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COSYMPLECTIC p-SPHERES

BENIAMINO CAPPELLETTI-MONTANO, ANTONIO DE NICOLA AND IVAN YUDIN

Abstract: We introduce cosymplectic circles and cosymplectic spheres, which are
the analogues in the cosymplectic setting of contact circles and contact spheres. We
provide a complete classification of compact 3-manifolds that admit a cosymplectic
circle. The properties of tautness and roundness for a cosymplectic p-sphere are
studied. To any taut cosymplectic circle on a three-dimensional manifold M we are
able to canonically associate a complex structure and a conformal symplectic couple
on M × R. We prove that a cosymplectic circle in dimension three is round if and
only if it is taut. On the other hand, we provide examples in higher dimensions
of cosymplectic circles which are taut but not round and examples of cosymplectic
circles which are round but not taut.
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1. Introduction
The notion of cosymplectic structure was introduced by Libermann in the

late 50s as a pair (η, Ω), where η is a closed 1-form and Ω is a closed 2-form
on a (2n + 1)-dimensional manifold M , such that η ∧ Ωn is a volume form.
Cosymplectic manifolds play an important role in the geometric description
of time-dependent mechanics (see [8] and references therein). Starting from
1967, when Blair defined an adapted Riemannian structure on a cosymplectic
manifold, a study of the metric properties on these manifolds has been also
carried forward. Recently, new remarkable results on cosymplectic manifolds
and their Riemannian counterpart (sometimes called coKähler manifolds)
appeared in [4, 9, 13].

In this paper, we introduce the notion of cosymplectic circle and, more gen-
erally, of cosymplectic p-sphere. We were inspired by the concepts of contact
circle and contact p-sphere, introduced by Geiges and Gonzalo ([11]) and then
generalized by Zessin ([22]). We brought these ideas into the cosymplectic
setting.

Let (η1, Ω1) and (η2, Ω2) be two cosymplectic structures on a manifold M .
We say that they generate a cosymplectic circle if the pair (λ1η1+λ2η2, λ1Ω1+
λ2Ω2) is a cosymplectic structure for every λ = (λ1, λ2) ∈ S1. In [11] Geiges
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and Gonzalo classified closed 3-manifolds that admit a taut contact circle. In
the present paper, we provide a complete classification of 3-dimensional com-
pact manifolds that admit a cosymplectic circle. Furthermore, we introduce
the notion of tautness and of roundness for a cosymplectic p-sphere. To any
taut cosymplectic circle on a three-dimensional manifold M we canonically
associate a complex structure and a conformal symplectic couple on M ×R.
In dimension three a cosymplectic circle is proven to be round if and only if
it is taut. In higher dimensions we provide examples of cosymplectic circles
which are taut but not round and examples of cosymplectic circles which are
round but not taut.

It is not difficult to show that there exist no cosymplectic circles in any
manifold of dimension 4n + 1 and, a fortiori, no cosymplectic p-spheres. In
the last section of the paper, devoted to the relation between Riemannian
3-structures and almost cosymplectic spheres, we show that 3-cosymplectic
manifolds ([7]) provide a source of examples of cosymplectic spheres which
are both round and taut in any dimension 4n + 3. We also improve the
result of Zessin that any 3-Sasakian manifold admits a contact sphere which
is both taut and round (cf. [22, Proposition 4]). Indeed, we show that any 3-
Sasakian manifold admits a sphere of Sasakian structures which is both taut
and round. We do this by introducing the class of quasi-contact spheres,
which include both cosymplectic (rank 1) and contact spheres (rank 2n+1),
and we prove that any 3-quasi-Sasakian manifold defines a taut and round
quasi-contact sphere.

2. Main definitions and examples
An almost cosymplectic structure on a smooth manifold M is given by a

pair (η, Ω), where η is a 1-form and Ω a 2-form on M such that η ∧ Ωn is a
volume form. Thus, in particular, dim(M) = 2n+1. The almost cosymplectic
structure (η, Ω) is said to be a contact structure if dη = Ω and a cosymplectic
structure if η and Ω are both closed.

On any almost cosymplectic manifold there exists a global vector field ξ
uniquely determined by the conditions

iξη = 1, iξΩ = 0, (2.1)

and called the Reeb vector field.
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Definition 2.1. Let (η1, Ω1), . . . , (ηp+1, Ωp+1) be p + 1 almost cosymplectic
structures on M . Consider the family {(ηλ, Ωλ)}λ∈Sp where

ηλ := λ1η1 + . . . + λp+1ηp+1, Ωλ := λ1Ω1 + . . . + λp+1Ωp+1.

If the pair (ηλ, Ωλ) is an almost cosymplectic structure for every λ = (λ1, . . . ,
λp+1) ∈ Sp, then the family {(ηλ, Ωλ)}λ∈Sp is called an almost cosymplectic
p-sphere generated by (η1, Ω1), . . . , (ηp+1, Ωp+1). An almost cosymplectic p-
sphere is called an almost cosymplectic circle or an almost cosymplectic sphere
if p = 2 or p = 3, respectively.

We shall denote an almost cosymplectic p-sphere either by {(ηλ, Ωλ)}λ∈Sp

or by indicating a set of generators, such as {(η1, Ω1), . . . , (ηp+1, Ωp+1)}.
There are two interesting types of almost cosymplectic p-spheres, which

are introduced by the following definitions.

Definition 2.2. An almost cosymplectic p-sphere {(ηλ, Ωλ)}λ∈Sp is said to
be taut if all its elements give the same volume form, i.e.

(λ1η1 + . . . + λp+1ηp+1) ∧ (λ1Ω1 + . . . + λp+1Ωp+1)
n =

(λ′1η1 + . . . + λ′p+1ηp+1) ∧ (λ′1Ω1 + . . . + λ′p+1Ωp+1)
n

for any (λ1, . . . , λp+1), (λ
′
1, . . . , λ

′
p+1) ∈ Sp.

Definition 2.3. An almost cosymplectic p-sphere {(ηλ, Ωλ)}λ∈Sp is said to be
round if for any λ = (λ1, . . . , λp+1) ∈ Sp the vector field λ1ξ1 + . . . + λp+1ξp+1
is the Reeb vector field of the almost cosymplectic structure (ηλ, Ωλ).

Let {(ηλ, Ωλ)}λ∈Sp be an almost cosymplectic p-sphere. Notice that if all the
almost cosymplectic structures (η1, Ω1), . . . , (ηp+1, Ωp+1) are contact struc-
tures, then any element (ηλ, Ωλ) of the almost cosymplectic p-sphere is a con-
tact structure, since dηλ = λ1dη1+. . .+λpdηp = λ1Ω1+. . .+λpΩp = Ωλ. Thus
Definition 2.1 generalizes the notion of contact circles and contact spheres,
introduced by Geiges and Gonzalo in [11], and that one of contact p-spheres,
introduced by Zessin in [22].

On the other hand, if the generating almost cosymplectic structures (η1, Ω1),
. . . , (ηp+1, Ωp+1) are cosymplectic, so is any element of the almost cosym-
plectic p-sphere {(ηλ, Ωλ)}λ∈Sp. In this case we shall speak of cosymplectic
p-sphere.

Now we describe a class of examples of cosymplectic spheres in dimension
3.
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Example 2.4. Let M be any orientable three-dimensional manifold and let
η1, η2, η3 be three 1-forms which are linearly independent at every point of
M . Notice that such 1-forms always exist, by Stiefel’s theorem ([16]). Set

Ω1 := η2 ∧ η3, Ω2 := η3 ∧ η1, Ω3 := η1 ∧ η2.

Then it is easy to see that (η1, Ω1), (η2, Ω2), (η3, Ω3) are almost cosymplectic
structures. Moreover, a direct computation shows that

(λ1η1 + λ2η2 + λ3η3) ∧ (λ1Ω1 + λ2Ω2 + λ3Ω3) =
(
λ2

1 + λ2
2 + λ2

3
)
η1 ∧ η2 ∧ η3

= η1 ∧ η2 ∧ η3 6= 0.

Therefore we can conclude that (η1, Ω1), (η2, Ω2), (η3, Ω3) generate a taut
almost cosymplectic sphere on M . Furthermore, such an almost cosymplectic
sphere is cosymplectic if the forms η1, η2, η3 are closed. In particular, the
above construction applies to the 3-torus T3 endowed with the 1-forms ηα :=
dθα, α ∈ {1, 2, 3}, where θ1, θ2, θ3 are the coordinates on T3.

Now we consider another special case of Example 2.4, where the 3-manifold
is the Heisenberg group.

Example 2.5. Let H be the Heisenberg group, whose Lie algebra structure is
given by

[e1, e3] = 0, [e1, e2] = γe3, [e3, e2] = 0.

Let η1, η2, η3 be the 1-forms dual to e1, e2, e3, respectively. We have

dη1 = dη2 = 0, dη3 = −γ

2
η1 ∧ η2.

Notice that the resulting sphere is neither contact not cosymplectic, but
(η1, Ω1) and (η2, Ω2) generate a left-invariant taut cosymplectic circle on H.

The result of Zessin [22] about the non-existence of contact circles in di-
mension 4n + 1 can be easily generalized to the almost cosymplectic case.

Theorem 2.6. Manifolds of dimension 4n + 1 do not admit any almost
cosymplectic circle and thus any almost cosymplectic p-sphere for p ≥ 2.

Proof : We will prove the theorem for n = 1. Higher dimensions can be dealt
with similarly. Assume that {(η1, Ω1), (η2, Ω2)} is an almost cosymplectic
circle on a smooth manifold M of dimension 5. Then, for any λ = (λ1, λ2) ∈
S1 we have

ηλ ∧ Ω2
λ = λ3

1η1 ∧ Ω2
1 + λ2

1λ2
(
2η1 ∧ Ω1 ∧ Ω2 + η2 ∧ Ω2

1
)

+ λ1λ
2
2
(
2η2 ∧ Ω1 ∧ Ω2 + η1 ∧ Ω2

2
)

+ λ3
2η2 ∧ Ω2

2.
(2.2)
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Let p be a point of M and let {e1, e2, e3, e4, e5} be a basis of TpM . Then in
view of (2.2) we have that the real valued function

(λ1, λ2) ∈ R2 7→ f(λ1, λ2) := ηλ ∧ Ω2
λ (e1, e2, e3, e4, e5)

is the polynomial function of a homogeneous polynomial of degree 3 in the
indeterminates λ1, λ2. Thus, in particular, f(−λ1,−λ2) = −f(λ1, λ2) for any
(λ1, λ2) ∈ S1. Therefore f should have some zero in S1, but this contradicts
the fact that (ηλ, Ωλ) is an almost cosymplectic structure.

Note that in contrast to the case of dimension 4n + 1, considered in The-
orem 2.6, we shall see in Section 4 that there are examples of cosymplectic
spheres in any dimension 4n + 3.

Example 2.7. Let (η1, Ω1) and (η2, Ω2) be the cosymplectic structures on R7

given by

η1 := dx7, Ω1 := dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6

η2 := dx6, Ω2 := (dx1 + dx2) ∧ dx3 + (dx4 + dx5) ∧ dx7 − dx2 ∧ dx5.

A straightforward computation shows that for any (λ1, λ2) ∈ S1 one has

(λ1η1 + λ2η2) ∧ (λ1Ω1 + λ2Ω2)
3 = 6

((
λ2

1 − λ2
2
)2

+ λ2
1λ

2
2

)
dx1 ∧ . . . ∧ dx7.

Thus (η1, Ω1) and (η2, Ω2) define a non-taut cosymplectic circle. Moreover,
the cosymplectic circle is also not round. In fact, we have ξ1 = ∂

∂x7
, ξ2 = ∂

∂x6

and for any λ ∈ S1

iλ1ξ1+λ2ξ2
(λ1Ω1 + λ2Ω2) = λ1λ2(iξ1

Ω2 + iξ2
Ω1) = −λ1λ2(dx4 + 2dx5)) 6= 0,

unless λ1 = 0 or λ2 = 0.

Proposition 2.8. Let {(η1, Ω1), (η2, Ω2)} be an almost cosymplectic circle.
Then iξ2

Ω1 and iξ1
Ω2 nowhere vanish.

Proof : Suppose that
(iξ1

Ω2)(p) = 0, (2.3)

for some p ∈ M . Now, let (ηλ, Ωλ) be the almost cosymplectic structure
given by ηλ = λ1η1 +λ2η2 and Ωλ = λ1Ω1 +λ2Ω2, for some λ = (λ1, λ2) ∈ S1.
Because of (2.3) and iξ1

Ω1 = 0 we have (iξ1
Ωλ)(p) = 0. It follows that

ηλ(ξ1) 6= 0 at p. For, if ηλ(ξ1)(p) = 0 one would have that (ηλ ∧ Ωλ) (ξ1,−) =
0 at p, so (ηλ, Ωλ) would not be an almost cosymplectic structure. Thus
α := ηλ(ξ1)(p) 6= 0. We put ξ′1 := ξ1/α. Then iξ′1Ωλ = 0 and iξ′1ηλ = 1 at
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p. Consequently ξ′1(p) = ξλ(p) and we conclude that ξλ is parallel to ξ1 at
p, for any λ ∈ S1. For the almost cosymplectic structure (−η1,−Ω1), which
belongs to the almost cosymplectic circle, the Reeb vector field is −ξ1. Since
the function f : S1 −→ R, defined by ξλ(p) = f(λ)ξ1(p), is continuous and
takes the value −1 at (−1, 0) and the value 1 at (1, 0), there exists some
λ0 ∈ S1 such that f(λ0) = 0, that is ξλ0

(p) = 0. So we get a contradiction.
Thus, the 1-form iξ1

Ω2 nowhere vanishes. Similarly one shows that iξ2
Ω1

nowhere vanishes.

Corollary 2.9. Let {(η1, Ω1), (η2, Ω2)} be an almost cosymplectic circle. Then
the Reeb vector fields ξ1 and ξ2 of (η1, Ω1) and (η2, Ω2) are everywhere linearly
independent.

Definition 2.10. The Reeb distribution of an almost cosymplectic p-sphere
{(ηλ, Ωλ)}λ∈Sp is the distribution V generated by the Reeb vector fields of the
generators {(η1, Ω1), . . . , (ηp+1, Ωp+1)}, i.e.

V =< ξ1, . . . , ξp+1 > .

A natural question concerns the integrability of the Reeb distribution V .
The following proposition shows that in the 3-dimensional case V is the
common kernel of the 1-forms iξ1

Ω2 and iξ2
Ω1.

Proposition 2.11. Let {(η1, Ω1), (η2, Ω2)} be a almost cosymplectic circle
on a 3-dimensional manifold M 3. Then the Reeb distribution V = 〈ξ1, ξ2〉 is
given by

V = ker(iξ1
Ω2) = ker(iξ2

Ω1).

Proof : By Proposition 2.8 the 1-forms iξ1
Ω2 and iξ2

Ω1 nowhere vanish, thus
their kernels have dimension two. Moreover, one can easily check that ξ1, ξ2 ∈
ker(iξ1

Ω2) and ξ1, ξ2 ∈ ker(iξ2
Ω1). Since the two Reeb vector fields ξ1, ξ2 are

linearly independent by Corollary 2.9, then V coincides with ker(iξ1
Ω2) and

ker(iξ2
Ω1) for dimensional reasons.

Recall that the kernel of a 1-form θ is integrable if and only if θ ∧ dθ = 0.
Therefore we obtain the following corollary.

Corollary 2.12. Let {(η1, Ω1), (η2, Ω2)} be a almost cosymplectic circle on a
3-dimensional manifoldM 3. Then the Reeb vector fields ξ1 and ξ2 generate a
two dimensional integrable distribution if and only if

iξ1
Ω2 ∧ diξ1

Ω2 = 0,
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or equivalently if and only if

iξ2
Ω1 ∧ diξ2

Ω1 = 0.

Remark 2.13. An example of a taut cosymplectic circle on a 3-dimensional
manifold with non-integrable Reeb distribution is given by Example 2.5 in
the case γ 6= 0 where the condition iξ1

Ω2∧diξ1
Ω2 = 0 of Corollary 2.12 is not

satisfied. In that example we have ξ1 = e1, ξ2 = e2 and

iξ1
Ω2 = iξ1

(η3 ∧ η1) = −η3.

Hence
iξ1

Ω2 ∧ diξ1
Ω2 = η3 ∧ dη3 = −γ

2
η1 ∧ η2 ∧ η3 6= 0.

The distribution generated by ξ1 and ξ2 is indeed not integrable since

[ξ1, ξ2] = e3.

Concerning the topological properties of a cosymplectic p-sphere on a com-
pact manifold we have the following result.

Proposition 2.14. Let {(η1, Ω1), . . . , (ηp+1, Ωp+1)} be a cosymplectic p-sphere
on a compact manifold M . Then the classes

(i) [η1], . . . , [ηp+1] ∈ H1(M) and
(ii) [Ω1], . . . , [Ωp+1] ∈ H2(M)

are nonzero and linearly independent. Therefore the following conditions on
the Betti numbers are fulfilled: b1 ≥ p + 1, b2 ≥ p + 1.

Proof : Suppose that
p+1∑
i=1

λi[ηi] = 0 in H1(M).

Upon dividing by
∑p+1

i=1 λ2
i > 0, we can assume that (λ1, . . . , λp+1) ∈ Sp.

Then, there is a function f such that

df =

p+1∑
i=1

λiηi.

On the other hand, we know that (
∑p+1

i=1 λiηi,
∑p+1

i=1 λiΩi) is a cosymplectic
structure on M . Thus,

d

(
f ∧ (

p+1∑
i=1

λiΩi)
n

)
= df ∧

(
p+1∑
i=1

λiΩi

)n

=

(
p+1∑
i=1

λiηi

)
∧

(
p+1∑
i=1

λiΩi

)n
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should have a nontrivial class in H2n+1(M). We get a contradiction, hence
[η1], . . . , [ηp+1] ∈ H1(M) are nonzero and linearly independent. Similarly one
shows that [Ω1], . . . , [Ωp+1] ∈ H2(M) are nonzero and linearly independent.

Now we give a full classification of 3-dimensional compact manifolds ad-
mitting a cosymplectic circle.

Theorem 2.15. Let M be a compact 3-dimensional manifold. M admits a
cosymplectic circle if and only if M is either a 3-torus or a quotient of the
Heisenberg group by a co-compact subgroup.

Proof : Assume that M carries a cosymplectic circle (η1, Ω1), (η2, Ω2). Since
η1, η2 are closed and linearly independent, by Tischler’s theorem [18, Corol-
lary 2] M is a locally trivial fibration over the 2-torus

F −→ M −→ T2.

The 1-dimensional fiber F is closed, hence compact. Thus it is a finite disjoint
union of circles. By eventually passing to a finite cover of the base, we can
assume that F ∼= S1. Indeed, one can show that every fibration of a connected
space over a connected base can be written as a fibration with a connected
fiber followed by a covering (cf. Stein factorization in algebraic geometry).
Thus we have

M −→ B −→ T2,

where M → B is an S1-fiber bundle and B is a finite covering of T2, and hence
B ∼= T2. Therefore M is an S1-bundle over T2. Moreover, this S1-bundle over
T2 is oriented since M is oriented. Now, every oriented S1-bundle is principal
by [14, Proposition 6.15]. Hence M is a principal circle bundle over T2 and
by [15, Theorem 3] we get that M is diffeomorphic to a 2-step nilpotent
nilmanifold G/Γ. However, every 3-dimensional 2-step nilpotent Lie group
is either the Heisenberg group or the torus T3.

Conversely, Example 2.5 and Example 2.4 show that both H/Γ and T3

admit a cosymplectic circle.

3. Taut and round cosymplectic p-spheres
In this section we focus on round and taut cosymplectic p-spheres. We

start with a characterization of roundness.
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Proposition 3.1. Let {(η1, Ω1), . . . , (ηp+1, Ωp+1)} be a cosymplectic p-sphere
on a manifold M and let ξ1, . . . , ξp+1 denote the Reeb vector fields of the gen-
erators. Then {(η1, Ω1), . . . , (ηp+1, Ωp+1)} is round if and only if the following
conditions are fulfilled

(i) ηi(ξj) + ηj(ξi) = 0 for any i, j ∈ {1, . . . , p + 1}, i 6= j
(ii) iξi

Ωj + iξj
Ωi = 0 for any i, j ∈ {1, . . . , p + 1}.

Proof : The cosymplectic sphere {(η1, Ω1), . . . , (ηp+1, Ωp+1)} is round if and
only if the vector field ξλ := λ1ξ1 + . . . + λp+1ξp+1 is the Reeb vector field of
(ηλ, Ωλ), i.e. ηλ(ξλ) = 1 and iξλ

Ωλ = 0. These conditions give

p+1∑
i=1

λ2
i +

∑
i6=j

λiλjηi(ξj) = 1,
∑
i6=j

λiλjiξi
Ωj = 0.

Substituting λk = 0 for k 6= i, j and λi = λj = 1/
√

2, we get

1

2
(ηi(ξj) + ηj(ξi)) = 0,

1

2
(iξi

Ωj + iξj
Ωi) = 0.

We now prove that in dimension 3 tautness and roundness are equivalent.
We start with the following lemma, which is a characterization of tautness
in dimension 3.

Lemma 3.2. A cosymplectic circle {(η1, Ω1), (η2, Ω2)} on a 3-manifold M is
taut if and only if the following conditions are fulfilled

η1 ∧ Ω1 = η2 ∧ Ω2 (3.1)

η1 ∧ Ω2 = −η2 ∧ Ω1. (3.2)

Proof : Let us assume that {(η1, Ω1), (η2, Ω2)} is taut, that is

(λ1η1 + λ2η2) ∧ (λ1Ω1 + λ2Ω2) = (λ′1η1 + λ′2η2) ∧ (λ′1Ω1 + λ′2Ω2)

for any (λ1, λ2), (λ
′
1, λ

′
2) ∈ S1. Then by taking (λ1, λ2) = (1, 0) and (λ′1, λ

′
2) =

(0, 1) we get (3.1). Next, by taking (λ1, λ2) =
(

1√
2
, 1√

2

)
and (λ′1, λ

′
2) = (1, 0),

and using (3.1), we obtain (3.2). Conversely, if (3.1)–(3.2) hold, then for
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any (λ1, λ2) ∈ S1 we have

(λ1η1 + λ2η2) ∧ (λ1Ω1 + λ2Ω2) = λ2
1η1 ∧ Ω1 + λ1λ2η1 ∧ Ω2

+ λ2λ1η2 ∧ Ω1 + λ2
2η2 ∧ Ω2

= (λ2
1 + λ2

2)η1 ∧ Ω1 + λ1λ2η1 ∧ Ω2 + λ2λ1η2 ∧ Ω1

= η1 ∧ Ω1.

This proves that {(η1, Ω1), (η2, Ω2)} is taut.

Theorem 3.3. On a 3-manifold M a cosymplectic p-sphere is taut if and
only if it is round.

Proof : We prove the statement of the theorem only for cosymplectic circles,
since the case of cosymplectic spheres can be proved in a very similar way.
Let {(η1, Ω1), (η2, Ω2)} be a taut cosymplectic circle, that is (3.1)–(3.2) hold.
Let ξ1 and ξ2 be the Reeb vector fields of (η1, Ω1) and (η2, Ω2), respectively.
From (3.1) and (2.1) it follows that

iξ2
Ω1 = iξ2

iξ1
(η1 ∧ Ω1) = iξ2

iξ1
(η2 ∧ Ω2) = −iξ1

iξ2
(η2 ∧ Ω2) = −iξ1

Ω2. (3.3)

Moreover, by applying the interior product by ξ1 to (3.2) we get

Ω2 − η1 ∧ iξ1
Ω2 = −iξ1

η2 ∧ Ω1. (3.4)

By applying the interior product by ξ2 to both sides of (3.4) we get

− iξ2
η1 ∧ iξ1

Ω2 = −iξ1
η2 ∧ iξ2

Ω1. (3.5)

Thus, by using (3.3) in the first side of (3.5) we find

(iξ1
Ω2) (η1(ξ2) + η2(ξ1)) = 0,

which, by Proposition 2.8, is equivalent to

η1(ξ2) + η2(ξ1) = 0. (3.6)

Notice that (3.6) and (3.3) are, respectively, the conditions (i) and (ii) in
Proposition 3.1. Therefore the cosymplectic circle is round.

Conversely, let {(η1, Ω1), (η2, Ω2)} be a round cosymplectic circle. Let ξ1
and ξ2 be the Reeb vector fields of the generators (η1, Ω1) and (η2, Ω2), re-
spectively. By Proposition 3.1 we have

η1(ξ2) = −η2(ξ1), (3.7)

iξ2
Ω1 = −iξ1

Ω2 (3.8)



COSYMPLECTIC p-SPHERES 11

Moreover, by Corollary 2.9 one has that ξ1 and ξ2 are linearly independent.
Thus we can complete them to a local basis (ξ1, ξ2, Z) defined on an open
subset U of M . Then by (3.8) we get

Ω1(ξ2, Z) = −Ω2(ξ1, Z). (3.9)

Then, by using (3.7) and (3.9) we have, for any λ = (λ1, λ2) ∈ S2,

ηλ∧Ωλ(ξ1, ξ2, Z) = (λ1η1 + λ2η2) ∧ (λ1Ω1 + λ2Ω2)(ξ1, ξ2, Z)

= λ2
1 η1 ∧ Ω1(ξ1, ξ2, Z) + λ1λ2 η1 ∧ Ω2(ξ1, ξ2, Z)

+ λ2λ1 η2 ∧ Ω1(ξ1, ξ2, Z) + λ2
2 η2 ∧ Ω2(ξ1, ξ2, Z)

= λ2
1 η1(ξ1)Ω1(ξ2, Z) + λ1λ2 η1(ξ2)Ω2(Z, ξ1)

+ λ2λ1 η2(ξ1)Ω1(ξ2, Z) + λ2
2 η2(ξ2)Ω2(Z, ξ1)

=
(
λ2

1 + λ2
2
)
Ω1(ξ2, Z) = η1 ∧ Ω1(ξ1, ξ2, Z).

This proves that the cosymplectic circle is taut.

Theorem 3.3 does not hold in higher dimensions, as it is shown in the
following example.

Example 3.4. Let us consider the cosymplectic structures (η1, Ω1), (η2, Ω2) on
T7 given by

η1 : = dx7, η2 := dx2, Ω1 := dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6,

Ω2 : = dx5 ∧ dx4 − dx3 ∧ dx6 + (dx1 + dx3) ∧ dx7.

One can prove that they generate a cosymplectic circle on T7 which is taut
but not round, since the condition (ii) in Proposition 3.1 is not satisfied. On
the other hand, the cosymplectic circle generated by

η1 := dx7, η2 := −dx2, Ω1 := dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6,

Ω2 := dx3 ∧ (dx5 + dx6) + dx4 ∧ dx5 + (dx1 + dx3) ∧ dx6 + dx1 ∧ dx7,

is round but not taut.

To any taut cosymplectic circle {(η1, Ω1), (η2, Ω2)} on a 3-dimensional smooth
manifold M it can be associated a complex structure J on M×R in a canon-
ical way. Indeed given an almost cosymplectic structure (η, Ω) on M we
can define an almost symplectic structure (i. e. a nondegenerate 2-form) on
M × R by

ω := dt ∧ η + Ω.
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It is well known that (M, η, Ω) is cosymplectic if and only if (M × R, ω) is
symplectic. Recall that a pair of symplectic structures (ω1, ω2) on an oriented
4-manifold is said to be a symplectic couple [10] if one has ω1∧ω2 ≡ 0 and ω2

1,
ω2

2 are volume forms defining the positive orientation. A symplectic couple is
called conformal if ω2

1 = ω2
2. It is convenient to extend the definition to the

case of nondegenerate 2-forms. In that case one simply speaks of a couple
or a conformal couple, respectively, omitting the term ‘symplectic’. Two
couples are called equivalent if at every point they span the same oriented
plane of nondegenerate 2-forms. Now, the cosymplectic structures (η1, Ω1)
and (η2, Ω2) give rise to two symplectic structures ω1 and ω2 on M×R. They
satisfy the following relations.

ω1 ∧ ω1 = 2dt ∧ η1 ∧ Ω1 (3.10)

ω2 ∧ ω2 = 2dt ∧ η2 ∧ Ω2 (3.11)

ω1 ∧ ω2 = 2dt ∧ (η1 ∧ Ω2 + η2 ∧ Ω1). (3.12)

As a consequence, we have ω1 ∧ω1 = ω2 ∧ω2 if and only if η1 ∧Ω1 = η2 ∧Ω2.
Hence by Lemma 3.2 we have that (ω1, ω2) is a conformal symplectic cou-

ple on M × R if and only if {(η1, Ω1), (η2, Ω2)} is a taut cosymplectic cir-
cle on M . Therefore, by [10, Theorem 2.2] to any taut cosymplectic circle
{(η1, Ω1), (η2, Ω2)} on a 3-dimensional smooth manifold M , we can associate
a unique complex structure J on M × R defined by the property that the
forms of type (2, 0) with respect to J are precisely those of the type ω̃1 + iω̃2,
where (ω̃1, ω̃2) is any conformal couple equivalent to (ω̃1, ω̃2). The obtained
complex structure J is a recursion operator in the sense of [1], i.e. it is the
unique endomorphism such that iXω1 = iJXω2 for any X ∈ TM .

4. Cosymplectic spheres and 3-structures
In this section we describe a wide class of examples of almost cosymplectic

spheres on a manifold of dimension 4n + 3.
Recall that given an almost cosymplectic structure (η, Ω) there exist a

Riemannian metric g and a tensor field φ such that

φ2 = −I + η ⊗ ξ, (4.1)

Ω = g(−, φ−). (4.2)

Then one can prove that η ◦ φ = 0, φξ = 0 and

g(φX, φY ) = g(X, Y )− η(X)η(Y ) (4.3)
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for any X, Y ∈ Γ(TM). An alternative approach consists in taking (4.1)
as definition. So one defines an almost contact structure (unfortunately, the
name is rather misleading, but it is widely used in literature) as the triplet
(φ, ξ, η) satisfying (4.1) and η(ξ) = 1. In that case the dimension of M is
necessarily odd. Then, a Riemannian metric g is called compatible if (4.3) is
satisfied. The geometric structure (φ, ξ, η, g) is called almost contact metric
structure. It follows that g(X, φY ) = −g(φX, Y ), so that the bilinear form
Ω(X, Y ) = g(X, φY ) is a 2-form, usually called the fundamental 2-form.
Then one can prove that η ∧ Ωn 6= 0, where dim(M) = 2n + 1. For further
details we refer the reader to [3] and [8].

Now, when on the same manifold M there are given three distinct almost
contact structures (φ1, ξ1, η1), (φ2, ξ2, η2), (φ3, ξ3, η3) satisfying the following
relations, for any even permutation (α, β, γ) of {1, 2, 3},

φγ = φαφβ − ηβ ⊗ ξα = −φβφα + ηα ⊗ ξβ,

ξγ = φαξβ = −φβξα, ηγ = ηα ◦ φβ = −ηβ ◦ φα,
(4.4)

we say that (φα, ξα, ηα)α∈{1,2,3} is an almost contact 3-structure on M . One
proves that the conditions (4.4) force the dimension of M to be necessarily
4n+3 for some integer n. This notion was introduced independently by Kuo
([12]) and Udriste ([19]). Kuo proved also that given an almost contact 3-
structure (φα, ξα, ηα)α∈{1,2,3}, there exists a Riemannian metric g compatible
with each almost contact structure and hence we can speak of almost contact
metric 3-structure. It is well known that in any almost 3-contact metric
manifold the Reeb vector fields ξ1, ξ2, ξ3 are orthonormal with respect to the
compatible metric g. Moreover, by putting H =

⋂3
α=1 ker (ηα) we obtain

a codimension 3 distribution on M and the tangent bundle splits as the
orthogonal sum TM = H ⊕ V , where V = 〈ξ1, ξ2, ξ3〉. The distributions H
and V are called, respectively, horizontal and Reeb distribution.

An almost 3-contact manifold M is said to be hyper-normal if each almost
contact structure (φα, ξα, ηα) is normal. An important class of hyper-normal
almost contact 3-structures is given by the 3-quasi-Sasakian ones. A 3-quasi-
Sasakian structure is an almost contact metric 3-structure such that each
structure (φα, ξα, ηα, g) is quasi-Sasakian, i.e. it is normal and the correspond-
ing fundamental 2-form is closed. Remarkable subclasses of 3-quasi-Sasakian
manifolds are 3-Sasakian and 3-cosymplectic manifolds.

Many results on 3-quasi-Sasakian manifolds were obtained in [5] and [6].
We collect some of them in the following theorem.
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Theorem 4.1 ([5, 6]). Let (M, φα, ξα, ηα, g) be a 3-quasi-Sasakian manifold
of dimension 4n + 3. Then, for any even permutation (α, β, γ) of {1, 2, 3},
the Reeb vector fields satisfy

[ξα, ξβ] = cξγ, (4.5)

for some c ∈ R which is zero if and only if the manifold is 3-cosymplectic.
Moreover, the 1-forms η1, η2, η3 have the same rank, called the rank of the
3-quasi-Sasakian manifold M . The rank of M is 1 if and only if M is 3-
cosymplectic and it is an integer of the form 4l + 3, for some l ≤ n, in the
other cases.

Recall that in a quasi-Sasakian manifold of dimension 2n + 1 and of rank
2p + 1, the characteristic distribution

C := {X ∈ TM | iXη = 0, iXdη = 0} (4.6)

is integrable and has dimension 2(n − p). Moreover, in a 3-quasi-Sasakian
manifold of dimension 4n + 3 and of rank 4l + 3 we can also consider the
distribution

E := {X ∈ H | iXηα = 0, iXdηα = 0 for any α = 1, 2, 3} (4.7)

which turns out to be integrable and to have dimension 4(n− l).

Recall that given two tensor fields P and Q of type (1, 1) on a smooth
manifold M , one can define a tensor field of type (1, 2), denoted by [P, Q],
by setting

[P, Q](X, Y ) = [PX, QY ]− P [QX, Y ]−Q[X, PY ] + [QX, PY ]

−Q[PX, Y ]− P [X,QY ] + (PQ + QP )[X, Y ],

where X and Y are arbitrary vector fields on M . The tensor [P, Q] is usually
called the Nijenhuis concomitant of P and Q.
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Now let (φα, ξα, ηα)α∈{1,2,3}, be an almost contact 3-structure on M . For
any α, β ∈ {1, 2, 3} we define four tensors in the following way

N
(1)
α,β := [φα, φβ] + dηα ⊗ ξβ + dηβ ⊗ ξα (4.8)

N
(2)
α,β(X, Y ) := (LφαXηβ) (Y )− (LφαY ηβ) (X)

+
(
LφβXηα

)
(Y )−

(
LφβY ηα

)
(X)

(4.9)

N
(3)
α,β := Lξα

φβ + Lξβ
φα (4.10)

N
(4)
α,β := Lξα

ηβ + Lξβ
ηα. (4.11)

These tensors satisfy N
(i)
α,β = N

(i)
β,α, 1 ≤ i ≤ 4. Moreover, N

(1)
α,α = N

(1)
φα

and

2N
(i)
α,α = N

(i)
φα

, 2 ≤ i ≤ 4, where N
(i)
φα

are the fundamental tensors of an almost

contact manifold (cf. [2, (1.3)]).
The following theorem establishes a general property of hyper-normal al-

most contact 3-structures.

Theorem 4.2. Let (φα, ξα, ηα)α∈{1,2,3} be a hyper-normal almost contact 3-

structure on M . Then for each α, β ∈ {1, 2, 3} the tensors N
(1)
α,β, N

(2)
α,β, N

(3)
α,β,

N
(4)
α,β vanish.

Proof : For each α ∈ {1, 2, 3} we define on the product M×R the (1, 1)-tensor

Jα

(
X, f

d

dt

)
=

(
φαX − fξα, ηα(X)

d

dt

)
where X is a vector field on M , f a smooth function on M×R and t denotes
the coordinate function on R. It is well-known that (J1, J2, J3) defines a
hyper-complex structure on M ×R. Now let us fix α, β ∈ {1, 2, 3} and let us
evaluate the concomitant [Jα, Jβ] of the vector fields of type ((X, 0), (Y, 0))
and ((X, 0), (0, d

dt)), where X, Y are vector fields on M . After a long compu-
tation, by using (4.4) and (4.8)–(4.11), we get

[Jα, Jβ] ((X, 0), (Y, 0)) =

(
N

(1)
α,β(X, Y ), N

(2)
α,β(X, Y )

d

dt

)
, (4.12)

[Jα, Jβ]

(
(X, 0) ,

(
0,

d

dt

))
=

(
(N

(3)
α,β(X), N

(4)
α,β(X)

d

dt

)
. (4.13)

Because of [21, Theorem 3.1] each Nijenhuis concomitant [Jα, Jβ] vanishes

and so from (4.12)–(4.13) the vanishing of N
(1)
α,β, N

(2)
α,β, N

(3)
α,β, N

(4)
α,β follows.
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Theorem 4.3. Let (φα, ξα, ηα, g)α∈{1,2,3} be an almost contact metric 3-structure
on M . Then, for any λ := (λ1, λ2, λ3) ∈ S2 the tensors

φλ := λ1φ1+λ2φ2+λ3φ3, ξλ := λ1ξ1+λ2ξ2+λ3ξ3, ηλ := λ1η1+λ2η2+λ3η3,
(4.14)

define an almost contact structure on M , compatible with the Riemannian
metric g. Furthermore, if (φα, ξα, ηα)α∈{1,2,3} is hyper-normal, then (φλ, ξλ, ηλ, g)
is a normal almost contact metric structure on M .

Proof : First, by using the relations ηα(ξβ) = δαβ we get

ηλ(ξλ) = λ2
1η1(ξ1) + λ2

2η2(ξ2) + λ2
3η3(ξ3) = 1.

Next, due to (4.4), we have that

φ2
λ =

3∑
α=1

λ2
αφ2

α +
∑
α<β

λαλβ(φαφβ + φβφα)

=
3∑

α=1

(−λ2
αI + λ2

αηα ⊗ ξα) +
∑
α<β

λαλβ(ηα ⊗ ξβ + ηβ ⊗ ξα)

= −I +
3∑

α=1

(λαηα)⊗ (λαξα) +
∑
α 6=β

(λαηα)⊗ (λβξβ) = −I + ηλ ⊗ ξλ.

Finally, we prove that the almost contact structure (φ, ξ, η) is compatible
with g. Indeed, for any X, Y ∈ Γ(TM) one has

g(φλX, φλY ) = λ2
1g(φ1X, φ1Y ) + λ2

2g(φ2X, φ2Y ) + λ2
3g(φ3X, φ3Y )

+ λ1λ2g(φ1X, φ2Y ) + λ1λ3g(φ1X, φ3Y ) + λ1λ2g(φ2X, φ1Y )

+ λ2λ3g(φ2X, φ3Y ) + λ1λ3g(φ3X, φ1Y ) + λ2λ3g(φ3X, φ2Y )

= (λ2
1 + λ2

2 + λ2
3)g(X, Y )− λ2

1η1(X)η1(Y )− λ2
2η2(X)η2(Y )

− λ2
3η3(X)η3(Y )− λ1λ2g(X, η1(Y )ξ2)− λ1λ2g(X, η2(Y )ξ1)

− λ1λ3g(X, η1(Y )ξ3)− λ1λ3g(X, η3(Y )ξ1)− λ2λ3g(X, η2(Y )ξ3)

− λ2λ3g(X, η3(Y )ξ2)
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= g(X,Y )− λ2
1η1(X)η1(Y )− λ2

2η2(X)η2(Y )− λ2
3η3(X)η3(Y )

− λ1λ2η2(X)η1(Y )− λ1λ2η1(X)η2(Y )− λ1λ3η3(X)η1(Y )

− λ1λ3η1(X)η3(Y )− λ2λ3η3(X)η2(Y )− λ2λ3η2(X)η3(Y )

= g(X,Y )− ηλ(X)ηλ(Y ).

Now we pass to prove the second part of the theorem. By a very long but
straightforward computation one can prove the relation

N
(1)
φλ

= N
(1)
φ1

+ N
(1)
φ2

+ N
(1)
φ3

+ λ1λ2N
(1)
1,2 + λ1λ3N

(1)
1,3 + λ2λ3N

(1)
2,3 .

Since (φα, ξα, ηα)
α∈{1,2,3} is a hyper-normal almost contact 3-structure, we have

that N
(1)
φ1

= N
(1)
φ2

= N
(1)
φ3

= 0 and, by Theorem 4.2, N
(1)
α,β = 0 for any

α, β ∈ {1, 2, 3}. Therefore N
(1)
φλ

= 0.

Corollary 4.4. Let (φα, ξα, ηα, g) be an almost contact metric 3-structure on
a (4n+3)-dimensional smooth manifold M . Then {(η1, Ω1), (η2, Ω2), (η3, Ω3)},
being Ωα := g(·, φα·), is an almost cosymplectic sphere which is both round
and taut.

Proof : With the notation of Theorem 4.3, for each α ∈ {1, 2, 3} let Ωα :=
g(−, φα−) be the fundamental 2-form of the almost contact metric structure
(φα, ξα, ηα). For each λ = (λ1, λ2, λ3) ∈ S2 let (φλ, ξλ, ηλ, g) denote the almost
contact metric structure defined by (4.14), and let Ωλ := (−, φλ−) be the
corresponding fundamental 2-form. Then by the general theory of almost
contact metric structures, one has that ηλ ∧Ω2n+1

λ 6= 0. This proves that the
family {(ηλ, Ωλ)}λ∈S2 defines an almost cosymplectic sphere on M . Directly
from Theorem 4.3 it follows that such an almost cosymplectic sphere is round.
Thus it only remains to prove that it is taut. To this aim, let us consider a
φ-basis, i.e. a (local) orthonormal basis

(ξ1, ξ2, ξ3, X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn, U1, . . . , Un)

such that Xi ∈ Γ(H), Yi = φ1Xi, Zi = φ2Xi, Ui = φ3Xi for all i ∈ {1, . . . , n}.
Using that Ωλ = λ1Ω1 + λ2Ω2 + λ3Ω3 one finds

Ωλ(Xi, Yj) = Ωλ(Zi, Uj)) = −λ1δij, (4.15)

Ωλ(Xi, Zj) = −Ωλ(Yi, Uj)) = −λ2δij, (4.16)

Ωλ(Xi, Uj) = Ωλ(Yi, Zj)) = −λ3δij, (4.17)

Ωλ(Xi, Xj) = Ωλ(Yi, Yj) = Ωλ(Zi, Zj) = Ωλ(Ui, Uj) = 0, (4.18)
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for any i, j ∈ {1, . . . , n}. Moreover, one easily finds that

Ωλ(ξ1, ξ2) = −λ3, Ωλ(ξ1, ξ3) = λ2, Ωλ(ξ2, ξ3) = −λ1 (4.19)

and

Ωλ(ξα, Xi) = Ωλ(ξα, Yi) = Ωλ(ξα, Zi) = Ωλ(ξα, Ui) = 0 (4.20)

for any α ∈ {1, 2, 3} and i ∈ {1, . . . , n}. By using (4.15)–(4.18), (4.19) and
(4.20), one has that

ηλ∧Ω2n+1
λ (ξ1, ξ2, ξ3, X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn, U1, . . . , Un)

= ηλ(ξ1)Ωλ(ξ2, ξ3)Ω
2n
λ (X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn, U1, . . . , Un)

− ηλ(ξ2)Ωλ(ξ1, ξ3)Ω
2n
λ (X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn, U1, . . . , Un)

+ ηλ(ξ3)Ωλ(ξ1, ξ2)Ω
2n
λ (X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn, U1, . . . , Un)

=
(
ηλ(ξ1)Ωλ(ξ2, ξ3)− ηλ(ξ2)Ωλ(ξ1, ξ3) + ηλ(ξ3)Ωλ(ξ1, ξ2)

)
n∑

i=1

(
Ωλ(Xi, Yi)Ωλ(Zi, Ui)− Ωλ(Xi, Zi)Ωλ(Yi, Ui) + Ωλ(Xi, Ui)Ωλ(Yi, Zi)

)
=
(
−λ2

1 − λ2
2 − λ2

3
) n∑

i=1

(
λ2

1 + λ2
2 + λ2

3
)

= −n.

This shows that the almost cosymplectic sphere is taut.

We now illustrate an example of almost contact 3-structure on a 7-dimensional
manifold such that the 1-forms η1, η2, η3 have different constant ranks.

Example 4.5. Let g be the 7-dimensional Lie algebra with basis

{X1, X2, X3, X4, ξ1, ξ2, ξ3}

and non-zero Lie brackets

[X1, X4] = ξ3, [ξ1, ξ2] = ξ3.

Let G be a Lie group whose Lie algebra is g. We define an almost contact
3-structure (φα, ξα, ηα), α ∈ {1, 2, 3}, on G by setting

ηα(Xi) = 0, ηα(ξβ) = δαβ



COSYMPLECTIC p-SPHERES 19

for each i ∈ {1, . . . , 4} and α, β ∈ {1, 2, 3}, and by defining

φ1X1 = X2, φ1X2 = −X1, φ1X3 = X4, φ1X4 = −X3,

φ2X1 = X3, φ2X2 = −X4, φ2X3 = −X1, φ2X4 = X2,

φ3X1 = X4, φ3X2 = X3, φ3X3 = −X2, φ3X4 = −X1,

φαξβ = εαβγξγ,

where εαβγ is the total antisymmetric symbol. From the definition, it follows
that dη1 = dη2 = 0. Next, we have 2dη3(X1, X4) = X1(η3(X4))−X4(η3(X1))−
η3([X1, X4]) = −η3([X1, X4]) = −η3(ξ3) = −1, and 2dη3(ξ1, ξ2) = −1 by a
similar computation. One also checks that dη3 is zero on any other pair of
basis vector fields. Thus (η3∧ (dη3)

2)(ξ3, ξ1, ξ2, X1, X4) is a non-zero constant
at every point and η3 ∧ (dη3)

3 ≡ 0. Therefore η1 and η2 have rank 1, while
η3 has rank 5.

The above example motivates the following definition.

Definition 4.6. A quasi-contact p-sphere of rank k is an almost cosymplectic
p-sphere {(ηλ, Ωλ)}λ∈Sp such that dΩλ = 0 for any λ ∈ Sp and there exists
a positive integer k such that all 1-forms ηλ have the same constant rank k,
i.e. each 1-form ηλ has Cartan class k, for any λ ∈ Sp.

Of course contact p-spheres are examples of almost cosymplectic p-spheres
which are quasi-contact, having the maximal possible rank 2n+1 = dim(M).
Further, notice that any cosymplectic p-sphere is quasi-contact of minimal
rank 1, being ηλ closed and nonsingular. Now we shall present a class of
examples of almost cosymplectic p-spheres which are quasi-contact of rank
1 < k < dim(M).

Theorem 4.7. With the notation of Theorem 4.3, if (M, φα, ξα, ηα, g)α∈{1,2,3}
is a 3-quasi-Sasakian manifold of rank 4l+3 then, for every λ ∈ S2, (φλ, ξλ, ηλ, g)
defines a quasi-Sasakian structure of the same rank. In particular, the almost
cosymplectic sphere generated by {(η1, Ω1), (η2, Ω2), (η3, Ω3)} is quasi-contact
of rank 4l + 3.

Proof : By Theorem 4.3 we already know that (φλ, ξλ, ηλ, g) is a normal almost
contact metric structure on M . We have to prove that the fundamental 2-
form Ωλ is closed. However, notice that Ωλ = λ1Ω1 + λ2Ω2 + λ3Ω3. Since
each structure (φα, ξα, ηα, g) is quasi-Sasakian, we get that dΩλ = 0. We
pass to prove that the rank of ηλ is the same of that of the 3-quasi-Sasakian
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manifold (M, φα, ξα, ηα, g)α∈{1,2,3}, namely 2p + 1 = 4l + 3. We will prove
this by showing that E = C, where the distributions E and C are defined
by (4.6) and (4.7), respectively. First we prove that E ⊂ C. Notice that
E ⊂ H ⊂ ker(ηλ). Consequently, since, on E , dηα = 0 for any α ∈ {1, 2, 3},
we get that dηλ = 0 on E . Hence E ⊂ C. In order to prove the other inclusion,
we observe that the endomorphism of H defined by ρ = −λ2I + λ3φ1 + λ1φ3
is in fact an isomorphism. Indeed a straightforward computation shows that
(φ2ρ)2 = −I, hence the mapping φ2ρ is an isomorphism. It follows that ρ
is an isomorphism too. Now let us consider an arbitrary X ∈ Γ(C) and let
us prove that X ∈ Γ(E). We can decompose X in its components along the
horizontal and the Reeb distribution, as follows

X = XH + f1ξ1 + f2ξ2 + f3ξ3

where fα = ηα(X) for each α ∈ {1, 2, 3}. The condition ηλ(X) = 0 yields

λ1f1 + λ2f2 + λ3f3 = 0, (4.21)

whereas the conditions dηλ(ξ1, X) = dηλ(ξ2, X) = dηλ(ξ3, X) = 0 yield

λ2f3 − λ3f2 = 0, −λ1f3 + λ3f1 = 0, λ1f2 − λ2f1 = 0. (4.22)

It is easy to see that the homogeneous linear system of the four equations
(4.21), (4.22) admits non-zero solutions if and only if λ1 = λ2 = λ3 = 0.
Since this circumstance can not happen, we conclude that f1 = f2 = f3 = 0
and hence X ∈ H. Finally, in order to prove that X belongs to E , it remains
to prove that dηα(X, Y ) = 0 for any Y ∈ Γ(TM) and for any α ∈ {1, 2, 3}.
In fact, in view of [5, Lemma 5.4] it is enough to prove that dηα(X, Y ) = 0
for some α ∈ {1, 2, 3}, for instance for α = 3. By [5, Corollary 3.8] we
have that dη3(X, ξβ) = 0 for any β ∈ {1, 2, 3}. Thus we may assume that
Y ∈ Γ(H). Since ρ is an isomorphism, there exists Y ′ ∈ Γ(H) such that
Y = ρY ′ = −λ2Y

′ + λ3φ1Y
′ + λ1φ3Y

′. Therefore, by using Lemma 5.2 –
Lemma 5.3 of [5], we get

dη3(X, Y ) = dη3(X, ρY ′) = λ1dη3(X, φ3Y
′)− λ2dη3(X, Y ′) + λ3dη3(X, φ1Y

′)

= λ1dη1(X, φ1Y
′) + λ2dη2(X, φ1Y

′) + λ3dη3(X, φ1Y
′)

= dηλ(X, φ1Y
′) = 0,

where the last equality follows from the fact that X ∈ Γ(C).

Corollary 4.8. Any 3-Sasakian manifold admits an almost cosymplectic
sphere of Sasakian structures which is both taut and round.
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Corollary 4.9. Any 3-cosymplectic manifold admits an almost cosymplectic
sphere of cosymplectic structures which is both taut and round.

Remark 4.10. Notice that Corollary 4.8 improves the result of Zessin that any
3-Sasakian manifold admits a contact sphere which is both taut and round
(cf. [22, Proposition 4]).

Arguing in a similar way to the proof of Theorem 4.3 we can find the
following classes of examples of cosymplectic spheres.

Example 4.11. Let N be a smooth manifold endowed with a hyperholomor-
phic symplectic structure in the sense of [1] (note that these geometric struc-
tures were also studied in [20], but with a different name). Namely, on N
there are defined three symplectic structures ω1, ω2, ω3 related to each other
by means of the relations

ω]
α ◦ ω[

β = −ω]
β ◦ ω[

α

for any α, β ∈ {1, 2, 3}, α 6= β. As a consequence, one can define three almost
complex structures which satisfy the quaternionic identities. On M := N×R3

we define for each even permutation (α, β, γ) of {1, 2, 3}
ηα := dtα, Ωα := ωα + ηβ ∧ ηγ

where (t1, t2, t3) are the global coordinates of R3. Then, arguing as in the
proof of Corollary 4.4, one can prove that {(η1, Ω1), (η2, Ω2), (η3, Ω3)} gener-
ates a cosymplectic sphere on M .
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