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Abstract: We show that weak solutions of the degenerate p−Laplace equation

ut − div
(
|∇u|p−2∇u

)
= 0, p ≥ 2

in the whole space are constant if their growth at infinity is properly controlled in
an intrinsic manner.
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1. Introduction
A classical result from Complex Analysis asserts that if h : C→ C is an en-

tire, bounded holomorphic function then h must be constant. This keystone
result was originally proven by the french mathematician Joseph Liouville
back in the 19th century [6]. Nowadays results of such a nature – usually
called Liouville-type theorems – are spread all over the modern theory of
mathematical analysis and applications.

Within the theory of elliptic PDEs, the most basic Liouville theorem as-
serts that bounded, harmonic functions, ∆h = 0, defined in Rn must be
constant. There are quite a few different ways to prove this result. Probably
the simplest form is by exploring the mean value property for harmonic func-
tions, i.e., h(y) =

∫
Br(y) h(x)dx: since h is bounded, the difference between

the average in balls centered at two points is o(1) as the radius tends to
infinity. Despite its elegancy, the above argument is confined to the Laplace
equation. Moser, in his fundamental work [9], noticed that a Liouville-type
theorem could be derived by means of Harnack’s inequality. In particular,
bounded entire solutions to div(aij(x)∇u) = 0 must be constant, provided
aij is uniformly elliptic.
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As a matter of fact, Moser’s argument for proving a Liouville-type theorem
only requires a one-sided bound on the solution. For evolutionary problems
though, a one side bound is not enough to conclude that solutions in Rn×R
have to be constant. For example, u(x, t) = ex+t is a non-constant solution to
the heat equation ut−u′′ = 0 in R×R. Liouville’s theorem, as stated above,
also fails to hold if the equation is non-homogeneous. This is easily verified:
the function x 7→ |x|2, for instance, is not constant and satisfies ∆(|x|2) = 2
in Rn.

Bernstein, in his study about global minimal surfaces, established that any
entire solution to a linear, uniformly elliptic equation in the plane,

a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)uyy = 0, in R2,

which grows sublinearly at infinity, must be constant. The proof of Bern-
stein’s theorem was revisited in [3] and [7], and since then a number of other
proofs were derived, see [8] for a particularly striking one. The result can be
seen as a refinement of Liouville’s Theorem – a solution to a uniformly elliptic
equations in the plane that grows as o(|x|) at infinity must be constant.

The goal of this note is to obtain a Bernstein result for degenerate parabolic
equations of the form

ut − div
(
|∇u|p−2∇u

)
= 0 in Rn × R, (1.1)

where p > 2 . This class of equations has been thoroughly studied in the last
30 years and is now quite well understood (see the standard reference [1] and
the more recent account in [13]). The approach of [12], where a precise and
sharp derivation of the Hölder exponent of solutions is carried out, shifted
the focus of the analysis from quantitative to qualitative results (see also,
in this direction, [4] and [5]). We proceed here in this vein, showing that
solutions of (1.1) are forced to remain constant if their growth at infinity is
controlled. We will show that the rate of decay is given by a power of the
appropriate intrinsic norm, explored in [12].

Probabilistic interpretations of Liouville’s theorem (e.g. [10]) are quite
helpful for an intuitive understanding of the theorem we shall present here.
Our proof though is based on the geometric tangential analysis recently de-
veloped in [12], combined with an intrinsic blow-up argument.
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2. An intrinsic Liouville theorem
We consider local weak solutions (for the precise definition see [12])

u ∈ Cloc

(
R;L2

loc(Rn)
)
∩ Lploc

(
R;W 1,p

loc (Rn)
)

of the degenerate parabolic equation

ut − div
(
|∇u|p−2∇u

)
= 0, p > 2. (2.1)

Given 0 < α < 1, define the (2, p)−interpolator

θα := 2α + p(1− α), (2.2)

which clearly satisfies 2 < θα < p. For such θα, consider the intrinsic para-
bolic cylinders

Gθα
τ :=

(
−1

2
τ θα,

1

2
τ θα
)
×Bτ(0), τ > 0

and the intrinsic norm of a point (x, t)

‖(x, t)‖θα := |t|1/θα + |x|.

Theorem 2.1. Let u be an entire solution to

ut − div
(
|∇u|p−2∇u

)
= 0, p > 2. (2.3)

Suppose, for some 0 < α < 1, there holds

u(x, t) = O
(
‖(x, t)‖αθα

)
, (2.4)

as ‖(x, t)‖θα →∞. Then u is constant.

Proof : Without loss of generality, we assume u(0, 0) = 0. Fix a large positive
number `� 1 and define in Gθα

1 ≡ G1 the intrinsically scaled function

V`(x, t) :=
u(`x, `θαt)

`α
.

We first show that

sup
G1

|V`| ≤ C, (2.5)

for `� 1. Let (x`, t`) be a point in G1 such that

sup
G1

|V`| = |V`(x`, t`)| =
∣∣∣∣u(`x`, `

θαt`)

`α

∣∣∣∣ .
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We have

‖(`x`, `θαt`)‖αθα =
(
|`θαt`|1/θα + |`x`|

)α
≤ (2`)α,

hence
1

2α
sup
G1

|V`| =
∣∣∣∣u(`x`, `

θαt`)

(2`)α

∣∣∣∣ ≤
∣∣u(`x`, `

θαt`)
∣∣

‖(`x`, `θαt`)‖αθα
. (2.6)

We now take the limit as ` → ∞. If ‖(`x`, `θαt`)‖θα → ∞, the right-hand
side in (2.6) is bounded, due to condition (2.4), and (2.5) holds. If, on the
contrary, ‖(`x`, `θαt`)‖θα remains bounded then, since u is continuous,∣∣∣∣u(`x`, `

θαt`)

(2`)α

∣∣∣∣ ≤ C

(2`)α
−→ 0

and (2.5) still holds.
We now follow [12] and compute

∂tV`(x, t) = `θα−αut(`x, `
θαt)

and

div
(
|∇V`(x, t)|p−2∇V`(x, t)

)
= `p−(p−1)αdiv

(
|∇u(`x, `θαt)|p−2∇u(`x, `θαt)

)
,

to conclude, recalling (2.2), that

∂tV` − div
(
|∇V`|p−2∇V`

)
= 0 (2.7)

in G1.
Next, fix α < β < 1 and the corresponding θβ. Notice, from (2.2), that

θα is a decreasing function of α; hence θβ < θα. From [12, Theorem 3.4], we
obtain

|V`(x, t)| ≤ C
(
|t|1/θβ + |x|

)β
, ∀(x, t) ∈ Gθβ

1/2, (2.8)

where C is universal. Then, after scaling,

sup
G
θβ
`/2

|u(x, t)|(
|t|1/θβ + |x|

)β = sup
G
θβ
1/2

|u(`x, `θβt)|
`β
(
|t|1/θβ + |x|

)β
= `α−β sup

G
θβ
1/2

∣∣V`(x, `−θα+θβt)
∣∣

(|t|1/θβ + |x|)β

≤ `α−β sup
G
θβ
1/2

∣∣V`(x, `−θα+θβt)
∣∣

(|`−θα+θβ · t|1/θβ + |x|)β

= o(1),

(2.9)
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as ` → ∞, by virtue of estimate (2.8). Observe that, taking ` � 1 large
enough, we can assume `−θα+θβ < 1. Notice also that (x, `−θα+θβt) does

belong to G
θβ
1/2 provided (x, t) does.

Clearly (2.9) implies that u is zero in the whole Rn × R and the proof of
the theorem is concluded.

Remark. Theorem 2.1 is a generalization of [2, Theorem 1.1], at least for
the case of the p-Laplacian and assuming T = +∞. To the best of our
knowledge, the result is new even in the elliptic case.
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