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plectic and hyperkähler structures. We show that hypersymplectic structures on
Courant algebroids encompass hyperkähler and hyperkähler structures with torsion
on Lie algebroids. Cases of hypersymplectic structures on Courant algebroids which
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1. Introduction
In the past years, hyperstructures on Courant algebroids deserved the at-

tention of several authors. Namely, we mention Bursztyn et al. [6] who dis-
cussed hyperkähler structures and Stiénon [11] for the case of hypercomplex
structures. In the present article we introduce and study hypersymplectic
structures and, more generally, ε-hypersymplectic structures on Courant al-
gebroids. A very interesting feature of hypersymplectic structures on Courant
algebroids is that they are in 1 − 1 correspondence with hyperkähler struc-
tures.
Inspired by hypersymplectic structures on manifolds, defined by Xu in [13],

we introduced in [4] the notion of hypersymplectic structure in the setting of
Lie algebroids (see also [1]). A hypersymplectic structure on a Lie algebroid
A is a triplet (ω1, ω2, ω3) of symplectic forms on A, such that the square of the
transition morphisms, endomorphisms of A constructed out of the 2-forms
ωi and their inverses, is equal to ±idA. The idea of extending the theory of
hypersymplectic structures to Courant algebroids is not simply an exercise
of generalization but it has a strong motivation that we explain next.
Hyperkähler structures with torsion on manifolds, also known as HKT

structures, first appear in [7] in relation with sigma models in string theory
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and, since then, HKT and other geometries with torsion caught the inter-
est of many physicists and mathematicians. In a separate article [5], we
study hypersymplectic and hyperkähler structures with torsion on Lie alge-
broids. When these geometrical structures carrying a nonzero torsion are
considered on manifolds or on Lie algebroids, they are substantially different
from those with vanishing torsion (the hypersymplectic and the hyperkähler
cases). In the current article we show that, although hypersymplectic and
hypersymplectic structures with torsion on Lie algebroids are different in na-
ture, when we look at them in the Courant algebroid setting, they become
of the same type. The same happens with hyperkähler and hyperkähler
structures with torsion. This explains the interest of going from Lie alge-
broids to Courant algebroids. The idea which is behind our results, is to
associate to each triplet (ω1, ω2, ω3) of non-degenerate 2-forms on a Lie al-
gebroid A, with inverse (π1, π2, π3) ∈ (Γ(∧2A))3, a triplet of endomorphisms

Si =

[

0 εi π
♯
i

ω♭
i 0

]

, εi = ±1, i = 1, 2, 3, of the vector bundle A ⊕ A∗

equipped with a Courant structure which is successively considered as being
the double of a Lie bialgebroid, of a quasi-Lie bialgebroid and of a proto-Lie
bialgebroid. Then, choosing a suitable Courant structure on A⊕A∗, we prove
that having a hypersymplectic structure (ω1, ω2, ω3) on A, with or without
torsion, is equivalent to having a hypersymplectic structure (S1,S2,S3) on
A ⊕ A∗. More involved situations are those where, besides the structures
considered on A, the vector bundle A∗ itself is endowed with a hypersym-
plectic structure, with or without torsion, determined by (π1, π2, π3). We also
prove that, under some conditions, this is equivalent to (S1,S2,S3) being a
hypersymplectic structure on A⊕ A∗.
Besides the Introduction, the article contains seven sections. Since many

of the computations are done using the big bracket, Section 2 contains a
brief review of the supergeometric setting as well as the main notions around
the Courant algebroid definition. In Section 3 we introduce the notion of
ε-hypersymplectic structure on a Courant algebroid, which is the more gen-
eral case that we consider, and we explore the properties of the morphisms
induced by this structure. Section 4 and 5 treat the case where ε1ε2ε3 = −1.
The main result of Section 4 is that the transition morphisms Ti are Nijen-
huis. We also show that if (S1,S2,S3) is a hypersymplectic structure on a
Courant algebroid (E,Θ), it is also hypersymplectic for the Courant structure
on E deformed by Ti or by Si. In Section 5 we prove a 1− 1 correspondence
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theorem between hypersymplectic and hyperkähler structures on a Courant
algebroid. Moreover, we show how the transition morphisms Ti can take the
role of the morphisms Si to define a new hypersymplectic structure on the
Courant algebroid. Sections 6, 7 and 8 are devoted to examples of hyper-
symplectic structures on A⊕ A∗, equipped with several Courant structures.
We start with the simplest case in Section 6. We prove that (ω1, ω2, ω3) is a
hypersymplectic structure on a Lie algebroid (A, µ) if and only if (S1,S2,S3)
is a hypersymplectic structure on the Courant algebroid (A⊕A∗, µ). In Sec-
tion 7 the Courant structure on A ⊕ A∗ is the double of a Lie bialgebroid
((A,A∗), µ, γ) and we prove that (S1,S2,S3) is a hypersymplectic structure
on (A ⊕ A∗, µ + γ) if and only if (ω1, ω2, ω3) is a hypersymplectic structure
on (A, µ) and (π1, π2, π3) is a hypersymplectic structure on (A∗, γ). The
particular case of a triangular Lie bialgebroid is also considered. The class
of examples we give in Section 8, deal with the notion of hypersymplectic
structure with torsion on a Lie algebroid. This is a structure that general-
izes the hypersymplectic case, where the non-degenerate 2-forms ωi are not
closed but satisfy the condition N1dω1 = N2dω2 = N3dω3, with Ni the tran-
sition morphisms. We show that having a hypersymplectic structure with
torsion (ω1, ω2, ω3) on a Lie algebroid (A, µ), with πi weak-Poisson, is equiv-
alent to (S1,S2,S3) being a hypersymplectic structure on A ⊕ A∗ equipped
with a Courant structure determined by a quasi-Lie bialgebroid structure on
(A,A∗). The next case that we treat is when both (A, µ) and (A∗, γ) are
equipped with hypersymplectic structures with torsion. We show that, un-
der some conditions, this is equivalent to having a hypersymplectic structure
on A ⊕ A∗ equipped with a Courant structure determined by a proto-Lie
bialgebroid structure on (A,A∗).

2. Preliminaries on Courant algebroids
We begin this section by introducing the supergeometric setting, following

the same approach as in [12, 10] (see also [1]). Given a vector bundle A→M ,
we denote by A[n] the graded manifold obtained by shifting the fibre degree
by n. The graded manifold T ∗[2]A[1] is equipped with a canonical symplectic
structure which induces a Poisson bracket on its algebra of functions F :=
C∞(T ∗[2]A[1]). This Poisson bracket is sometimes called the big bracket (see
[9]).
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Let us describe locally this Poisson algebra. Fix local coordinates xi, p
i, ξa, θ

a,
i ∈ {1, . . . , n}, a ∈ {1, . . . , d}, in T ∗[2]A[1], where xi, ξa are local coordinates
on A[1] and pi, θa are their associated moment coordinates. In these local
coordinates, the Poisson bracket is given by

{pi, xi} = {θa, ξa} = 1, i = 1, . . . , n, a = 1, . . . , d,

while all the remaining brackets vanish.
The Poisson algebra of functions F is endowed with an (N × N)-valued

bidegree. We define this bidegree (locally but it is well defined globally,
see [12, 10]) as follows: the coordinates on the base manifold M , xi, i ∈
{1, . . . , n}, have bidegree (0, 0), while the coordinates on the fibres, ξa, a ∈
{1, . . . , d}, have bidegree (0, 1) and their associated moment coordinates, pi

and θa, have bidegree (1, 1) and (1, 0), respectively. We denote by Fk,l the
space of functions of bidegree (k, l) and we verify that the big bracket has
bidegree (−1,−1), i.e.,

{Fk1,l1,Fk2,l2} ⊂ Fk1+k2−1,l1+l2−1.

This construction is a particular case of a more general one [10] in which
we consider a vector bundle E equipped with a fibrewise non-degenerate
symmetric bilinear form 〈., .〉. In this more general setting, we consider the
graded symplectic manifold E := p∗(T ∗[2]E[1]), which is the pull-back of
T ∗[2]E[1] by the map p : E[1] → E[1]⊕ E∗[1] defined by X 7→ (X, 1

2
〈X, .〉).

We denote by FE the graded algebra of functions on E , i.e., FE := C∞(E).
The algebra FE is equipped with the canonical Poisson bracket, denoted by
{., .}, which has degree −2. Notice that F0

E = C∞(M) and F1
E = Γ(E).

Under these identifications, the Poisson bracket of functions of degrees 0 and
1 is given by

{f, g} = 0, {f,X} = 0 and {X, Y } = 〈X, Y 〉,

for all X, Y ∈ Γ(E) and f, g ∈ C∞(M).
When E := A⊕A∗ (with A a vector bundle over M) and when 〈., .〉 is the

usual symmetric bilinear form:

〈X + α, Y + β〉 = α(Y ) + β(X), ∀X, Y ∈ Γ(A), α, β ∈ Γ(A∗), (1)

the algebras F = C∞(T ∗[2]A[1]) and FA⊕A∗ are isomorphic Poisson algebras
[10] and the two constructions above coincide.
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Let us recall that a Courant structure on a vector bundle E equipped with
a fibrewise non-degenerate symmetric bilinear form 〈., .〉 is a pair (ρ, [., .]),
where the anchor ρ is a bundle map from E to TM and the Dorfman bracket
[., .] is a R-bilinear (not necessarily skew-symmetric) map on Γ(E) satisfying

i) ρ(X) · 〈Y, Z〉 = 〈[X, Y ], Z〉+ 〈Y, [X,Z]〉,
ii) ρ(X) · 〈Y, Z〉 = 〈X, [Y, Z] + [Z, Y ]〉,
iii) [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]],

for all X, Y, Z ∈ Γ(E).
The next theorem shows how a Courant structure can be defined in the

supergeometric setting.

Theorem 2.1. [10] There is a 1− 1 correspondence between Courant struc-
tures on (E, 〈., .〉) and functions Θ ∈ F3

E such that {Θ,Θ} = 0.

The anchor and Dorfman bracket associated to a given Θ ∈ F3
E are defined,

for all X, Y ∈ Γ(E) and f ∈ C∞(M), by the derived bracket expressions

ρ(X) · f = {{X,Θ}, f} and [X, Y ] = {{X,Θ}, Y }.

Let (E, 〈., .〉,Θ) be a Courant algebroid and I : E → E a vector bundle
endomorphism. The transpose morphism I∗ : E∗ ≃ E → E∗ ≃ E is defined
by 〈I∗u, v〉 = 〈u, Iv〉 for all u, v ∈ E. If I = I∗ (respectively, I = −I∗), the
morphism I is said to be symmetric (resp. skew-symmetric). The morphism
I is orthogonal if I ◦ I∗ = idE.
When I is skew-symmetric, we may deform Θ by setting ΘI := {I,Θ} ∈

F3
E. The deformation of ΘI by a skew-symmetric morphism J is denoted

by ΘI,J , i.e. ΘI,J = {J, {I,Θ}}. The concomitant CΘ(I, J) of two skew-
symmetric morphisms I and J , on a Courant algebroid (E, 〈., .〉,Θ), is given
by [2]:

CΘ(I, J) = ΘI,J +ΘJ,I . (2)

Recall that a vector bundle endomorphism I : E → E on a Courant
algebroid (E, 〈., .〉,Θ) is a Nijenhuis morphism if its Nijenhuis torsion TΘI
vanishes. When I2 = λ idE, for some λ ∈ R, we have [8, 1]

TΘI =
1

2
(ΘI,I − λΘ). (3)

If I2 = −idE (resp. I2 = idE) then I is said to be an almost complex (resp.
almost para-complex ) structure. If moreover TΘI = 0, then I a complex
(resp. para-complex ) structure.
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When E = A ⊕ A∗ and 〈., .〉 is the usual symmetric bilinear form (1), a
Courant structure Θ ∈ F3

E can be decomposed using the bidegrees:

Θ = µ+ γ + φ+ ψ,

with µ ∈ F1,2
A⊕A∗, γ ∈ F2,1

A⊕A∗, φ ∈ F0,3
A⊕A∗ = Γ(∧3A∗) and ψ ∈ F3,0

A⊕A∗ =
Γ(∧3A). We recall from [9] that, when γ = φ = ψ = 0, Θ is a Courant
structure on (A⊕A∗, 〈., .〉) if and only if (A, µ) is a Lie algebroid; when φ =
ψ = 0, Θ is a Courant structure on (A⊕A∗, 〈., .〉) if and only if ((A,A∗), µ, γ)
is a Lie bialgebroid and when φ = 0 (resp. ψ = 0), Θ is a Courant structure
on (A⊕A∗, 〈., .〉) if and only if ((A,A∗), µ, γ, ψ) (resp. ((A,A∗), µ, γ, φ)) is a
quasi-Lie bialgebroid. In the more general case, Θ = µ+γ+φ+ψ is a Courant
structure if and only if ((A,A∗), µ, γ, ψ, φ) is a proto-Lie bialgebroid.
Throughout this article, for simplicity, we shall often denote a Courant

algebroid (E, 〈., .〉,Θ) by the pair (E,Θ) and when we write µ, γ, φ or ψ,
we are assuming that these functions are in F1,2

A⊕A∗, F
2,1
A⊕A∗, F

0,3
A⊕A∗ or F

3,0
A⊕A∗,

respectively.

3. Hypersymplectic structures on Courant algebroids
In this section we introduce the notion of an ε-hypersymplectic structure

on a Courant algebroid (E,Θ) and study the main relations and properties
of the induced morphisms. In order to simplify the notation, when I and J
are endomorphisms of E, the composition I ◦ J will be denoted by IJ .

Definition 3.1. An ε-hypersymplectic structure on a Courant algebroid (E,Θ)
is a triplet (S1,S2,S3) of skew-symmetric endomorphisms Si : E → E,
i = 1, 2, 3, such that

i) Si
2 = εi idE,

ii) SiSj = ε1ε2ε3SjSi, i 6= j ∈ {1, 2, 3}
iii) ΘSi,Si

= εiΘ,

where the parameters εi = ±1 form the triplet ε = (ε1, ε2, ε3).

From conditions i) and iii) of Definition 3.1, and using formula (3), we
immediately have the following proposition.

Proposition 3.2. Let (S1,S2,S3) be an ε-hypersymplectic structure on a
Courant algebroid (E,Θ). Then, S1,S2 and S3 are Nijenhuis morphisms.
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Given an ε-hypersymplectic structure (S1,S2,S3) on (E,Θ), let us define
the morphisms T1, T2 and T3 by setting

Ti := εi−1Si−1Si+1, (4)

where the indices must be considered as elements of Z3 := Z/3Z.

Remark 3.3. We consider 1, 2 and 3 as the representative elements of the
equivalence classes of Z3, i.e., Z3 := {[1], [2], [3]}. In what follows, although
we often omit the brackets [ · ], and write n instead of [n], all the indices (and
the corresponding computations) must be considered in Z3.

The morphisms Ti, i = 1, 2, 3, are seen as transition maps between the
morphisms Sj, j = 1, 2, 3. In fact we have, for all i ∈ Z3,

Si−1Ti = Si+1.

The picture in Figure 1 is a good way to visualize these relations. For
example, considering the bottom triangle, we can verify that S2T3 = S1 and
ε1T3S1 = ε2S2. For the latter equality we use the fact that the inverse of
morphism Si is εiSi.

<

>
>

<

> <
S
1

S
3

S2

T
2T 1

T3
Figure 1.

Proposition 3.4. Let (S1,S2,S3) be an ε-hypersymplectic structure on a
Courant algebroid (E,Θ). The morphisms T1, T2 and T3 satisfy the following
relations for all i = 1, 2, 3:

i) Ti
∗ = ε1ε2ε3Ti.

ii) Ti
2 = εi idE;

iii) Ti−1Ti+1 = ε1ε2ε3Ti+1Ti−1 = εiTi;
iv) T3T2T1 = ε1ε2ε3T1T2T3 = idE.

Proof : Using conditions i) and ii) of Definition 3.1 and also equation (4), we
have:
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i) Ti
∗ = (εi−1Si−1Si+1)

∗ = εi−1Si+1Si−1 = εiεi+1Si−1Si+1 = ε1ε2ε3Ti,
where we also used the fact that the endomorphisms Si are skew-
symmetric;

ii) Ti
2 = Si−1Si+1Si−1Si+1 = ε1ε2ε3S

2
i−1S

2
i+1 = εi idE;

iii) Ti−1Ti+1 = εi+1εiSi+1SiSiSi−1 = εi+1Si+1Si−1 = εiεi−1Si−1Si+1 = εiTi.
This proves one part of the statement and we use it to prove the second
equality of the statement. In fact, from (Ti−1Ti+1)

2 = (εiTi)
2 = εi idE

and using item ii), we have

Ti−1Ti+1 = εi(Ti−1Ti+1)
−1 = εi(Ti+1)

−1(Ti−1)
−1 = ε1ε2ε3Ti+1Ti−1.

iv) By item iii), T3T2 = ε1T1, then, using item ii),

T3T2T1 = ε1T
2
1 = idE.

Furthermore, using item iii) three times we can change the order of
Ti’s in the product T3T2T1 to get

T3T2T1 = (ε1ε2ε3)
3T1T2T3 = ε1ε2ε3T1T2T3.

Remark 3.5. In the particular case where ε1 = ε2 = ε3 = −1, the triplet
(T1, T2, T3) is an almost hypercomplex structure on the Courant algebroid
(E,Θ) in the terminology of [11].

Given an ε-hypersymplectic structure (S1,S2,S3) on a Courant algebroid
(E,Θ), we may define an endomorphism G : E → E by setting, for all
i = 1, 2, 3,

G := Si+1SiSi−1. (5)

Notice that G is well defined by (5). In fact, since SiSj = ε1ε2ε3SjSi, for
i 6= j, we obviously have G = S3S2S1 = S1S3S2 = S2S1S3.

Proposition 3.6. Let (S1,S2,S3) be an ε-hypersymplectic structure on a
Courant algebroid (E,Θ). Then, the morphism G, given by (5), satisfies the
following properties:

i) G∗ = −ε1ε2ε3G;
ii) G2 = idE.

Proof : i) An easy computation using the skew-symmetry of each Si and
condition ii) in Definition 3.1, gives

G∗ = (Si+1SiSi−1)
∗ = −Si−1SiSi+1 = −ε1ε2ε3Si−1Si+1Si = −ε1ε2ε3G.
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ii) The proof is immediate using properties of Si from Definition 3.1:

G2 = (S3S2S1)
2 = ε1ε2ε3 S

2
3S

2
2S

2
1 = idE .

The next proposition shows that, for each i, the morphisms G, Si and Ti
commute pairwise and each one is obtained out of the other two.

Proposition 3.7. Let (S1,S2,S3) be an ε-hypersymplectic structure on a
Courant algebroid (E,Θ). The morphisms Si, Ti and G, i = 1, 2, 3, satisfy the
following relations:

i) TiSi = SiTi = εi−1G;
ii) GSi = SiG = εi−1εiTi;
iii) GTi = TiG = εi−1εiSi.

Moreover, for all i 6= j ∈ {1, 2, 3},

iv) SjTi = ε1ε2ε3TiSj =

{

Si+1, j = i− 1
εiSi−1, j = i+ 1.

Proof : i) Using (4) and the condition ii) of Definition 3.1 twice, we get

TiSi = εi−1Si−1Si+1Si = εi−1SiSi−1Si+1 = SiTi.

On the other hand, from (4) and (5) we have

TiSi = εi−1Si−1Si+1Si = εi−1G.

ii) From item i) we have TiSi = εi−1G and composing with Si, on the
right, we get Ti(Si)

2 = εi−1GSi or, equivalently, εi−1εiTi = GSi. For
the other equality, we start with SiTi = εi−1G and compose with Si,
on the left, to obtain (Si)

2Ti = εi−1SiG; so that εi−1εiTi = SiG.
iii) Analogous to the proof of item ii), but composing with Ti instead of

Si.
iv) Let us prove the case j = i − 1. Using (4) and the condition i) of

Definition 3.1, we have

Si−1Ti = εi−1S
2
i−1Si+1 = Si+1.

Moreover, by (4) and conditions i) and ii) of Definition 3.1, we get

TiSi−1 = εi−1Si−1Si+1Si−1 = εiεi+1S
2
i−1Si+1 = ε1ε2ε3Si+1,

which completes the proof of the statement. The case j = i + 1 is
analogous.
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When G = idE, then Si = εi−1εiTi and, if
∗ ε1 = ε2 = ε3 = −1, the triplet

(S1,S2,S3) is an hypercomplex structure, in the sense of [11], on the Courant
algebroid (E,Θ).

The relations between Si, Tj and G, for all i, j = 1, 2, 3, may be visualized
in Figure 2.

>

<<

< >

<

>
>

<

T1

T 2T
3

S1S1

S 2

S 2

S
3

S
3

<

>

>

<

>

>

<

>

>

<

>

>

ε
1T

2

ε
3 T

1

ε2T
3

ε3ε
2
T3

ε 3
S
1

ε
2ε

1S
2

ε3ε
2
S3

ε 1
ε 3
T
1

ε
1S

2

ε2S
3

ε 1
ε 3
S
1

ε
2ε

1T
2

D

D

D
A

B C

Figure 2.

This is to be understood as the pattern for a tetrahedron ABCD. The
metric G does not appear in Figure 2 but in Figure 3, after building the
tetrahedron, G appears as the altitude of the tetrahedron ABCD.

∗Notice that, because of Proposition 3.6 i), G = idE implies ε1ε2ε3 = −1.
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G

D

A

B

C

Figure 3.

When G = idE , there is an identification given by εiSi = εi−1Ti between
upper edges of the tetrahedron ABCD and their projections onto the face
ABC (see Figure 3). In other words, in this case the tetrahedron degenerates
into a (flat) triangle.

The next proposition shows the behaviour of G and Ti, i = 1, 2, 3, under
the bilinear form 〈., .〉.

Proposition 3.8. Let (S1,S2,S3) be an ε-hypersymplectic structure on a
Courant algebroid (E, 〈., .〉,Θ). The maps G and Ti, i = 1, 2, 3, satisfy

〈GTi(X), Ti(Y )〉 = εi−1εi+1〈G(X), Y 〉,

for all X, Y ∈ Γ(E).

Proof : Using Proposition 3.4 i) and ii) and Proposition 3.7 iii) we have:

〈GTi(X), Ti(Y )〉 = ε1ε2ε3〈TiGTi(X), Y 〉 = ε1ε2ε3〈GT
2
i (X), Y 〉

= εi−1εi+1〈G(X), Y 〉.

From Definition 3.1 and Propositions 3.4, 3.6 and 3.7, we realize that the
parameter ε1ε2ε3 = ±1 is determinant for some basic properties of the mor-
phisms Ti, Sj and G, i, j = 1, 2, 3, and for the relations between them. We
shall see, in the remaining sections of this paper, that the case ε1ε2ε3 = −1
is the more interesting one.
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4. Hypersymplectic on deformed Courant structures
In this section we consider an ε-hypersymplectic structure (S1,S2,S3) on

a Courant algebroid (E,Θ) such that ε1ε2ε3 = −1. As we have already
remarked, the condition ε1ε2ε3 = −1 determines some properties of the mor-
phisms Si, Ti, i = 1, 2, 3, and G. Namely, we prove that the Ti’s are Nijenhuis
morphisms and we show that we may deform the Courant structure Θ by Si

or by Ti, without loosing the property of (S1,S2,S3) being hypersymplectic.
Let us recall a result from [2].

Proposition 4.1. Let I and J be two anti-commuting endomorphisms on a
Courant algebroid (E,Θ). Then, for all sections X and Y of E,

2 TΘ(IJ)(X, Y ) =

(

TΘI(JX, JY )− J (TΘI(JX, Y ) + TΘI(X, JY ))−

− J2(TΘI(X, Y ))

)

+ 	
I,J
,

where 	
I,J

stands for permutation of I and J . In particular, if I and J have

vanishing Nijenhuis torsion then so has IJ .

As a direct consequence of Propositions 3.2, 4.1 and 3.4 ii), we get the
following:

Theorem 4.2. Let (S1,S2,S3) be an ε-hypersymplectic structure on a Courant
algebroid (E,Θ) such that ε1ε2ε3 = −1. Then, for each i = 1, 2, 3,

i) the transition morphism Ti is a Nijenhuis morphism;
ii) if εi = −1, Ti is a complex structure;
iii) if εi = 1, Ti is a para-complex structure.

In the case ε1 = ε2 = ε3 = −1, the triplet (T1, T2, T3) is a hypercomplex
structure on the Courant algebroid (E,Θ) in the sense of [11], see Remark 3.5.

In [2] we defined a Nijenhuis pair on a Courant algebroid (E,Θ) as a
pair (I, J) of anti-commuting Nijenhuis morphisms such that CΘ(I, J) = 0
(see (2)). We shall see that an ε-hypersymplectic structure on a Courant
algebroid with ε1ε2ε3 = −1 induces several Nijenhuis pairs. First, we need
the next result which can be directly obtained from Proposition 3.13 in [2].
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Proposition 4.3. Let I and J be two anti-commuting endomorphisms on a
Courant algebroid (E,Θ), with vanishing Nijenhuis torsion. Then, we have

CΘ(I, IJ)(X, Y ) = I(CΘ(I, J)(X, Y ))

for all sections X, Y ∈ Γ(E).

Furthermore, in the case where the square of the endomorphisms I and
J is a multiple of the identity, we shall prove, in the next proposition, that
CΘ(I, J) vanishes.

Proposition 4.4. Let I and J be two anti-commuting endomorphisms on
a Courant algebroid (E,Θ), with vanishing Nijenhuis torsion and such that
I2 = λI idE and J2 = λJ idE, for some λI , λJ ∈ R\{0}. Then,

CΘ(I, J) = 0.

Proof : From I2 = λI idE we have J = λ−1
I I(IJ) and, for all X, Y ∈ Γ(E),

CΘ(I, J)(X, Y ) = λ−1
I CΘ(I, I(IJ))(X, Y ) = λ−1

I I(CΘ(IJ, I)(X, Y )), (6)

where, in the last equality, we used Proposition 4.3 and the fact that CΘ(·, ·)
is symmetric. Using J2 = λJ idE and Proposition 4.3, Equation (6) becomes

CΘ(I, J)(X, Y ) = λ−1
I λ−1

J I(CΘ(IJ, IJ(J))(X, Y ))

= λ−1
I λ−1

J I(IJ)(CΘ(IJ, J)(X, Y )) = −λ−1
J J(CΘ(JI, J)(X, Y )),

where we used the fact that IJ = −JI in the last equality. Finally, applying
once more Proposition 4.3, we get

CΘ(I, J)(X, Y ) = −λ−1
J J2(CΘ(I, J)(X, Y )) = −CΘ(I, J)(X, Y ).

Therefore,

CΘ(I, J)(X, Y ) = 0,

for all X, Y ∈ Γ(E).

From Proposition 4.4 we see that when two Nijenhuis morphisms are (para-
)complex structures, i.e., λI = ±1 and λJ = ±1, it is sufficient that they
anti-commute to form a Nijenhuis pair. This is the case when we have a
Courant algebroid equipped with an ε-hypersymplectic structure such that
ε1ε2ε3 = −1, as it is stated in the next proposition.
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Proposition 4.5. Let (S1,S2,S3) be an ε-hypersymplectic structure on a
Courant algebroid (E,Θ) such that ε1ε2ε3 = −1. Then, we have CΘ(Si,Sj) =
CΘ(Ti, Tj) = CΘ(Si, Tj) = 0, for all i 6= j ∈ {1, 2, 3}. In this case, for all
i 6= j ∈ {1, 2, 3}, the pairs (Si,Sj), (Ti, Tj) and (Si, Tj) are Nijenhuis pairs.

Next we show that when a triplet (S1,S2,S3) is an ε-hypersymplectic struc-
ture on a Courant algebroid (E,Θ), it is also an ε-hypersymplectic structure
on the Courant algebroid deformed by Ti or by Si.

Theorem 4.6. Let (S1,S2,S3) be an ε-hypersymplectic structure on a Courant
algebroid (E,Θ), with ε1ε2ε3 = −1. Then, (S1,S2,S3) is an ε-hypersymplectic
structure on the Courant algebroids (E,ΘTi) and (E,ΘSi

), i = 1, 2, 3.

Proof : Notice that both Ti and Si are Nijenhuis with respect to Θ, so that
ΘTi and ΘSi

are Courant structures on E [8]. We only show that (S1,S2,S3)
is an ε-hypersymplectic structure on (E,ΘTi); the other case is similar. We
compute, using the Jacobi identity,

(ΘTi)Si,Si
= {Si, {Si, {Ti,Θ}}} = {Si, {Ti, {Si,Θ}}}

= {Ti,ΘSi,Si
} = εiΘTi.

For i 6= j we have,

(ΘTi)Sj ,Sj
= ΘSj ,Sj ,Ti − 2CΘ(Sj,SjTi)

= εjΘTi − 2CΘ(Sj,Si+1)

= εjΘTi

where we have used the formula CΘ(I, IJ) = 1
2
(ΘI,I,J − ΘJ,I,I), that holds

for all skew-symmetric anti-commuting endomorphisms I and J of E [2],
Proposition 3.7 and Proposition 4.5. So, for all i, j = 1, 2, 3, we have
(ΘTi)Sj ,Sj

= εjΘTi which completes the proof.

5. 1-1 correspondence
In this section we keep considering an ε-hypersymplectic structure (S1,S2,S3)

on a Courant algebroid such that ε1ε2ε3 = −1. We define hyperkähler struc-
tures on Courant algebroids and prove a 1 − 1 correspondence between hy-
persymplectic and hyperkähler structures. We show how we may switch the
roles of the morphisms Si and Ti to get a set of equivalent structures; these
structures are summarized in a diagram at the end of the section.
First, we have to distinguish two different cases amongst ε-hypersymplectic

structures (S1,S2,S3) such that ε1ε2ε3 = −1:
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• when ε1 = ε2 = ε3 = −1, the triplet (S1,S2,S3) is said to be a
hypersymplectic structure;

• otherwise, the triplet (S1,S2,S3) is said to be a para-hypersymplectic
structure.

Note that all para-hypersymplectic structures satisfy, eventually after a
cyclic permutation of the indices, ε1 = ε2 = 1 and ε3 = −1. In the sequel,
every para-hypersymplectic structure will be considered in such form.
Given a Courant algebroid, we may define, in a natural way, a notion of

(pseudo-)metric.

Definition 5.1. A pseudo-metric on a Courant algebroid (E, 〈., .〉,Θ) is a
symmetric and orthogonal bundle automorphism G : E → E. If moreover
G is positive definite, that is, 〈G(e), e〉 > 0, for all non vanishing sections
e ∈ Γ(E), then the prefix “pseudo” is removed and G is said to be a metric
on (E, 〈., .〉,Θ).

In the sequel, we do not require the metric to be positive definite. How-
ever, in order to simplify the terminology we shall omit the prefix “pseudo”,
although we deal with pseudo-metrics.

Remark 5.2. On the above definition of a metric G, assuming that G is
symmetric, the orthogonality condition (GG∗ = idE) can be replaced by an
almost para-complex condition (G2 = idE).

The next proposition follows directly from the Proposition 3.6 and Remark
5.2.

Proposition 5.3. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a
Courant algebroid (E, 〈., .〉,Θ). Then, the morphism G given by equation (5)
is a metric on E.

Next, we define the notions of hermitian and para-hermitian pair on a
Courant algebroid.

Definition 5.4. A hermitian (resp., para-hermitian) pair † on a Courant
algebroid (E, 〈., .〉,Θ) is a pair (J,G) where J is a complex (resp., para-
complex) structure and G is a metric such that, for all X, Y ∈ Γ(E),

〈G(JX), JY 〉 = 〈G(X), Y 〉, (resp., 〈G(JX), JY 〉 = −〈G(X), Y 〉) .

†Rigourously, we should say pseudo-hermitian and para-pseudo-hermitian but, as it was already
mentioned, we omit the prefix “pseudo”.
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Remark 5.5. In the above definition, if J is skew-symmetric the (para-)hermiticity
condition, 〈G(JX), JY 〉 = ±〈G(X), Y 〉, is equivalent to GJ = JG.

As a direct consequence of Proposition 3.8, we have the following:

Proposition 5.6. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a
Courant algebroid (E, 〈., .〉,Θ).

i) If (S1,S2,S3) is a hypersymplectic structure, then (Ti,G) is a hermitian
pair, for all i = 1, 2, 3.

ii) If (S1,S2,S3) is a para-hypersymplectic structure, then (T1,G) and
(T2,G) are para-hermitian pairs while (T3,G) is a hermitian pair.

Let us define (para-)hyperkähler structures on a Courant algebroid‡ and
see how they are related to (para-)hypersymplectic structures.

Definition 5.7. A quadruple (T1, T2, T3,G) is a hyperkähler (resp., para-
hyperkähler) structure§ on a Courant algebroid (E, 〈., .〉,Θ) if the following
is satisfied:

i) G is a metric;
ii) T1 and T2 are anti-commuting complex (resp., para-complex) endo-

morphisms and T3 = T1T2;
iii) (G, Tj)j=1,2 are hermitian (resp., para-hermitian) pairs;
iv) TΘ(GTj) = 0, j = 1, 2, 3.

Notice that, when (T1, T2, T3,G) is a (para-)hyperkähler structure, (G, T3)
is a hermitian pair and the morphisms T1, T2 and T3 pairwise anti-commute.

Theorem 5.8. The triplet (S1,S2,S3) is a hypersymplectic (resp., para-
hypersymplectic) structure on a Courant algebroid (E,Θ) if and only if
(T1, T2, T3,G) is a hyperkähler (resp., para-hyperkähler) structure on (E,Θ).

Proof : If (S1,S2,S3) is a (para-)hypersymplectic structure on (E,Θ) then,
using previous results, we easily conclude that (T1, T2, T3,G) is a (para-)hyper-
kähler structure on (E,Θ).
On the other hand, if (T1, T2, T3,G) is a (para-)hyperkähler structure on

(E,Θ), we define

Si := εiεi−1GTi.

‡In [6], hyperkähler structures on Courant algebroids are called generalized hyper-Kähler
structures.

§Again, we omit the prefix “pseudo”.



HYPERSTRUCTURES ON COURANT ALGEBROIDS 17

Then, we have
S2
i = GTiGTi = G2T 2

i = T 2
i = εiidE,

where we used the fact that G and Ti commute and G2 = idE (see Remarks
5.5 and 5.2). Moreover,

SiSi+1 = εiεi−1εi+1εiGTiGTi+1 = εi−1εi+1TiTi+1 = −εi−1εi+1Ti+1Ti = −Si+1Si,

where we used the fact that the morphisms Ti, i = 1, 2, 3, pairwise anti-
commute. Finally, because S2

i = εiidE and TΘSi = 0 (see item iv) of
Definition 5.7) we conclude that ΘSi,Si

= εiΘ. Therefore, (S1,S2,S3) is a
(para-)hypersymplectic structure on (E,Θ).

Next, we see that the tetrahedron model (see Figure 3), besides being an
efficient way to summarize all the algebraic relations between the morphisms
of a (para-)hypersymplectic structure, is an accurate representation that en-
ables us to discover new relations. In fact, the next theorem shows that the
symmetries of the tetrahedron are symmetries of the (para-)hypersymplectic
structures on Courant algebroids. These symmetries can not exist for (para-
)hypersymplectic structures on Lie algebroids (see definition in [3]).

Theorem 5.9. The triplet (S1,S2,S3) is a hypersymplectic (resp., para-
hypersymplectic) structure on a Courant algebroid (E,Θ) if and only if
(S1, T2, T3) is a hypersymplectic (resp., para-hypersymplectic) structure on
(E,Θ). Furthermore, both (para-)hypersymplectic structures determine equal
or opposite metrics.

Proof : If (S1,S2,S3) is a (para-)hypersymplectic structure then, definitions
and previous results yield,







S2
i = T 2

i = εiidE;
SiSj + SjSi = TiTj + TjTi = SiTj + TjSi = 0;
TΘ(Si) = TΘ(Ti) = 0.

Thus, (S1, T2, T3) is a (para-)hypersymplectic structure.
Now, let us assume that (S1, T2, T3) is a (para-)hypersymplectic struc-

ture. In this case, the transition morphisms are ε1ε3T1, ε1ε3S2 and ε1ε3S3

and, using the first part of the proof, we conclude that (S1, ε1ε3S2, ε1ε3S3)
is a (para-)hypersymplectic structure. Therefore, (S1,S2,S3) is a (para-
)hypersymplectic structure.
Finally, because S3S2S1 = ε1ε3T3T2S1, the metrics induced by both (para-

)hypersymplectic structures are equal or opposite.
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Applying successively Theorems 5.8 and 5.9, we conclude that a (para-)
hypersymplectic structure (S1,S2,S3) on (E,Θ) induces several (para-)hyper-
symplectic and (para-)hyperkähler structures on (E,Θ), as we see in the next
diagram.

(S1,S2,S3) (para-)hypersymplectic oo Thm 5.8 //
OO

Thm 5.9
��

(T1, T2, T3,G) (para-)hyperkähler
OO

��

(S1, T2, T3) (para-)hypersymplectic oo Thm 5.8 //
OO

Thm 5.9
��

(T1,S2,S3,G) (para-)hyperkähler
OO

��

(T1,S2, T3) (para-)hypersymplectic oo Thm 5.8 //
OO

Thm 5.9
��

(S1, T2,S3,G) (para-)hyperkähler
OO

��

(T1, T2,S3) (para-)hypersymplectic oo Thm 5.8 // (S1,S2, T3,G) (para-)hyperkähler

6. Hypersymplectic structures on Lie algebroids
The purpose of this section is to present a first example of an ε-hypersymplectic

structure on a Courant algebroid, which is constructed out of an ε-hypersymplectic
structure on a Lie algebroid. First, we recall the definition and some prop-
erties of the latter [1, 3].
An ε-hypersymplectic structure on a Lie algebroid (A, µ) is a triplet (ω1, ω2, ω3)

of symplectic forms with inverse Poisson bivectors (π1, π2, π3) such that the
transition endomorphisms N1, N2 and N3 on A, defined by

Ni := π#i−1 ◦ ω
♭
i+1, i ∈ Z3, (7)

satisfy

N2
i = εiidA, i = 1, 2, 3. (8)

An important property of the transitions morphisms Ni, i = 1, 2, 3, is that

TµNi = 0,

i.e., they are Nijenhuis morphisms.
Having an ε-hypersymplectic structure on a Lie algebroid (A, µ), we define

g ∈
⊗2A∗ by setting, for all X, Y ∈ Γ(A),

g(X, Y ) := 〈g♭X, Y 〉,
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where g♭ : A −→ A∗ is given by

g♭ := ε3ε2 ω3
♭ ◦ π1

♯ ◦ ω2
♭. (9)

The definition of g♭ is not affected by a circular permutation of the indices
in equation (9), that is,

g♭ = εi−1εi+1 ωi−1
♭ ◦ πi

♯ ◦ ωi+1
♭, (10)

for all i ∈ Z3. Moreover, we have

(g♭)∗ = −ε1ε2ε3 g
♭,

which means that g is symmetric or skew-symmetric, depending on the sign
of the product ε1ε2ε3. When ε1ε2ε3 = −1, the morphism g♭ defined by (9)
determines a pseudo-metric on A.

Let (A, µ) be a Lie algebroid and consider the Courant algebroid (A ⊕
A∗, µ). If we take a triplet (ω1, ω2, ω3) of 2-forms and a triplet (π1, π2, π3) of
bivectors on A, we may define the skew-symmetric bundle endomorphisms
Si : A⊕ A∗ → A⊕ A∗, i = 1, 2, 3,

Si :=

[

0 εi π
♯
i

ω♭
i 0

]

. (11)

In order to simplify the writing and if there is no risk of confusion, we shall
omit the symbols ♯ and ♭ and denote the morphisms ω♭

i and π
♯
i by ωi and πi,

respectively. Moreover, in the supergeometric setting, we have

Si(X + α) = {X + α, ωi + εiπi},

for all X + α ∈ A⊕ A∗.

Lemma 6.1. Let ω1, ω2 and ω3 be 2-forms on a Lie algebroid (A, µ) and
π1, π2 and π3 bivectors on A. Consider the vector bundle morphisms N1, N2

and N3 on A, given by (7), and the bundle endomorphisms S1, S2 and S3 on
A⊕A∗, given by (11). Then, for all i = 1, 2, 3,

i) S2
i = εiidA⊕A∗ ⇔ πi ◦ ωi = idA,

ii) Si−1Si+1 = ε1ε2ε3 Si+1Si−1 ⇔ N2
i = εiidA.

Proof : A simple computation gives i). To prove ii), we notice thatN2
i = εi idA

is equivalent to [3]

ωi+1 ◦ πi−1 = εi ωi−1 ◦ πi+1,
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for all i ∈ Z3. On the other hand, we have

Si−1Si+1 =

[

εi−1 πi−1 ◦ ωi+1 0
0 εi+1 ωi−1 ◦ πi+1

]

and

ε1ε2ε3Si+1Si−1 = ε1ε2ε3

[

εi+1 πi+1 ◦ ωi−1 0
0 εi−1 ωi+1 ◦ πi−1

]

=

[

εi−1εi πi+1 ◦ ωi−1 0
0 εi+1εi ωi+1 ◦ πi−1

]

.

So, Si−1Si+1 = ε1ε2ε3Si+1Si−1 if and only if ωi+1 ◦ πi−1 = εi ωi−1 ◦ πi+1 and
this completes the proof.

Proposition 6.2. A triplet (ω1, ω2, ω3), with inverse (π1, π2, π3), is an ε-
hypersymplectic structure on a Lie algebroid (A, µ) if and only if the triplet
(S1,S2,S3) is an ε-hypersymplectic structure on the Courant algebroid (A⊕
A∗, µ), with Si, i = 1, 2, 3, given by (11).

Proof : Suppose that (ω1, ω2, ω3) is an ε-hypersymplectic structure on a Lie
algebroid (A, µ) and πi is the inverse of ωi, i = 1, 2, 3. According to Defini-
tion 3.1 and Lemma 6.1, we only have to check that µSi,Si

= εiµ, for i = 1, 2, 3.
A simple computation, using the fact that πi is a Poisson bivector, gives:

{Si, {Si, µ}} = {ωi + εiπi, {ωi + εiπi, µ}} = εi{ωi, {πi, µ}}

= εi µ,

where we used, in the last equality, the formula

{idA, χ} = (q − p)χ, χ ∈ F
(p,q)
A⊕A∗. (12)

Conversely, assume that the endomorphisms Si =

[

0 εi πi
ωi 0

]

, i =

1, 2, 3, form an ε-hypersymplectic structure on the Courant algebroid (A ⊕
A∗, µ). Using again Lemma 6.1, we only have to prove that the non-degenerate
2-forms ωi are symplectic. From

{ωi + εiπi, {ωi + εiπi, µ}} = εiµ,

we get {πi, {πi, µ}} = 0, which means that πi is a Poisson bivector on (A, µ).
But πi being a Poisson bivector on (A, µ) is equivalent to ωi being a sym-
plectic form on (A, µ).
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Under the conditions of Proposition 6.2, the transition morphisms of the
ε-hypersymplectic structure (S1,S2,S3) on (A ⊕ A∗, µ), defined by (4), are
given by

Ti =

[

Ni 0
0 ε1ε2ε3Ni

∗

]

, i = 1, 2, 3,

where Ni is the transition morphism of the ε-hypersymplectic structure
(ω1, ω2, ω3) on the Lie algebroid (A, µ), see (7). The endomorphism G :
A⊕A∗ → A⊕ A∗ defined by (5) is given by

G =

[

0 (g♭)−1

g♭ 0

]

,

where g♭ : A→ A∗ is defined by (9).

7. Hypersymplectic structures on Lie bialgebroids
In this section we present a class of examples of ε-hypersymplectic struc-

tures on a Courant algebroid (A ⊕ A∗, µ + γ), which is the double of a Lie
bialgebroid ((A,A∗), µ, γ).
Having in mind that a bivector π on A can be seen as a 2-form on A∗,

through the identification A = (A∗)∗, we have the following result.

Proposition 7.1. Let ((A,A∗), µ, γ) be a Lie bialgebroid and (S1,S2,S3) be
a triplet of bundle endomorphisms of A⊕A∗, with Si given by (11).
The triplet (S1,S2,S3) is an ε-hypersymplectic structure on the Courant al-

gebroid (A⊕A∗, µ+γ) if and only if (ω1, ω2, ω3) is an ε-hypersymplectic struc-
ture on the Lie algebroid (A, µ), (π1, π2, π3) is an ε-hypersymplectic structure
on the Lie algebroid (A∗, γ) and πi is the inverse of ωi, i = 1, 2, 3.

Proof : We use Lemma 6.1 noticing that πi ◦ ωi = idA ⇔ ωi ◦ πi = idA∗ and
N2

i = εiidA ⇔ (N∗
i )

2 = εiidA∗, i = 1, 2, 3, so that conditions i) and ii) of
Definition 3.1 are satisfied if and only if πi and ωi are inverses of each other
and (8) holds. Moreover, using the bidegrees of F3

A⊕A∗, we have

{Si, {Si, µ+ γ}} = εi(µ+ γ) ⇔



















{ωi, {πi, µ}}+ {πi, {ωi, µ}} = µ

{ωi, {πi, γ}}+ {πi, {ωi, γ}} = γ

{ωi, {ωi, γ}} = 0

{πi, {πi, µ}} = 0.

(13)

The fourth equation on the right-hand side of (13) means that πi is a Poisson
bivector on (A, µ), which is equivalent to ωi being a symplectic form on (A, µ).
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The third equation on the right-hand side of (13) means that ωi, seen as a
bivector on A∗, is Poisson on the Lie algebroid (A∗, γ), which is equivalent
to saying that πi is symplectic on (A∗, γ). Concerning the first and second
equations on the right-hand side of (13), when πi and ωi are inverse of each
other, they are equivalent to

{πi, {ωi, µ}} = 0 and {ωi, {πi, γ}} = 0, (14)

respectively. Contracting, on the left, the first equation of (14) with ωi and
the second equation of (14) with πi, (14) becomes equivalent to

{ωi, µ} = 0 and {πi, γ} = 0,

respectively. This completes the proof.

It is well known that a Poisson bivector πi on (A, µ) determines a Lie al-
gebroid structure on A∗; we denote by µπi

this induced structure. In [4] we
proved that if (ω1, ω2, ω3) is an ε-hypersymplectic structure on a Lie alge-
broid (A, µ) and πi is the inverse of ωi, i = 1, 2, 3, then the triplet (π1, π2, π3)
is an ε-hypersymplectic structure on the Lie algebroid (A∗, µπi

). So, given an
ε-hypersymplectic structure (ω1, ω2, ω3) on a Lie algebroid (A, µ), Proposi-
tion 7.1 yields that the triplet (S1,S2,S3) is an ε-hypersymplectic structure
on the Courant algebroid (A ⊕ A∗, µ + µπi

). Conversely, if ((A,A∗), µ, µπi
),

i = 1, 2, 3, is a Lie bialgebroid and (S1,S2,S3) is an ε-hypersymplectic struc-
ture on the Courant algebroid (A ⊕ A∗, µ + µπi

), then, by Proposition 7.1,
(ω1, ω2, ω3) is an ε-hypersymplectic structure on the Lie algebroid (A, µ).
Thus, we have proved:

Corollary 7.2. The triplet (ω1, ω2, ω3), with inverse (π1, π2, π3), is an ε-
hypersymplectic structure on the Lie algebroid (A, µ) if and only if (S1,S2,S3)
is an ε-hypersymplectic structure on the Courant algebroid (A⊕A∗, µ+µπi

),
with Si given by (11), i = 1, 2, 3.

8. Hypersymplectic structures with torsion on Lie alge-
broids
In this section we pretend to study a class of examples of hypersymplec-

tic structures on Courant algebroids determined by some structures on Lie
algebroids which are called hypersymplectic with torsion. These are intro-
duced and discussed in [5] and may be considered as being equivalent to
hyperkähler structures with torsion, also known as HKT structures [7]. The
hypersymplectic structures with torsion on Lie algebroids provide examples
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of hypersymplectic structures (without torsion) on Courant algebroids which
are doubles of quasi-Lie bialgebroids and even in the more general case where
the Courant structure is the double of a proto-Lie bialgebroid.
We give the definition of a hypersymplectic structure with torsion on a Lie

algebroid (A, µ) and postpone the study of this structure to [5].

Let ω1, ω2 and ω3 be nondegenerate 2-forms on a Lie algebroid (A, µ), with
inverses π1, π2 and π3 ∈ Γ(∧2A), respectively, and consider the transition
morphisms N1, N2, N3 : A→ A given by (7).

Definition 8.1. The triplet (ω1, ω2, ω3) is a hypersymplectic structure with
torsion on the Lie algebroid (A, µ) if

Ni
2 = −idA, i = 1, 2, 3, and N1dω1 = N2dω2 = N3dω3, (15)

where Nidωi(X, Y, Z) = dωi(NiX,NiY,NiZ), for all X, Y, Z ∈ Γ(A) and d
stands for the differential of the Lie algebroid (A, µ).

When the non-degenerate 2-forms ω1, ω2 and ω3 are closed, then they are
symplectic forms and the right hand side of (15) is trivially satisfied. In this
case, the triplet (ω1, ω2, ω3) is a hypersymplectic structure on (A, µ), that is,
an ε-hypersymplectic structure with ε1 = ε2 = ε3 = −1 (see Section 6).
The next lemma will be useful in what follows.

Lemma 8.2. Let ((A,A∗), µ, γ, ψ, φ) be a proto-Lie bialgebroid, π ∈ Γ(∧2A)
and ω ∈ Γ(∧2A∗) inverse of each other and ε = ±1. Then,

i) {π, {π, µ}} = −2 ε ψ ⇔ 2 ε {π, {ω, µ}} = −{ω, {ω, ψ}};
ii) {ω, {ω, γ}} = −2 ε φ ⇔ 2 ε {ω, {π, γ}} = −{π, {π, φ}};

Proof : i) Let us assume that {π, {π, µ}} = −2 ε ψ. Then,

{ω, {π, {π, µ}}} = −2 ε {ω, ψ}

and the Jacobi identity together with (12) gives

{π, {π, {ω, µ}}} = −2 ε {ω, ψ}.

Thus,

{ω, {π, {π, {ω, µ}}}} = −2 ε {ω, {ω, ψ}}

or, equivalently,

{π, {ω, µ}}+ {π, {ω, {π, {ω, µ}}}} = −2 ε {ω, {ω, ψ}}. (16)
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Finally, (16) gives

2{π, {ω, µ}} = − ε {ω, {ω, ψ}}.

Now, we assume that −{ω, {ω, ψ}} = 2 ε {π, {ω, µ}}. Then,

−{π, {ω, {ω, ψ}}} = 2 ε {π, {π, {ω, µ}}}

which is equivalent to

−{ω, ψ} − {ω, {π, {ω, ψ}}} = 2 ε {π, {π, {ω, µ}}}.

Thus,

− {π, {ω, ψ}} − {π, {ω, {π, {ω, ψ}}}} = 2 ε {π, {π, {π, {ω, µ}}}}. (17)

From (17) we get, applying the Jacobi identity and (12) several times,

−3ψ − 3{π, {ω, ψ}} = −2 ε {π, {π, µ}}+ 2 ε {π, {π, {ω, {π, µ}}}}

⇔ −6ψ = ε {π, {ω, {π, {π, µ}}}} ⇔ −2ψ = ε {π, {π, µ}}.

ii) The proof is similar to case i).

Now, we have to mention that the definition of hypersymplectic structure
with torsion on a Lie algebroid can be given using the inverses of the non-
degenerate 2-forms ωi. More precisely,

(ω1, ω2, ω3) is a hypersymplectic structure with torsion on (A, µ) if and only
if

N2
i = −idA and [π1, π1] = [π2, π2] = [π3, π3], (18)

where [., .] is the bracket of multivectors on A. The equivalence of the two
definitions is given in [5].
The next proposition gives a first example of a hypersymplectic structure on

a Courant algebroid, which is constructed out of a hypersymplectic structure
with torsion on a Lie algebroid.

Proposition 8.3. Let (S1,S2,S3) be a triplet of bundle endomorphisms of
A⊕A∗, with Si given by (11).
If (ω1, ω2, ω3) is a hypersymplectic structure with torsion on a Lie algebroid

(A, µ) such that the inverses π1, π2 and π3 are weak-Poisson ¶ and ψ =

¶A bivector π on a Lie algebroid (A,µ) is weak-Poisson if {µ, {{π, µ}, π}} = 0 or, equivalently,
{µ, [π, π]} = 0.
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−1
2
[πi, πi], i = 1, 2, 3, then (S1,S2,S3) is a hypersymplectic structure on the

Courant algebroid (A⊕A∗, µ+ ψ).
Conversely, if (S1,S2,S3) is a hypersymplectic structure on a Courant alge-

broid (A⊕A∗, µ+ψ), then ψ = −1
2[πi, πi] and (ω1, ω2, ω3) is a hypersymplectic

structure with torsion on the Lie algebroid (A, µ), where πi is the inverse of
ωi and is weak-Poisson, i = 1, 2, 3.

Proof : First, notice that given ψ ∈ Γ(∧3A), µ + ψ is a Courant algebroid
structure on A⊕A∗ if and only if

{µ+ψ, µ+ψ} = 0 ⇔

{

{µ, µ} = 0

{µ, ψ} = 0
⇔

{

(A, µ) is a Lie algebroid

{µ, ψ} = 0.
(19)

Let us assume that (ω1, ω2, ω3) is a hypersymplectic structure with torsion
on a Lie algebroid (A, µ) such that {µ, {{πi, µ}, πi}} = 0 and ψ = −1

2 [πi, πi],
i = 1, 2, 3. From (19), µ + ψ is a Courant structure on A ⊕ A∗ while, from
Lemma 6.1, conditions i) and ii) of Definition 3.1 are satisfied. For condition
iii) of Definition 3.1, we have

{Si, {Si, µ+ψ}} = −µ−ψ ⇔

{

{ωi, {πi, µ}}+ {πi, {ωi, µ}} − {ωi, {ωi, ψ}} = µ

−{πi, {πi, µ}}+ {πi, {ωi, ψ}} = ψ

⇔

{

2{πi, {ωi, µ}} = {ωi, {ωi, ψ}}

{πi, {πi, µ}} = 2ψ.
(20)

According to Lemma 8.2, the two conditions of (20) are equivalent and they
hold from the very definition of ψ.
Let us now assume that (S1,S2,S3) is a hypersymplectic structure on a

Courant algebroid (A⊕ A∗, µ + ψ). Then, the pair (A, µ) is a Lie algebroid
and, from (20), the 3-vector ψ is given by ψ = −1

2 [πi, πi], i = 1, 2, 3. Thus,
[π1, π1] = [π2, π2] = [π3, π3] and, from Lemma 6.1 and (18), we get that
(ω1, ω2, ω3) is a hypersymplectic structure with torsion on (A, µ).

In the last theorem of this article we show that having a Lie bialgebroid
(A,A∗) equipped with a hypersymplectic structure with torsion on A and a
hypersymplectic structure with torsion on A∗ is equivalent to having a hyper-
symplectic structure (without torsion) on A ⊕ A∗ equipped with a Courant
structure which is the double of a proto-Lie bialgebroid.
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Let us consider the following conditions that will be needed in the next
theorem, where ψ ∈ Γ(∧3A) and φ ∈ Γ(∧3A∗),











{µ, ψ} = 0

{γ, φ} = 0

{ψ, φ} = 0.

(21)

Theorem 8.4. Let ((A,A∗), µ, γ) be a Lie bialgebroid and (S1,S2,S3) be a
triplet of bundle endomorphisms of A⊕ A∗, with Si given by (11).
If (ω1, ω2, ω3) is a hypersymplectic structure with torsion on the Lie alge-

broid (A, µ) with inverses πi such that (π1, π2, π3) is a hypersymplectic struc-
ture with torsion on the Lie algebroid (A∗, γ), and if ψ = −1

2{πi, {µ, πi}} and

φ = −1
2
{ωi, {γ, ωi}}, i = 1, 2, 3, satisfy (21), then (S1,S2,S3) is a hypersym-

plectic structure on (A⊕A∗, µ+ γ + ψ + φ).
Conversely, if (S1,S2,S3) is a hypersymplectic structure on a Courant al-

gebroid (A⊕A∗, µ+ γ + ψ + φ), then (ω1, ω2, ω3) is a hypersymplectic struc-
ture with torsion on (A, µ), (π1, π2, π3) is a hypersymplectic structure with
torsion on (A∗, γ), ψ and φ are given by ψ = −1

2{πi, {µ, πi}} and φ =

−1
2{ωi, {γ, ωi}}, i = 1, 2, 3, and satisfy (21).

Proof : Let us assume that (ω1, ω2, ω3) is a hypersymplectic structure with
torsion on (A, µ), (π1, π2, π3) is a hypersymplectic structure with torsion on
(A∗, γ), ψ = −1

2{πi, {µ, πi}}, φ = −1
2{ωi, {γ, ωi}}, {µ, ψ} = 0, {γ, φ} = 0,

i = 1, 2, 3, and {ψ, φ} = 0. We start by proving that µ + γ + ψ + φ is a
Courant structure on A⊕ A∗. We have

{µ+ γ + ψ + φ, µ+ γ + ψ + φ} = 0 ⇔































{µ, µ} = −2{γ, φ}

{γ, γ} = −2{µ, ψ}

{µ, γ} = −{ψ, φ}

{γ, ψ} = 0

{µ, φ} = 0.

(22)

The first equation in the right hand side of (22) holds as a consequence of
the fact that (A, µ) is a Lie algebroid, so that {µ, µ} = 0, and {γ, φ} = 0.
The second equation of (22) holds for analogous reasons. We have {µ, γ} = 0
because ((A,A∗), µ, γ) is a Lie bialgebroid and {ψ, φ} = 0, by assumption.
Thus, the third equation of (22) also holds. Let us check that {γ, ψ} = 0
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and {µ, φ} = 0. We only prove the first one (the second is similar):

{γ, ψ} = −
1

2
{γ, {πi, {µ, πi}}}

= −
1

2
{{γ, πi}, {µ, πi}} −

1

2
{πi, {γ, {µ, πi}}}

= −
1

2
{{γ, πi}, {µ, πi}} −

1

2
{πi, {µ, {γ, πi}}} = 0,

where we used {µ, γ} = 0. Now, let us prove that

{Si, {Si, µ+ γ + ψ + φ}} = −µ− γ − ψ − φ. (23)

Equation (23) is equivalent to


















{ωi, {ωi, ψ}} − {ωi, {πi, µ}} − {πi, {ωi, µ}} = −µ

−{ωi, {{πi, γ}} − {πi, {ωi, γ}}+ {πi, {πi, φ}} = −γ

{ωi, {ωi, γ}} − {ωi, {πi, φ}} = −φ

{πi, {πi, µ}} − {πi, {ωi, ψ}} = −ψ

or to


















{ωi, {ωi, ψ}} = 2{πi, {ωi, µ}}

{πi, {πi, φ}} = 2{ωi, {πi, γ}}

{ωi, {ωi, γ}} = 2φ

{πi, {πi, µ}} = 2ψ.

(24)

The third and fourth equations of (24) are simply the definitions of φ and ψ
and, according to Lemma 8.2, they are equivalent to the second and the first
equations, respectively. Applying Lemma 6.1, the first part of the proof is
complete.
Now, we assume that (S1,S2,S3) is a hypersymplectic structure on the

Courant algebroid (A⊕A∗, µ+γ+ψ+φ). From (24), we get ψ = −1
2
{πi, {µ, πi}}

and φ = −1
2
{ωi, {γ, ωi}}, for i = 1, 2, 3. Thus, (ω1, ω2, ω3) is a hypersym-

plectic structure with torsion on the Lie algebroid (A, µ) and (π1, π2, π3) is
a hypersymplectic structure with torsion on the Lie algebroid (A∗, γ), (see
Lemma 6.1 and (18)). Moreover, µ + γ + ψ + φ being a Courant structure
with (µ, γ) a Lie bialgebroid structure, (22) implies {µ, ψ} = 0, {γ, φ} = 0
and {ψ, φ} = 0.

If, in Theorem 8.4, we take φ = 0, then the Lie algebroid (A∗, γ) is equipped
with a hypersymplectic structure (without torsion) determined by (π1, π2, π3).
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So, Theorem 8.4 shows that having a Lie bialgebroid (A,A∗) equipped with a
hypersymplectic structure with torsion on A and a hypersymplectic structure
on A∗ is equivalent to having a hypersymplectic structure on the Courant
algebroid (A⊕A∗, µ+γ+ψ), which is the double of the quasi-Lie bialgebroid
((A,A∗), µ, γ, ψ).
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