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Abstract: We prove that the so-called special homogeneous surjections are reflec-
tive amongst surjective homomorphisms of monoids. To do so, we use the recent
result that these special homogeneous surjections are the normal (= central) extensi-
ons with respect to the admissible Galois structure ΓMon determined by the Grothen-

dieck group adjunction together with the classes of surjective homomorphisms. It is
well known that such a reflection exists when the left adjoint functor of an admissible
Galois structure preserves all pullbacks of fibrations along split epimorphic fibrati-
ons, a property which we show to fail for ΓMon. We give a new sufficient condition
for the normal extensions in an admissible Galois structure to be reflective, and we
then show that this condition is indeed fulfilled by ΓMon.
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1. Introduction

The original aim of our present work was to answer the following question: Is
the category of special homogeneous surjections of monoids [3, 4] a reflective
subcategory of the category of surjective monoid homomorphisms? Since we
recently showed [17] that these special homogeneous surjections are the normal
extensions in an admissible Galois structure [10, 11], we were at first convinced
that this would be an immediate consequence of some known abstract Galois-
theoretical result such as the ones in [13, 12]. At a second glance, we could not
find any result to apply in the given situation.
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The case of commutative monoids is after all not too difficult. Here we
can just use Theorem 7.1 of [13], since the reflector from commutative mo-
noids to abelian groups preserves pullbacks of surjective homomorphisms along
split epimorphisms (Proposition 4.2). The problem is that, for general (non-
commutative) monoids, the Grothendieck group construction need not preserve
such pullbacks—see Example 5.1.

It turns out, however, that the special homogeneous surjections of monoids
do indeed form a reflective subcategory. The process of proving this result leads
naturally to a new criterion for reflectiveness of normal extensions amongst the
fibrations of an admissible Galois structure (our Theorem 2.12, closely related
to the subject of the recent article [7]): if the categories under consideration are
Barr-exact and all fibrations in the Galois structure are regular epimorphisms,
then it suffices that the category of normal extensions is closed under coequa-
lisers of reflexive graphs in the category of fibrations. This sufficient condition
holds for monoids (Theorem 5.5).

Thus a problem in the category of monoids lead to a general result in catego-
rical Galois theory. Conversely, Galois theory helped us to better understand
a non-obvious result on monoids, which we believe is interesting for its own
sake: it allowed us to extended Proposition 2.3.5 in [4] twice, first to Proposi-
tion 5.4, then to Theorem 5.5 which says that the category of special homoge-
neous surjections is closed under coequalisers of reflexive graphs of surjective
homomorphisms of monoids.

Before specialising to monoids, we first focus on reflectiveness results in a
general Galois-theoretic setting (Section 2). In Subsection 2.8 we use the cons-
truction of the normalisation functor proposed in [8] to prove our main result
(Theorem 2.12). We then, in Section 3, recall the definitions and main results
concerning special homogenous surjections from [3, 4] as well as the main re-
sults from [17], giving the link between special homogeneous surjections and
normal extensions, which are needed throughout the subsequent sections. In
Section 4 we treat the commutative case, which easily leads to Theorem 4.3,
the reflectiveness of special homogeneous surjections of commutative monoids.
The non-commutative case is treated in the final Section 5, where we first give
a counterexample against the preservation of pullbacks of split epimorphisms
along spit epimorphisms by the Grothendieck group functor (Example 5.1), to
prove then that the technique of Section 2 is applicable (Theorem 5.5) and to
obtain Theorem 5.6—thus answering our original question.
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2. Reflectiveness of normal extensions

In this section we work towards a general result on reflectiveness of normal
extensions in an admissible Galois structure: Theorem 2.12 which says that,
if the fibrations in the Galois structure are regular epimorphisms, and normal
extensions are closed under coequalisers of reflexive graphs, then the normal
extensions are reflective amongst the fibrations.

2.1. Galois structures. We start by recalling the definition of (admissible)
Galois structure as well as the concepts of trivial, normal and central extension
arising from it [10, 11, 12]. We consider the context of Barr-exact categories [1]
which is general enough for our purposes and allows us to avoid some technical
difficulties.

Definition 2.2. A Galois structure Γ � pC ,X , H, I, η, ǫ, E ,F q consists of
an adjunction

C

I ,2K X

H
lr

with unit η : 1C ñ HI and counit ǫ : IH ñ 1X between Barr-exact categories
C and X , as well as classes of morphisms E in C and F in X such that:

(G1) E and F contain all isomorphisms;
(G2) E and F are pullback-stable;
(G3) E and F are closed under composition;
(G4) HpF q � E ;
(G5) IpE q � F .

We call the morphisms in E and F fibrations [11]. The following definitions
are given with respect to a Galois structure Γ.

Definition 2.3. A trivial extension is a fibration f : A Ñ B in C such that
the square

A
ηA ,2

f

��

HIpAq
HIpfq

��

B ηB
,2 HIpBq

is a pullback. A central extension is a fibration f whose pullback p�pfq along
some fibration p is a trivial extension. A normal extension is a fibration such
that its kernel pair projections are trivial extensions.
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It is well known and easy to see that trivial extensions are always central
extensions and that any normal extension is automatically central.

For any object B in C , there is an induced adjunctionpE Ó Bq IB ,2K pF Ó IpBqq,
HB

lr

where we write pE Ó Bq for the full subcategory of the slice category pC Ó Bq
determined by morphisms in E ; similarly for pF Ó IpBqq. The functor IB is
the restriction of I , and HB sends a fibration g : X Ñ IpBq to the pullback

A ,2

HBpgq
��

HpXq
Hpgq

��

B ηB
,2 HIpBq

of Hpgq along ηB.

Definition 2.4. A Galois structure Γ � pC ,X , H, I, η, ǫ, E ,F q is said to be
admissible when, for every object B in C , the functor HB is full and faithful.

The admissibility condition amounts to reflectiveness of trivial extensions
amongst fibrations. More precisely, we have that:

(1) by Proposition 2.5 below, the replete image of the functor HB is precisely
the category TrivpBq of trivial extensions over B;

(2) TrivpBq is a reflective subcategory of pE Ó Bq;
(3) HBIB : pE Ó Bq Ñ TrivpBq is its reflector.

By Proposition 5.8 in [9], we obtain a left adjoint, called the trivialisation
functor

Triv : FibpC q Ñ TExtpC q,
to the inclusion of the category TExtpC q of trivial extensions in C into the full
subcategory FibpC q of the category of arrows in C determined by the fibrations.

Proposition 2.5. [13, Proposition 2.4] If Γ is an admissible Galois structure,
then I : C Ñ X preserves pullbacks along trivial extensions. Hence a fibration
is a trivial extension if and only if it is a pullback of some fibration in X .
In particular, the trivial extensions are pullback-stable, so that every trivial
extension is a normal extension.
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2.6. A result on reflectiveness of central extensions. Consider an ad-
missible Galois structure Γ as in Definition 2.4. Given an object B in C , we
let CentrpBq denote the full subcategory of pE Ó Bq determined by the central
extensions over B. When it exists, the left adjoint to the inclusion functor
CentrpBq ãÑ pE Ó Bq is written Centr : pE Ó Bq Ñ CentrpBq and called the
centralisation functor. In [8], it is explained how Theorem 7.1 in [13] gives
us:

Theorem 2.7. If Γ � pC ,X , H, I, η, ǫ, E ,F q is an admissible Galois struc-
ture and the functor I preserves pullbacks of fibrations along split epimorphic
fibrations, then CentrpBq is a reflective subcategory of pE Ó Bq, for any ob-
ject B in C .

In Section 4 we shall explain how this result may be used to prove that
special homogeneous surjections of commutative monoids are reflective amongst
surjective commutative monoid homomorphisms (Theorem 4.3) while it is not
applicable in the non-commutative case (Example 5.1). Therefore we now work
towards an alternative for Theorem 2.7 which allows us to prove essentially
the same result under different assumptions—Theorem 2.12, which leads to
Theorem 5.6 extending the reflectiveness result from the commutative monoids
case to general monoids.

2.8. Reflectiveness of normal extensions. Given an admissible Galois
structure Γ as in Definition 2.4 and an object B in C , we denote by NormpBq
the full subcategory of pE Ó Bq determined by the normal extensions over B.
When it exists, the left adjoint to the inclusion functor NormpBq ãÑ pE Ó Bq is
denoted by Norm: pE Ó Bq Ñ NormpBq and called the normalisation func-
tor (over B). We also write

Norm: FibpC q Ñ NormpC q
for the left adjoint to the inclusion NormpC q ãÑ FibpC q (where NormpC q is
determined by the normal extensions in C ) which exists as soon as the norma-
lisation functors over all objects B exist (again by Proposition 5.8 in [9]).

We use the construction proposed in [8] and prove that it does indeed provide
us with a normalisation functor as soon as the Galois structure Γ is admissible
and satisfies the following conditions:

(G6) the morphisms in E and in F are regular epimorphisms;
(G7) the category of normal extensions in C is closed under coequalisers of

reflexive graphs in FibpC q.
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This is related to the results in [7] where the problem of reflectiveness of normal
extensions is studied in a much more general setting. The present construction
is essentially a simple version of the one proposed in [5], which strictly speaking
cannot be applied in the current context.

2.9. The construction. Given a fibration f : A Ñ B, we pull it back along
itself, then we take kernel pairs vertically as on the left hand side of the diagram
in Figure 1. We apply the trivialisation functor to obtain the upper right part
of the diagram, then we take the coequaliser f on the right to get the morphism

Normpfq and the comparison ηNormf . The normality of Normpfq comes from
condition (G7) and the fact that all trivial extensions are normal extensions
(Proposition 2.5).

Eqpπ2q ηTriv
π1
1

)/f d c b ` _ ^ \ [ Z

�� ��

π1
1

,2,2 Eqpfq
�� ��

Eqpπ2qTriv
Trivpπ1

1
qlr lr

�� ��

Eqpfq /6X Z [ \ ^ _ ` b c d

LR

π2

����

π1 ,2,2 A

LR

f

����

EqpfqTrivTrivpπ1q
lr lr

LR

f

����

A
f

,2,2

ηNorm

f

07V W X Z [ \ ^ _ ` b c d f gB A.
Normpfq

lr lr

Figure 1. The construction of Normpfq
2.10. The universal property. Let us prove that Normpfq is universal
amongst normal extensions over B. Suppose that f � g�α, where g : C Ñ B is
a normal extension. First note that all steps of the construction are functorial.
Next, since g is a normal extension, we have Normpgq � g, C � C and
ηNormg � 1C . So we get an induced morphism α : A Ñ C such that g�α �
Normpfq and α�ηNormf � α, which proves the existence of a factorisation. Now

for the uniqueness, suppose that β, γ : A Ñ C are such that

g�β � Normpfq � g�γ and β�ηNormf � α � γ�ηNormf .

We write π
f
1 , π

f
2 and π

g
1 , π

g
2 for the kernel pair projections of f and g, respec-

tively. From the fact that g is a normal extension, we have Trivpπg
1q � π

g
1
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and g � π
g
2 . Since g�α�Trivpπf

1 q � f �Trivpπf
1 q � Normpfq�f � g�β�f and,

likewise, g�α�Trivpπf
1 q � g�γ�f , we find morphismsrβ � xα�Trivpπf
1 q, β�fy,rγ � xα�Trivpπf

1 q, γ�fy : EqpfqTriv Ñ Eqpgq
such that πg

2�rβ � β�f and π
g
2�rγ � γ�f while

π
g
1�rβ � α�Trivpπf

1 q and π
g
1�rγ � α�Trivpπf

1 q.
Now rβ � rγ follows from the uniqueness in the universal property of the trivial
extension Trivpπf

1 q: indeed, rβ�ηTriv
π
f
1

� α �1B α � rγ�ηTriv
π
f
1

. Hence β � γ.

2.11. The result. Thus, keeping Proposition 5.8 in [9] in mind, we obtain:

Theorem 2.12. Let Γ � pC ,X , H, I, η, ǫ, E ,F q be an admissible Galois
structure such that the conditions (G6) and (G7) hold. If B is an object of C ,
then NormpBq is a reflective subcategory of pE Ó Bq. As a consequence, normal
extensions are reflective amongst fibrations.

This is what we shall use in Section 5 to prove that special homogeneous
monoid surjections are reflective amongst surjective monoid homomorphisms.

3. Revision of some known results for monoids

In this section we recall the main results from [17], where it is shown that the
group completion of monoids determines an admissible Galois structure with
respect to surjective homomorphisms. Moreover, the corresponding central
(= normal) extensions are precisely the special homogeneous surjections.

3.1. The Grothendieck group of a monoid. The Grothendieck group
(or group completion) of a monoid pM, �, 1q is given by a group GppMq
and a monoid homomorphism M Ñ GppMq which is universal with respect
to monoid homomorphisms from M to a group [14, 15, 16]. Explicitly, we
can define GppMq � GpFpMq{NpMq, where GpFpMq denotes the free group
on M and NpMq is the normal subgroup generated by elements of the formrm1srm2srm1 � m2s�1. We shall simply write m1m2 instead of m1 � m2 from
now on. This gives us an equivalence relation � on GpFpMq generated byrm1srm2s � rm1m2s with equivalence classes rm1srm2s � rm1m2s. An ar-
bitrary element in GppMq is an equivalence class of words, which may be
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represented by a word of the formrm1srm2s�1rm3srm4s�1 � � � rmnsιpnq or rm1s�1rm2srm3s�1rm4s � � � rmnsιpnq,
where ιpnq � �1, n P N, m1, . . . , mn P M and no further cancellation is
possible.

We write Mon for the category of monoids and Gp for the category of groups.
The Grothendieck group construction determines an adjunction

Mon

Gp
,2K Gp,

Mon
lr (∗)

where Mon is the forgetful functor. To simplify notation, we write GppMq
instead of MonGppMq when referring to the monoid structure of GppMq. The
counit is ǫ � 1Gp and the unit is defined, for any monoid M , by

ηM : M Ñ GppMq : m ÞÑ rms.
By choosing the classes of morphisms E and F to be the surjections in Mon

and Gp, respectively, we obtain a Galois structure

ΓMon � pMon,Gp,Mon,Gp, η, ǫ, E ,F q.
This Galois structure was studied in the article [17], with as main result its

Theorem 2.2:

Theorem 3.2. The Galois structure ΓMon is admissible.

3.3. Special homogeneous surjections. We recall the definition and some
results concerning special homogenous surjections from [3, 4] which are needed
in the sequel.

Definition 3.4. Let f be a split epimorphism of monoids, with a chosen split-
ting s, and N its (canonical) kernel

N
� ,2
k

,2 X
f

,2,2
Y.

s
lr (†)

The split epimorphism pf, sq is said to be right homogeneous when, for every
element y P Y , the function µy : N Ñ f�1pyq defined through multiplication
on the right by spyq, so µypnq � n spyq, is bijective. Similarly, we can define a
left homogeneous split epimorphism: the function N Ñ f�1pyq : n ÞÑ spyqn
is a bijection for all y P Y . A split epimorphism is said to be homogeneous
when it is both right and left homogeneous.
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Definition 3.5. Given a surjective homomorphism g of monoids and its kernel
pair

Eqpgq π1 ,2

π2

,2X∆lr
g

,2,2 Y,

the morphism g is called a special homogeneous surjection when pπ1,∆q
(or, equivalently, pπ2,∆q) is a homogeneous split epimorphism.

The next two results illustrate the connection between special homogeneous
surjections and the notions of trivial, central and normal extensions arising
from the Galois structure ΓMon. The admissibility of ΓMon is essential to the
coincidence of central and normal extensions in this context.

Proposition 3.6. [17, Proposition 4.2] For a split epimorphism f of monoids,
the following statements are equivalent:

(i) f is a trivial extension;
(ii) f is a special homogeneous surjection.

Theorem 3.7. [17, Theorem 4.4] For a surjective homomorphism g of mo-
noids, the following statements are equivalent:

(i) g is a central extension;
(ii) g is a normal extension;
(iii) g is a special homogeneous surjection.

4. The case of commutative monoids

In this section we focus on the commutative case, proving that special homo-
geneous surjections are reflective amongst surjective homomorphisms of com-
mutative monoids.

We can restrict the group completion to commutative monoids: it is easily
seen that then ΓMon restricts to an admissible Galois structure

ΓCMon � pCMon,Ab,CMon,Gp|CMon, η
1, ǫ1, E 1,F 1q

induced by the (co)restriction

CMon

Gp|CMon
,2K Ab

CMon
lr

of the adjunction (∗) to the category of commutative monoids CMon and the
category of abelian groups Ab. To simplify notation, we write Gp: CMonÑ Ab
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instead of Gp|CMon for the Grothendieck group functor restricted to commuta-
tive monoids.

If M is a commutative monoid, GppMq can be described in the following
way: GppMq � pM �Mq{�, where pm1, m2q � pn1, n2q if and only if there
exists z P M such that m1�n2� z � m2�n1� z, using the additive notation
in M . Comparing this description of GppMq with the previous one for general
monoids, we have that the equivalence class of pm1, m2q P M �M corresponds

to the class rm1s � rm2s in GppMq.
It is easy to check that Proposition 3.6 and Theorem 3.7 still hold for the

admissible Galois structure ΓCMon.
The following results show that the conditions of Theorem 2.7 hold for ΓCMon.

Together with Theorem 3.7 applied to the commutative case, we see that special
homogeneous surjections are reflective amongst surjections in CMon.

Proposition 4.1. The Grothendieck group functor Gp: CMonÑ Ab preserves
pullbacks of split epimorphisms along split epimorphisms.

Proof : In the category CMon, consider the pullback

X �Z Y
πY ,2

πX

��

Ylr

g
��

X
f

,2

LR

Z
s

lr

t

LR

of the split epimorphisms pf, sq and pg, tq. Applying the Grothendieck group
functor gives us the diagram

GppY q
z���

��
��

��
�� Gppgq

�$?
??

??
??

??
?

GppX �Z Y q h ,2,2

GppπX q (/

GppπY q /6

P
AA

AA

����

:D����������

�$?
??

??
??

??
? GppZq

Gppsqz���
��

��
��

��

GpptqZd??????????

GppXqGppfq :D����������

Zd??????????

in which the comparison morphism h is a surjective group homomorphism by
Lemma 3.1 in [2]. We now show that h is a monomorphism. An element of

GppX �Z Y q is of the form rpx1, y1qs � rpx2, y2qs, with xi P X and yi P Y .



REFLECTIVENESS OF NORMAL EXTENSIONS 11

Suppose that

hprpx1, y1qs � rpx2, y2qsq � prx1s � rx2s, ry1s � ry2sq � 0 P P.

Then rx1s � rx2s � 0 P GppXq and ry1s � ry2s � 0 P GppY q. This means
that there exist x P X and y P Y such that x1 � 0 � x � 0 � x2 � x and
y1� 0� y � 0� y2� y. We consider the pair px� sgpyq, y� tfpxqq P X �Z Y

which givespx1, y1q � px� sgpyq, y � tfpxqq � px1 � x� sgpyq, y1 � y � tfpxqq� px2 � x� sgpyq, y2 � y � tfpxqq� px2, y2q � px� sgpyq, y � tfpxqq.
We conclude that rpx1, y1qs � rpx2, y2qs � 0.

Proposition 4.2. The Grothendieck group functor Gp: CMonÑ Ab preserves
pullbacks of surjective homomorphisms along split epimorphisms.

Proof : We extend Proposition 4.1 to the case of pullbacks of surjective homo-
morphisms along split epimorphisms. Consider the pullback

X �Z Y
πY ,2

πX

����

Ylr

g
����

X
f

,2
Z

s
lr

of a split epimorphism pf, sq along a surjective homomorphism g. Taking kernel
pairs vertically gives a pullback of split epimorphisms, which is preserved by
the Grothendieck group functor. By right exactness of this functor, we get a
diagram of reflexive graphs—in fact, internal groupoids, see for instance [6]—
with their coequalisers as on the left:

GppEqpπXqq
����

,2
GppEqpgqq

����

lr GppEqpπXqq ρ2 ,2

ρ1
����

GppEqpgqqlr

����

GppX �Z Y qLR

GppπY q
,2

GppπX q
����

GppY qlr

Gppgq
����

LR

EqpGppπXqq ,2

����

EqpGppgqqlr

����

GppXq Gppfq
,2
GppZq

Gppsqlr GppX �Z Y q GppπY q
,2

LR

GppY q.LR

lr
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We have to show that its bottom square is a pullback. Thanks to a well
known result for regular categories (see 6.10 in [1]), it suffices to prove that the
diagram consisting of the regular images of the given internal groupoids, so the
bottom diagram of kernel pairs of GppπXq and Gppgq on the right above, is
still a pullback. Note that its upper square is a pullback since it is a regular
pushout [2, Proposition 3.2], while the pair pρ1, ρ2q is jointly monomorphic. So
the outer rectangle and the upper square are pullbacks, thus the bottom square
is also a pullback by Proposition 2.7 in [12].

The proposition above, together with Theorem 2.7, gives then the following:

Theorem 4.3. Special homogeneous surjections are reflective amongst surjec-
tions in CMon.

5. Arbitrary monoids

In this section we prove that special homogeneous surjections are reflective
amongst surjective homomorphisms of monoids. For this purpose we can no
longer apply Theorem 2.7 like in the commutative monoid case, since Propo-
sition 4.1 and Proposition 4.2 are not true for the Grothendieck group functor
Gp: Mon Ñ Gp, as the following counterexample shows. For the case of ar-
bitrary monoids, we show that condition (G7) holds, so that we can apply
Theorem 2.12 to obtain the result.

Example 5.1. Consider the pullback

R

γ
��

δ ,2 Ftx, zu
β

��

Ftx, yu
α

,2 Ftxu
in Mon, where Ftx, yu, Ftx, zu and Ftxu are the free monoids with generators
x and y, x and z, and x, respectively, and α and β are the morphisms deleting y

and z, respectively. Observe that both α and β are split epimorphisms. Then
the elements of R are pairs pσ1, σ2q, where σ1 is a word in x and y, σ2 is a
word in x and z, and σ1 and σ2 contain the same number of letters x. As a
monoid, R is then generated by the pairs py, 1q, p1, zq and px, xq. Since the
pair py, 1q commutes with p1, zq in R, we have that R is isomorphic to the sum
FCtpy, 1q, p1, zqu � Ftpx, xqu, where FCtpy, 1q, p1, zqu is the free commutative
monoid on two generators py, 1q and p1, zq. In other terms, R is isomorphic
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to pN�Nq�N. Applying the Grothendieck group functor we obtain the diagram

GppFtx, zuq
Gppβq

�$?
??

??
??

??
?

GppRq
Gppγq '.

h ,2

Gppδq 07

P
AA

AA

����

�$?
??

??
??

??
?

:D����������
GppFtxuq

GppFtx, yuqGppαq:D����������

in which P is the pullback of Gppαq along Gppβq and h is the induced morphism.
It is immediate to see that GppRq is isomorphic to pZ�Zq�Z, where the three
copies of Z are generated by py, 1q, p1, zq and px, xq, respectively. The map h

is not a monomorphism: for example, the equivalence class represented by the
word rpy, 1qsrpx, xqs�1rp1, zqsrpx, xqsrpy, 1qs�1rpx, xqs�1rp1, zqs�1rpx, xqs
clearly belongs to the kernel of h, but it is not equivalent to the empty word
in GppRq.

We use the admissibility of ΓMon to obtain a variation on Proposition 2.3.5
in [4]. We denote by PtpMonq the category of points in Mon, whose ob-
jects are the split epimorphisms of monoids with a chosen section, and whose
morphisms are pairs of monoid homomorphisms which then form commutative
squares with both the split epimorphisms and their sections.

Lemma 5.2. In a regular category, pulling back along a morphism of regular
epimorphisms preserves regular pushout squares.

Proof : A square is a regular pushout square if and only if it decomposes as a
composite of two squares of regular epimorphisms

A1 ,2,2

����

B1 �B A ,2,2

����

A

����

B1 B1
h

,2,2 B

where the square on the right is a pullback. Given a regular epimorphism
r : C 1 Ñ C and a morphism pf 1, fq : r Ñ h, pulling back the given regular
pushout square along it now yields a regular pushout square over r.
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Lemma 5.3. The functor Triv|PtpMonq : PtpMonq Ñ TExtpMonq preserves coe-
qualisers of equivalence relations.

Proof : Consider a reflexive graph in PtpMonq with its coequaliser

R
r1

,2

f2
��

r2 ,2
A1lr

f 1
��

g
,2,2 A

f

��

S

s2 LR

s1
,2

s2 ,2
B1s1 LR

lr
h

,2,2 B.

s

LR

(‡)

For the sake of simplicity we shall assume that R and S are equivalence rela-
tions. Since the Grothendieck group functor Gp preserves all coequalisers, we
obtain a reflexive graph in PtpGpq with its coequaliser

GppRq ,2

��

,2
GppA1qlr

��

Gppgq
,2,2 GppAq

��

GppSqLR

,2
,2
GppB1qLR

lr
Gpphq ,2,2 GppBq.LR

Since the inclusion Gp Ñ Mon preserves regular epimorphisms and kernel pairs,
this diagram is still a reflexive graph with its coequaliser when considered in the
category PtpMonq: indeed, the comparison GppRq Ñ EqpGppgqq is a regular
epimorphism, and similarly for GppSq Ñ EqpGpphqq.

Now we pull back along ηB, ηB1 and ηS to obtain the diagram

RTriv

Trivpf2q
��

,2 η�SpEqpGppgqqq ,2

��

,2
A1

Triv
lr

Trivpf 1q
��

,2 ATriv

Trivpfq
��

S

LR

S

LR

,2
,2
B1LR

lr
h

,2,2 B.

LR

Using that, in the category of groups, any square of regular epimorphisms
between split epimorphisms is a regular pushout, via Lemma 5.2 it is not
hard to see that the dotted arrows in this diagram are regular epimorphisms.
Since, moreover, pullbacks preserve kernel pairs, we see that Trivpfq, being
the coequaliser of its kernel pair, is also the coequaliser of the reflexive graph
Trivpf 2qÑ Trivpf 1q.
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P ,2

�'

��

,2
A1

FF
FF

�'EE
EE

EE
EE

EE
EE

lr

f 1
��

g
,2,2 A

�'EE
EE

EE
EE

EE
EE

f

��

EqpGppgqq ,2

��

,2
GppA1qlr

Gppf 1q
��

Gppgq
,2,2 GppAq

Gppfq
��

Eqphq
�'EE

EE
EE

EE
EE

E

LR

,2
,2
B1

�'EEEEEEEEEEE

s1
LR

lr h ,2,2 B

�'EE
EE

EE
EE

EE
EE

s

LR

EqpGpphqq
LR

,2
,2
GppB1q

LR

lr
Gpphq ,2,2 GppBq

LR

Figure 2. Reduction to equivalence relations

Proposition 5.4. Given a reflexive graph and its coequaliser in PtpMonq such
as in Diagram (‡) where f 2 and f 1 are special homogeneous surjections, also f

is a special homogeneous surjection.

Proof : We first reduce the problem to the situation where R and S are the
kernel pairs of g and h, respectively. To do so, it suffices to note—see Figure 2—
that the pullback P of Eqphq, EqpGpphqq and EqpGppgqq is precisely the kernel
pair of g, so that the induced split epimorphism Eqpgq Ñ Eqphq is a trivial
extension, being a pullback of a fibration in Gp.

We now find the result as a consequence of the fact that special homoge-
neous split epimorphisms are precisely split epimorphic trivial extensions and
Lemma 5.3, which tells us that

f � coeqppr1, s1q, pr2, s2qq � coeqpppr1qTriv, s1q, ppr2qTriv, s2qq � Trivpfq,
so f is a trivial extension.

The following result shows that condition (G7) holds for monoids.

Theorem 5.5. The category of special homogeneous surjections is closed under
coequalisers of reflexive graphs of surjective homomorphisms of monoids.

Proof : Consider a reflexive graph of surjections of monoids and its coequaliser
in Mon as in the solid part of the diagram in Figure 3. We wish to prove
that, if f 2 and f 1 are special homogeneous surjections, then also f is a special
homogeneous surjection.
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Eqpf 2q
�� ��

,2
,2
Rlr

��

f2
,2,2

��

S

�� ��

Eqpf 1qLR

g

��

,2
,2
A1lr

LR

f 1
,2,2

g

����

B1LR
h

����

Eqpfq ,2
,2
Alr

f
,2,2 B

Figure 3. Closedness of special homogeneous surjections under
coequalisers of reflexive graphs

Taking kernel pairs to the left, we want to use Proposition 5.4 together with
the fact that special homogeneous surjections are precisely normal (= central)
extensions to show that the kernel pair projections of f are trivial extensions.
For this argument to be valid, we only need to show that g is a surjective homo-
morphism. This follows from the fact that the coequaliser of Eqpf 2qÑ Eqpf 1q
is an internal groupoid on A. Indeed, by Proposition 5.4, it is a special homo-
geneous reflexive graph. Thanks to Proposition 4.3.7 in [5], it suffices then to
show that the kernels of the projections commute. The kernels of the projecti-
ons of Eqpf 1q commute; thanks to Proposition 2.3.10 in [5], the kernels of the
projections of the coequalizer of Eqpf 2qÑ Eqpf 1q are the regular images of the
ones of Eqpf 1q, and then they also commute, thanks to Proposition 1.6.4 in [2].
Hence the regular image of this internal groupoid is an equivalence relation, so
a kernel pair, with coequalizer f , which makes it isomorphic to Eqpfq.

Theorem 2.12 now implies our last result.

Theorem 5.6. Special homogeneous surjections are reflective amongst surjec-
tive monoid homomorphisms.
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