse SSYT P̃ [31].

The two line array w =

(
j1 j2 · · · jl
i1 i2 · · · il

)
, jr < jr+1, or jr =

ir+1 & ir ≤ ir+1, 1 ≤ i, j ≤ l − 1, with ir, jr ∈ [n], is called a biword
in lexicographic order over the alphabet [n]. The reverse RSK algorithm is
the obvious variant of the RSK algorithm [31], where we apply the RSK to

the biword w̃ =

(
−jn . . . −j1
−in · · · −i1

)
, instead of w =

(
j1 · · · jn
i1 · · · in

)
, and

then change the sign back to positive of all entries of the pair of SSYTs. We
will obtain a pair (P̃ , Q̃) of reverse SSYTs.

3.2. Analogue of Schensted insertion and reverse Schensted inser-

tion. SSAFs in bijection with SSYTs by assigning the right key.
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The fundamental operation of the Robinson-Schensted-Knuth [12] (RSK) al-
gorithm is Schensted insertion which is a procedure for inserting a positive
integer k into a semi-standard Young tableau T . In [25] it is defined a sim-
ilar procedure for inserting a positive integer k into a SSAF F , which is
used to describe an analogue of the RSK algorithm. Based on this Schensted
insertion analogue, it is given a weight preserving and a shape rearranging
bijection Ψ between SSYT and SSAF over the alphabet [n]. The bijection Ψ
is defined to be the insertion, from right to left, of the column word which
consists of the entries of each column, read top to bottom from columns left
to right, of a SSYT into the empty SSAF with basement 1, . . . , n. The shape
of Ψ(T ) provides the right key, K+(T ), of T , a notion due to Lascoux and
Schützenberger [16].

Theorem 1. [26] Given an arbitrary SSYT T , let γ be the shape of Ψ(T ).
Then K+(T ) = key(γ).

On the other hand, applying the reverse Schensted insertion to the col-
umn word of the SSYT, T , gives the RSSYT T̃ . Then ρ(T̃ ) is a SSAF and

ρ(T̃ ) = Ψ(T ) [25]. We have then two equivalent weight preserving and shape
rearranging bijections between SSYTs and SSAFs.

Example 3. T SSY T → T̃ RRSY T → ρ(T̃ ) SSAF

1 2 3 4
2 5
3

T

5 3 3 2
4 2
1

T̃
1 2 3 4 5
1 4

3
3
2

5
2

ρ(T̃ )

K+(T ) = key(1, 0, 0, 4, 2)

3.3. RSK, reverse RSK and analogue of RSK for SSAFs. Given the
alphabet [n], the RSK algorithm is a bijection between biwords in lexico-
graphic order and pairs of SSYT of the same shape over [n]. The analogue
of Schensted insertion is applied in [25] to find an analogue Φ of the RSK
for SSAF. The map Φ defines a bijection between the set of all biwords w in
lexicographic order in the alphabet [n], and pairs of SSAFs whose shapes are
rearrangements of a same partition in Nn, and the contents are respectively
those of the second and first rows of w. The bijection Φ applied to a biword
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w is the same as applying the reverse RSK to w and then apply ρ to each
reverse SSYT of the output pair (P̃ , Q̃), that is, Φ(w) = (̺(P̃ ), ̺(Q̃)).

Corollary 1. [25, 26] The RSK algorithm commutes with the above analogue

Φ. That is, if (P,Q) is the pair of SSYTs produced by RSK algorithm applied

to biword w, then (Ψ(P ),Ψ(Q)) = Φ(w), and K+(P ) = key(sh(Ψ(P ))),
K+(Q) = key(sh(Ψ(Q))).

The relation between RSK, the reverse RSK and the RSK analogue Φ, is
summarised in the following scheme from which, in particular, it is clear the
RSK analogue Φ also shares the symmetry of RSK,

w

(P̃ , Q̃) (F,G) (P,Q)

RSK
Φ

reverse RSK

ρ Ψ
sh(F )+ = sh(G)+ = sh(P ) = sh(Q) = sh(P̃ ) = sh(Q̃)

key(sh(F )) = K+(P ), key(sh(G)) = K+(Q)
c(F ) = c(P ) = c(P̃ ), c(G) = c(Q) = c(Q̃)

3.4. Reverse RSK and analogue of RSK in terms of Fomin’s growth

diagrams. In this subsection we follow very close [13, 31]. Let w be the
biword in the lexicographic order over alphabet [n]. We can represent a
biword w in the n× n square grid by putting the number r in the cell (i, j)

of the square, when the biletter

(
j
i

)
appears r times in the biword w.

Example 4. The diagram corresponding to w =

(
1 1 2 3 4 4 5 7 7
2 7 2 4 1 3 3 1 1

)

is

1

1

1

1

1

1 1

2

where the rows are counted from bottom to top and the columns from left to

right.
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We would like to have a 01-filling of the diagram, that is, at most one 1 in
each row and each column. To remedy this, the entries in the diagram are
separated in the following way.
Construct a rectangle diagram with more rows and columns so that entries

which are originally in the same column or in the same row are put in different
columns and rows in the larger diagram, and that an entry m is replaced by
m 1’s in the new diagram all of them placed in different rows and columns.
Separate the entries in a row from bottom/left to top/right, as before the
1’s are represented by ×’s and 0’s are suppressed. If there should be several
entries in a column as well, separate entries in a column from bottom/left
to top/right. In the cell with entry m we replace m by a chain of m ×’s
arranged from bottom/left to top/right. In the figure, the original columns
and rows are indicated by thick lines, whereas the newly created columns and
rows are indicated by thin lines. This process of transforming a filling into
a 0− 1 filling is called standardization. The biword defined by the standard
filling is said to be the standardisation of the biword w.

Example 5. The standardisation of w is w̃ =

(
1 2 3 4 5 6 7 9 10
4 11 5 8 1 6 7 2 3

)
,

corresponding to the standardised diagram

×

×

×

×

×

×
×

×
×

To give an interpretation of reverse RSK in terms of growth diagrams, we
start by assigning the empty partition ∅ to each corner on the right and top
edges of the 01-filling F . Then assign the partitions to the other corners
inductively by applying the following backward local rules. Consider the cell
below, labeled by the partitions ε, µ, ν, where ε ⊆ µ and ε ⊆ ν, µ and ε differ
by one box, and ν and ε differ by one box. Then λ is determined as follows:

ε

µ

ν
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• If ε = µ = ν, and if there is no cross in the cell, then λ = ε.
• If ε = µ 6= ν, then λ = ν.
• If ε = ν 6= µ, then λ = µ.
• If ε, µ, ν are pairwise different, then λ = µ ∪ ν.
• If ε 6= µ = ν, then λ is formed by adding a square to the (k + 1)-st
row of µ = ν, given that µ = ν and ε differ in the k-th row.
• If ε = µ = ν, and if there is a cross in the cell, then λ is formed by
adding a square to the first row of ε = µ = ν.

Applying backward the local rules leads to a pair of sequences of partitions
on the left and in the bottom of growth diagram. The partitions of each
sequence are related by containment. Let λi be the partition associated to
the i-th thick column line on the bottom of the growth diagram when we
scan the thick column lines from right to left. Then the bottom side of the
growth diagram is a sequence of partitions ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λl, where
l is the maximum element in the first row of the biword w and λi/λi−1 is
a horizontal strip. Let λi be the partition associated to the i-th row thick
line on the left of the growth diagram when we scan the thick row lines from
top to bottom. Then the left hand side of the growth diagram is a sequence
of partitions ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λt, where t is the maximum element in
the second row of the biword w and λi/λi−1 is a horizontal strip. Fill with
n+1− i all the squares in λi/λi−1 and λi/λi−1, for i ≥ 1. This pair of nested

sequences of partitions defines a pair (P̃ , Q̃) of RSSYTs of the same shape
with contents, respectively, of the second and the first rows of w which is the
same as applying the reverse RSK to the biword w.
In addition there is a global description of the backward local rules as a

consequence of a variant of Greene’s theorem [8] and Theorem 2 in [13]. A
SW-chain of a 01-filling is a sequence of 1’s such that any 1 is below and
to the left of the preceding 1 in the sequence. The length of a SW-chain is
defined to be the number of 1’s in the chain. Another way to find the nested
sequences of partitions on the bottom and on the left of the diagram is just
looking for the k SW-chains by using the following natural version of the
Theorem 2 in [13].

Theorem 2. Given a diagram with empty partitions labelling all the cor-

ners along the right side and the top side of a rectangle shape, which has

been completed according to the reverse RSK local rules, the partition λ =
(λ1, λ2, . . . , λl) labelling corner c satisfies the following property:
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For any k, the maximal cardinality of the union of k SW-chains situated in

the rectangular region to the right and above of c is equal to λ1+λ2+ · · ·+λk.

In particular, λ1 is the length of the longest SW-chain in the rectangular re-

gion to the right and above c.

Example 6. The growth diagram corresponding to the reverse RSK for w
and the pair of RSSYTs are,

×

×

×

×

×

×
×

×
×

1
1
1
11
111
211
311
411
4111
4211
4311

1222
1

2
2

3
2

3
2
1

3
3
1

3
3
1
1

4
3
1
1

∅

∅

7 3 2 2
4 1 1
3
1

P̃ =
7 7 4 1
5 4 2
3
1

Q̃ =

The map ρ allows us to find the pair of SSAFs from the growth diagram
corresponding to the reverse RSK. Recall that the shape of a SSAF is the
weak composition γ that records the length of the columns. The partition
that we get in each step of the growth diagram is the shape of the RSSYT,
a rearrangement of the shape of SSAF. Let λi be the partition associated to
the i-th thick column line on the bottom of the growth diagram when we
scan the thick column lines from right to left, and consider the sequence of
partitions {λij}, where λi = λi1 ⊆ · · · ⊆ λili

, associated respectively with the
thick column line i, and with the li− 1 thin column lines strictly in between
the two thick column lines i and i+1, counted from right to left. Start with
the rightmost partition of the bottom sequence in the growth diagram and
also with an empty SSAF. When we arrive to the partition λij we put a cell,
filled with n+1− i, in the leftmost possible place of the SSAF with basement
1 through n, such that the shape of the new SSAF becomes a rearrangement
of the partition λij and the decreasing property on the columns of SSAF,
from bottom to top, is preserved.
Similarly let λi be the partition associated to the i-th thick row line on the

left hand of the growth diagram when we scan the thick row lines from top
to bottom, and consider the sequence of partitions {λij

}, where λi = λi1
⊆

· · · ⊆ λili
, associated respectively with the thick row line i, and with the thin
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li−1 row lines strictly in between the two thick row lines i and i+1, counted
from top to bottom. Start with the topmost partition of the left sequence in
the growth diagram and also with an empty SSAF. When we arrive to the
partition λij

we put a cell filled with n+1− i in the leftmost possible place of
the SSAF with basement 1 through n, such that the shape of the new SSAF
becomes a rearrangement of the partition λij

and the decreasing property on
the columns of SSAF, from bottom to top, is preserved.

Example 7. The growth diagram corresponding to the analogue of RSK for

w and the corresponding pair of SSAF are,

×

×

×

×

×

×
×

×
×

1
1
1
11
111
211
311
411
4111
4211
4311

1222
1

2
2

3
2

3
2
1

3
3
1

3
3
1
1

4
3
1
1

∅

∅

1 2 3 4 5 6 7
74

2
2

3
3

1
1
1

F
1 2 3 4 5 6 7

7
4
5

7
3

2

1

1
4

G

Below we can see how each step, on the left hand side of the growth dia-
gram, produces a SSAF.

7 7
7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ01 = ∅
λ0 = ∅

λ11 = 1
λ1 = 2

λ12 = 2
λ1 = 2

7
7

5 7
7

5
4

7
7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ21 = 2
λ2 = 2

λ31 = 21
λ3 = 21

λ41 = 22
λ4 = 32



GROWTH DIAGRAMS AND NON-SYMMETRIC CAUCHY IDENTITIES 15

5
4
4

7
7

3 5
4
4

7
7

3 5
4
4

7
7
2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ42 = 32
λ4 = 32

λ51 = 321
λ5 = 321

λ61 = 331
λ6 = 331

1 3 5
4
4

7
7
2

1 3 5
4
4
1

7
7
2

1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ71 = 3311
λ7 = 4311

λ72 = 4311
λ7 = 4311

4. Bruhat order in Sn and in a Sn-orbit

Let θ = θ1 . . . θn ∈ Sn, written in one line notation. A pair (i, j), with
i < j, such that θi > θj, is said to be an inversion of θ, and ℓ(θ) denotes the
number of inversions of θ. The Bruhat order in Sn is the partial order in Sn

defined by the transitive closure of the relations

θ < tθ, if ℓ(θ) < ℓ(tθ), (t transposition, θ ∈ Sn).

We may write α < β in the Bruhat ordering of Sn if ℓ(α) < ℓ(β) and
β = τα for some permutation τ in Sn that can be written as a product of
transpositions each increasing the number of inversions when passing from α
to β.
Let θ = siN · · · si1 be a decomposition of θ into simple transpositions si =

(i i+1), 1 ≤ i < n. When N = ℓ(θ), the number N in a such decomposition
is minimised, and we say that we have a reduced decomposition of θ.
Let λ be a partition in Nn. The Bruhat ordering of the orbit of λ, Snλ, is

defined by taking the transitive closure of the relations

α < tα, if αi > αj , i < j, and t the transposition (i j), (α ∈ Snλ).

Given α ∈ Nn, a pair (i, j), with i < j, such that αi < αj, is called an
inversion of α, and ι(α) denotes the number of inversions of α. We may
write α < β if ι(α) < ι(β) and β = τα for some permutation τ in Sn that
can be written as a product of transpositions each increasing the number of
inversions when passing from α to β.
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5. Demazure operators, Demazure characters and De-

mazure atoms

Isobaric divided difference operators [20], or Demazure operators [4], πi
and π̂i, 1 ≤ i < n, act on Z[x1, . . . , xn] by

πif =
xif − si(xif)

xi − xi+1
, (10)

π̂if = (πi − 1)f = πif − f, (11)

where the simple transposition si of Sn acts on f swapping xi with xi+1,
and 1 is the identity operator on Z[x1, . . . , xn]. It follows from the definition
that πi(f) = f and π̂i(f) = 0 if and only if sif = f . They both satisfy
the commutation and the braid relations of Sn, πiπj = πjπi, π̂iπ̂j = π̂jπ̂i
for |i − j| > 1, and πiπi+1πi = πi+1πiπi+1, π̂iπ̂i+1π̂i = π̂i+1π̂iπ̂i+1, and this
guarantees that, for any permutation σ ∈ Sn, there exists a well defined
isobaric divided difference πσ := πiN · · · πi2πi1 and π̂σ := π̂iN · · · π̂i2π̂i1, where
siN . . . si2si1 is any reduced expression of Sn. In addition, they satisfy the
quadratic relations π2

i = πi and π̂2
i = −π̂i.

The 0-Hecke algebra Hn(0) of Sn, a deformation of the group algebra
of Sn, is an associative C-algebra generated by T1, . . . , Tn−1 satisfying the
commutation and the braid relations of the symmetric group Sn, and the
quadratic relation T 2

i = Ti for 1 ≤ i < n. Setting T̂i := Ti− 1, for 1 ≤ i < n,
one obtains another set of generators of the 0-Hecke algebra Hn(0). The

sets {Tσ : σ ∈ Sn} and {T̂σ : σ ∈ Sn} are both linear basis for Hn(0),

where Tσ = TiN · · ·Ti2Ti1 and T̂σ := T̂iN · · · T̂i2T̂i1, for any reduced expression
siN · · · si2si1 in Sn. Since Demazure operators (10) or bubble sort operators
satisfy the same relations as Ti, and similarly for isobaric divided difference
operators (11) and T̂i, the 0-Hecke algebra Hn(0) of Sn may be viewed as
an algebra of operators realised either by any of the two isobaric divided
differences, or by bubble sort operators, swapping entries i and i + 1 in a
weak composition α, if αi > αi+1, and doing nothing, otherwise. Therefore,
the two families {πσ : σ ∈ Sn} and {π̂σ : σ ∈ Sn} are both linear basis for
Hn(0), and from the relation π̂i = πi − 1, the change of basis from the first
to the second is given by a sum over the Bruhat order in Sn, πσ =

∑
θ≤σ π̂θ

[17, 27]. Key polynomials and Demazure atoms can be defined through De-
mazure operators, κα = πσx

λ where α = σλ and λ a partition, and similarly
κ̂α = π̂σx

λ (assume σ a minimal coset representative modulo stabiliser of
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λ). Thereby, key polynomials or Demazure characters are decomposed into
Demazure atoms [16, 20],

κα =
∑

β≤α

κ̂β. (12)

6. Crystal operators and growth diagrams

Crystal operators or coplactic operations er, fr, 1 ≤ r < n, can be defined
on any word over the alphabet [n]. These operations can be also extended
to biwords. For details see [14, 18]. Consider the following biword in lexico-
graphic order over the alphabet [7],

w =

(
1 1 2 2 3 3 3 3 4 4 4 5 5 6 7
3 4 2 6 3 4 4 4 3 3 4 3 4 1 1

)
.

The crystal operator e3 acts on the second row of w as follows: ignoring all
the entries different from 3 and 4, from the second row of the biword w, one
gets 34344433434; match in the usual way all 43 (in blue in the example
below) and it remains the subword 344; change to 3 the leftmost 4. For
example, applying twice e3 to w, it means to apply twice e3 to the second
row, and the the subword 344 change to 333, and one obtains

34344433434
e3

34334433434
e3

34334433433

Recalling the presentation of a biword in a rectangle defined in Section 3.4,
we represent the biword w in the Ferrers shape λ = (7, 6, 5, 5, 3, 2, 1) by

putting a cross × in the cell (i, j) of λ if

(
j
i

)
is a biletter of w. The biword

×
×

×

×

×
××
×

××
×
×
×

××

λ = (7, 6, 5, 5, 3, 2, 1)

Figure 1. Reperesentation of the biword w in a Ferrers shape.
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w can be recovered, from this representation, by scanning the columns of the
Ferrers shape λ, left to right, and bottom to top.
Let w be a biword in lexicographic order represented in the Ferrers shape

λ. We introduce an operation Υr in the rows r and r+1 of λ which consists
of matching crosses in rows r and r+1, and then sliding down the unmatched
crosses from row r+1 to row r. This slide of crosses translates to the action
of the operator er, as long as it is possible, on the second row of the biword w.
The operation Υr is the analogue of applying m times the crystal operator
er, to the second row of w, where m is the number of unmatched r+1 in the
second row of w. Therefore, we also write Υrw to mean the biword obtained
by applying m times the crystal operator er, to the second row of w, where m
is the number of unmatched r+1 in the second row of w. We scan from left
to right and match crosses in rows r+1 and r that are in the following way:
×
× , it means that we match a cross of row r+1 with the cross to its SE in

row r such that there is no unmatched cross in the columns between them,
within the rows under consideration. If there are more than one cross in the
same cell then order them from left to right and consider them in different
sub columns. Next move all the unmatched crosses of the row r + 1 to the
row r.

×
×
×××

× ×
×
×
×

×
×

××
××
×××
×
××

−→Υr

1

3

1

4

3

3

3

4

3

4

3

4

4

3

4

3

4

4

5

3

5

4
( )

1

3

1

4

3

3

3

3

3

4

3

4

4

3

4

3

4

4

5

3

5

3
( )

←−

−→

e2r

f 2
r

The action of the crystal operator fr on the biword w is defined by the action
of fr on the second row.
The new set of cells of λ, defined by the crosses, yields a new biword Υrw,

scanning λ along columns from left to right and bottom to top. The biword
Υrw is obtained from the biword w by applying the crystal operator er as
long as it is possible to the second row of the biword w.
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×
×

×

×

×
××
×

××
×
×
×

××
−→
Υr

×
×

×

×

××
××

××
×
××

××

(
1

3

1

4

2

2

2

6

3

3

3

4

3

4

3

4

4

3

4

3

4

4

5

3

5

4

6

1

7

1
)→
Υr (

1

3

1

4

2

2

2

6

3

3

3

3

3

4

3

4

4

3

4

3

4

4

5

3

5

3

6

1

7

1
)

Consider now the two 01-fillings of the biwords w and Υrw represented in
the Ferrers shapes λ, and apply the backward local rules to them, as defined
in Sections 3.4. Notice that in the 01-filling of Υrw, we match a cross of row
r + 1 with a cross to the SE, in row r, such that in these two rows there is
no unmatched cross in a column between them.
These two growth diagrams have the same bottom sequences of partitions

and the left sequences are different only in the partitions associated to the
rows r and r + 1. It is proved in [18] that the bottom sequence is preserved
by the operations er and fr, when the entries of the first row of the biword
w are distinct. In the 01-filling we have standardized the first row of the
biword w thus the bottom sequence is preserved, and therefore the same
happens when the first row of the biword has repeated letters. Let wr and
w̃r be the biwords that are obtained from w and Υrw, after deleting all the
biletters whose second rows are different from r and r+1. The translation of
the movement of the cells in the Ferrers shape to the 01-filling is as follows:
in the 01-filling of wr, move up, without changing of columns, the matched
crosses of row r+1, say s crosses, to the top most s rows such that they form
SW chain. Then slide down the remaining unmatched crosses, from row r+1
to row r, without changing of columns, such that these crosses and all the
crosses of row r form a SW chain. The result is the 01-filling corresponding
to w̃r.

×
×
×××

× ×
×
×
×

×
×

××
××
×××
×
××

−→Υr
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1

3

1

4

3

3

3

4

3

4

3

4

4

3

4

3

4

4

5

3

5

4
( )

1

3

1

4

3

3

3

3

3

4

3

4

4

3

4

3

4

4

5

3

5

3
( )

←−

−→

e2r

f 2
r

×

×

×

×
×
×

×
×

×

×

×

wr

→
Υr

×

×

×
×

×
×

×
×

×

×
×

w̃r

It is clear that the longest SW chain in the first k columns, from right to
left, of the 01-filling of wr and of w̃r, has length equal to the total number of
crosses in row r and row r+1, of those columns, minus the number of matched
crosses in row r+1, of those columns. It means that the length of the longest
SW chain in the first k columns, from right to left is preserved. Theorem 2
implies that the bottom sequences in growth diagrams corresponding to wr

and w̃r are the same. Let Θr be the analogue operator of fr for SSAF defined
in [26]. Since the operator Θr has the same behaviour as the operator fr, the
next scheme shows the relation between the action of crystal operator fr, its
analogue Θr, the RSK and the analogue of RSK

w̃ =

(
a

er(b)

)

w =

(
a
b

)

(erP,Q)

(P,Q)

(F̃ , G)

(F,G)

RSK Ψ

RSK Ψ

fr Θr

(13)

If F is SSAF, put ΥrF such that Θm
r (ΥrF ) = F where m is the number of

unmatched r + 1 in the row reading (left to right and top to bottom) of the
SSAF F . Equivalently, if F = Ψ(P ) with P a SSYT, then ΥrF = Ψ(emr P )
where m is the number of unmatched r + 1 in P .
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Next theorem is therefore a consequence of our discussion.

Theorem 3. Let w be a biword in lexicographic order. If Φ(w) = (F,G) then
Φ(Υrw) = (ΥrF ,G).

Example 8. The procedure of passing from a biword under the action of the

operator Υr to a pair of SSAFs, where n = 7, r = 3.

w=
(
1

3

1

4

2

2

2

6

3

3

3

4

3

4

3

4

4

3

4

3

4

4

5

3

5

4

6

1

7

1
)→
Υ3 (

1

3

1

4

2

2

2

6

3

3

3

3

3

4

3

4

4

3

4

3

4

4

5

3

5

3

6

1

7

1
)

The biletters (i, j) satisfy i+ j ≤ 8 + 1 in w, and i+ j ≤ 7 + 1 in Υ3w . In

particular, the biletter (r+1, 5) = (4, 5) in w is transformed to (r, 5) = (3, 5)
in Υ3w.

×
×

×

×

×
××
×

××
×
×
×

×× −→
Υ3

×
×

×

×

××
××

××
×
××

××

×

×

×

×

×

×
×
×

×
×

×

×

×

×
×

w

→
Υ3

∅
∅
1
1
11
21
31
41
51
61
611
621
631
641
741
751
7511

7521 ∅122
1

2
2

2
2
1

3
2
1

4
2
1

4
2
2

4
3
2

5
3
2

6
3
2

6
3
2
1

7
3
2
1

7
4
2
1

×

×

×

×

×
×

×
×

×
×

×

×
×

×
×

w̃
∅
∅
1
1
11
21
31
41
411
421
431
441
541
641
741
751
7511

7521 ∅122
1

2
2

2
2
1

3
2
1

4
2
1

4
2
2

4
3
2

5
3
2

6
3
2

6
3
2
1

7
3
2
1

7
4
2
1
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1 2 3 4 5 6 7
1
1

3
3
3
3
2
4
4
4
3

4
4
4

6

F ,

1 2 3 4 5 6 7
2 4

3
3
1
1

5
5
4
4
3
3
2

7
6

G ;

1 2 3 4 5 6 7
1
1

3
3
3
3
3
4
2

3
3

4
4
4

6

Υ3F ,

1 2 3 4 5 6 7
2 4

3
3
1
1

5
5
4
4
3
3
2

7
6

G

sh(F ) = (2, 0, 5, 7, 0, 1, 0)sh(Υ3F ) = (2, 0, 7, 5, 0, 1, 0) = s3sh(F )

Theorem 4. [3] Let λ be a Ferrers shape where λr = λr+1 > λr+2 ≥ 0,
for some r ≥ 1. Let w be a biword consisting of a multiset of cells of λ
containing the cell (r + 1, λr+1). Let Φ(w) = (F,G). If sh(F ) = ν then

νr < νr+1 and sh(ΥrF ) = srν. Moreover, Υrw does not contain the biletter(
λr+1

r+1

)
and therefore fits the Ferrers shape λ with the cell (r+1, λr+1) deleted.

Example 8 illustrates Theorem 4.
Transposing the Ferrers shape λmeans to swap the first row and the second

row of the biword w, and to transpose, through the secondary diagonal, the
growth diagram of the 01-filling of w. Therefore, the move of crosses on rows
can be translated to a move of crosses on columns. As a consequence of the
symmetry of the growth diagram we have the following versions of Theorem
3 and Theorem 4. Swap the rows of w and then rearrange it in lexicographic
order. This new biword is denoted by w∗. Let Υ∗rw := Υrw

∗.

Corollary 2. [3] If Φ(w) = (F,G) then Φ(Υ∗rw) = (F,ΥrG).

Corollary 3. [3] Let λ be a Ferrers shape and let λ = (λ′1, λ
′
2, . . . , λ

′
λ1
) be

the conjugate of λ where λ′r = λ′r+1 > λ′r+2. Let w be a biword consisting of

a multiset of cells of λ containing the cell (λ′r+1, r + 1). Let Φ(w) = (F,G).
If sh(G) = ν then νr < νr+1 and sh(ΥrG) = srν. Moreover, Υ∗rw does not

contain the biletter
(
r+1
λ′

r+1

)
and therefore fits the Ferrers shape λ with the cell

(λ′r+1, r + 1) deleted.

Proposition 1. [3] Let F be a SSAF with shape ν, and νr < νr+1, for some

r ≥ 1. Then sh(ΥrF ) = srν.

6.1. The bijection. Next theorem characterizes the biwords whose biletters
constitute a multiset of cells in a staircase possibly plus a layer of boxes sited
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on the stairs of the staircase, in French convention, leaving free the top of
the first column and the end of the first row.
Let SSAFn be the set of all SSAFs with basement 1, . . . , n.

Theorem 5. (1 NW inner layer) Let w be a biword in lexicographic order

on the alphabet [n], and let Φ(w) = (F,G) ∈ SSAF 2
n , with sh(F ) = ν and

sh(G) = β. Let 0 ≤ p < n, 1 ≤ r1 < · · · < rp < n. For each biletter(
i

j

)
in w one has i + j ≤ n + 1 except for the biletters

(
n− r1 + 1

r1 + 1

)
, . . .,

(
n− rp + 1

rp + 1

)
, if and only if

(a) β ≤ ωsrp · · · sr2sr1ν,
(b) β � ωsrp · · · ŝri · · · sr2sr1ν, for i = 1, 2, . . . , p,

where ̂ means omission.

Proof : By induction on p. For p = 0, it is the main Theorem in [2]. For
p > 0, use Theorem 4 and Proposition 1.

7. A non-symmetric Cauchy kernel over near staircases

7.1. Some notation and a lemma. Given a finite set S and an integer
m ≥ 0, let

(
S
m

)
denote the set of all m-element subsets of S.

Let 0 ≤ p < n and 1 ≤ r1 < r2 < · · · < rp < n. For each 0 ≤ z ≤ p, and

each Hz = {i1 < i2 < · · · < iz} ∈
(
[p]
z

)
, define

AHz

z :=

{
(F,G)∈SSAF 2

n :
sh(G)�ωsriz

···ŝrim ···sri1
sh(F ), m=1,2,...,z

sh(G)≤ωsriz ···sri1
sh(F )

}
.

Put A := A∅0 = { (F,G)∈SSAF 2
n : sh(G)≤ωsh(F ) } .

For each z = 0, . . . , p − 1, and Hz = {2 ≤ i1 < · · · < iz} ∈
(
[2,p]
z

)
, where

[2, p] = [p] \ {1}, let

BHz

z :=

{
(F,G)∈SSAF 2

n :

sh(F )r1<sh(F )r1+1

sh(G)�ωsriz
···ŝrim ···sri1

sr1sh(F ),m=1,2,...,z

sh(G)≤ωsriz ···sri1
sr1sh(F )

}
.

Lemma 1. Given 1 ≤ p < n, for each z = 0, . . . , p− 1, and Hz = {2 ≤ i1 <

· · · < iz} ∈
(
[2,p]
z

)
, let H1

z+1 := {1} ∪Hz. Then

BHz

z = {(F,G) ∈ AHz

z : sh(F )r1 < sh(F )r1+1} ∪ A
H1

z+1

z+1 .
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Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two sequences of indetermi-
nates. From (8), with πr1 the isobaric divided difference with respect to x,
one has

∑

ν∈Nn

πr1κ̂ν(x) =
∑

ν∈Nn

πr1
∑

F∈SSAFn

sh(F )=ν

xF =
∑

ν∈Nn

νr1≥νr1+1

πr1
∑

F∈SSAFn

sh(F )=ν

xF

=
∑

ν∈Nn

νr1≥νr1+1

∑

F∈SSAFn

sh(F )=ν

xF +
∑

ν∈Nn

νr1>νr1+1

∑

F∈SSAFn

sh(F )=sr1ν

xF .

Thereby

∑

ν∈Nn


πr1

∑

(F,G)∈AHz
z

sh(F )=ν

xFyG


 =

∑

(F,G)∈AHz
z

sh(F )r1≥sh(F )r1+1

xFyG +
∑

(F,G)∈BHz
z

xFyG. (14)

7.1.1. The combinatorial formula. In [19], Lascoux gives a Cauchy ker-
nel expansion formula for any Ferrers shapes which produces, in particular,
the following Cauchy kernel expansion over near staircases (7),

∏
(i,j)∈λ (1−

xiyj)
−1 =

∑

ν∈Nn

(πr1 . . . πrpκ̂ν(x))κων(y). Next theorem gives a bijective expla-

nation.

Theorem 6. Let 0 ≤ p < n and 1 ≤ r1 < r2 < · · · < rp < n. Let λ be the

near staircases (7). Then

(1)
∑

ν∈Nn

(πr1 . . . πrpκ̂ν(x))κων(y) =
∑

(F,G)∈A

xFyG +
∑

1≤z≤p

∑

Hz

∑

(F,G)∈AHz
z

xFyG, (15)

where Hz ∈
(
[p]
z

)
.

(2)
∏

(i,j)∈λ

(1− xiyj)
−1 =

∑

ν∈Nn

(
πr1 . . . πrpκ̂ν(x)

)
κων(y).
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Proof : 1. The proof is by induction on p. If p = 0, we get,
∑

ν∈Nn

κ̂ν(x)κων(y) =
∑

ν∈Nn

∑

(F,G)∈SSAF 2
n

sh(G)≤ωsh(F )
sh(F )=ν

xFyG =
∑

ν∈Nn

∑

(F,G)∈A
sh(F )=ν

xFyG =
∑

(F,G)∈A

xFyG.

Let p ≥ 1 and suppose that identity (15) is true for p−1 operators πi. Then,
since πr1 is linear,

∑

ν∈Nn

(πr1πr2 . . . πrpκ̂ν(x))κων(y) = πr1

(∑

ν∈Nn

(πr2 . . . πrp κ̂ν(x))κων(y)

)

= πr1




p−1∑

z=0

∑

Hz∈([2,p]z )

∑

(F,G)∈AHz
z

xF yG


 =

p−1∑

z=0

∑

Hz∈([2,p]z )



∑

ν∈Nn

πr1

∑

(F,G)∈AHz
z

sh(F )=ν

xF yG




=

p−1∑

z=0

∑

Hz∈([2,p]z )




∑

(F,G)∈AHz
z

sh(F )r1≥sh(F )r1+1

xF yG +
∑

(F,G)∈BHz
z

xF yG


 . (16)

Using Lemma 1,

(16) =

p−1∑

z=0

∑

Hz∈([2,p]z )




∑

(F,G)∈AHz
z

sh(F )r1≥sh(F )r1+1

xF yG +
∑

(F,G)∈AHz
z

sh(F )r1<sh(F )r1+1

xF yG +
∑

(F,G)∈A
H1

z+1
z+1

xF yG




=

p−1∑

z=0

∑

Hz∈([2,p]z )




∑

(F,G)∈AHz
z

xF yG +
∑

(F,G)∈A
H1

z+1
z+1

xF yG


 =

p∑

z=0

∑

Hz∈([p]z )

∑

(F,G)∈AHz
z

xF yG.

2. Let λ0 the biggest staircase inside of λ. Then, identifying xiyj with the biletter
(
j

i

)
, and

using the bijection in Theorem 5, it follows

∏

(i,j)∈λ

(1− xiyj)
−1 =

∏

(i,j)∈λ0

(1− xiyj)
−1

p∏

i=1

(1− xri+1yn−ri+1)
−1

=
∑

(F,G)∈A

xF yG +

p∑

z=1

∑

Hz∈([p]z )

∑

(F,G)∈AHz
z

xF yG.
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The combinatorial expansion formula for the SE part can be obtained by
using the change of basis (12).

Acknowledgment. We thank to Robin Langer for asking us whether we had
a growth diagrammatic interpretation for the analogue of RSK to produce
pairs of semi-skyline augmented fillings.
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Birkhäuser, vol. 210, 95–114 (2003)
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