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Abstract: This paper studies injectivity for continuous maps between T0-spaces.
The new characterizations obtained establish a parallelism between characteriza-
tions of injective monotone maps between ordered sets and of injective continuous
maps between T0-spaces.
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1. Introduction
Injective T0-spaces were characterized by Dana Scott in 1970 [11] as those

T0-spaces which are continuous lattices with respect to their specialization
order. The corresponding fibrewise problem, that is to characterize the con-
tinuous maps which are injective, has proved to be a difficult task. In [5]
it was shown that, as injective T0-spaces are the retracts of powers of the
Sierpinski space, injective continuous maps between T0-spaces are the re-
tracts of partial products of the Sierpinski space. Moreover, recently in [2]
we characterized them using a fibrewise way-below relation, showing a way of
considering a fibrewise notion of continuous lattice. However, a direct topo-
logical characterization of these maps was still missing. As in many other
problems in topology, an analysis of the corresponding results in the context
of ordered sets may give some guidance towards the solution of the problem,
since the category of finite orders and monotone maps is isomorphic to the
category of finite T0-spaces and continuous maps.

In a category C, an object X is said to be injective if for every extremal
monomorphism m : M → Y and every morphism g : M → X there exists an
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extension g of g to Y , so that the diagram

M
g
//

m
��

X

Y
g

>>

is commutative. A morphism f : X → B is injective if it is an injective object
in the comma category C ↓ B; that is, for every extremal monomorphism
m : M → Y , h : Y → B, g : M → X making the following diagram

M
g
//

m
��

X

f
��

Y
h
// B

commute, there exists an extension g of g to Y over B: g m = g and f g = h.
We recall that, in the category Ord of ordered sets and monotone maps,

an ordered set is injective if, and only if, it is complete. For monotone maps
injectivity can be characterized as follows.
Theorem A. [12] A monotone map f : X → B is injective in Ord ↓ B if
and only if it satisfies the following conditions:

(I) Xb = f−1(b) is complete, for every b ∈ B;
(II) f is a fibration (that is for every x ∈ X and b ∈ B with f(x) ≤ b
{x′ ∈ Xb |x ≤ x′} has a minimum element), and a cofibration (=dual
of fibration).

Theorem B. [12] A monotone map f : X → B is injective in Ord ↓ B if
and only if it satisfies the following conditions:

(0) f is convex (that is, for all x, y ∈ X, b ∈ B with x ≤ y and f(x) ≤
b ≤ f(y), there exists z ∈ Xb such that x ≤ z ≤ y).

(I) Xb = f−1(b) is complete, for every b ∈ B;
(III) f is homogeneous (that is for all b ≤ b′ ∈ B, (xi)i∈I and (x′i)i∈I

in Xb and Xb′ respectively, with xi ≤ x′i for every i,
∨
xi ≤

∨
x′i,

with these joins calculated in the fibres) and cohomogeneous (=dual of
homogeneous).

In this paper we present characterizations of injective continuous maps
that resemble the results of Ord. While the characterization of Theorem 3.7
has no direct connection to Theorems A and B, Theorems 4.6 and 5.3 are
topological instances of Theorems A and B. Indeed, in topology condition (I)
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translates into the condition (1) Xb is continuous lattice for each b ∈ B, used
throughout the paper, while convexity for monotone maps is categorically
characterized as exponentiability, used in our Theorem 5.3. For finite spaces,
both conditions (2) and (2′′) coincide with f being a fibration in the sense
of condition (II), while condition (3′) translates into homogeneity of f . (See
also [3], where our focus was on the parallelism between these conditions.)

Injective continuous maps are part of a weak factorization system as ex-
plained in [1, 2]. They played a crucial role in the development of the theory
of lax orthogonal factorization systems presented in [8], and we hope that
the novelty of our approach sheds new light to the study of these maps.

2. From injective spaces to injective continuous maps
In this section we review existing results that extend to continuous maps

well-known properties of injective T0-spaces.
As it is well-known, a T0-space is injective if and only if it is a retract

of a power of the Sierpinski space S. The fibrewise version of this result,
which extends it, can be found in [5]. It uses the fact that, for every
continuous map f : X → B between T0-spaces, there is an embedding
α : X → (

∏
Top(X,S) S) × B defined by πg · α = g, for any g ∈ Top(X,S),

and πB · α = f .

Theorem 2.1. A continuous map f : X → B between T0-spaces is injective
if, and only if, it is a (fibrewise) retract of πB : (

∏
Top(X,S) S)×B → B, that

is there exists a retraction r of α making the diagram

X α
//

f
**

(
∏

Top(X,S) S)×B

πB
tt

r

qq

B

commute.

In [5] there is another characterization of injective continuous maps in Top0

that will be useful in the sequel, and that focus on exponentiability. In order
to present it we first recall the notions of exponentiable morphism and of
partial product (see [10] and [9] for details).

Definitions 2.1. In a category C with finite limits,

(1) a morphism f : X → B is said to be exponentiable if the pullback-functor
f ×B − : C ↓ B → C ↓ B has a right adjoint;
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(2) given a morphism f : X → B and an object Z, the partial product of Z
over f is a pair (pf : P (f, Z) → B, ev : P (f, Z) ×B X → Z) such that,
given any other pair (g : Y → B, e : Y ×B X → Z), there is a unique
morphism ẽ : Y → P (f, Z) making the following diagram commute:

Y ×B X

f̄

��

e

rr
ẽ×B1vv

ḡ

,,Z P (f, Z)×B Xev
oo //

f̂

��

X

f

��

Y
ẽ

uu

g

,,P (f, Z) pf
// B

(2.1)

From results of [10, 9, 5] it follows that:

Theorem 2.2. Given a continuous map f : X → B in Top0, the following
conditions are equivalent:

(i) f is exponentiable;
(ii) the partial product of of the Sierpinski space S over f exists.

We denote by O(X) the topology of the topological space X and by Xb the
fibre f−1(b) of the map f : X → B, for every b ∈ B. Here, in the Sierpinski
space S = {0, 1}, {1} is the non-trivial open subset. Recall, from [10] and
[5], that the partial product of S over f : X → B can be described as:

P (f, S) = {(b, U) | b ∈ B, U ∈ O(Xb)}, pf(b,U) = b,

and U ⊆ P (f, S) is open whenever U is saturated, binding, with the finite
union property, where:

– U is saturated if (b, U) ∈ U and U ⊆ V ∈ O(Xb) implies (b, V ) ∈ U ;
– U is binding if, for every open subset W of X, {b ∈ B | (b,Wb) ∈ U} is open

in B;
– U has the finite union property if, for any b ∈ B and any subset Å of O(Xb),

if (b,
⋃
Å) ∈ U then there is a finite subset F ⊆ Å with (b,∪F) ∈ U .

In this case , given any map g : Y → B and any e : Y ×B X → S, it is easy
to give a description of the map ẽ which corresponds to e by the universal
property of the partial product. Indeed, we have that (for details, see Remark
1.4 in [4]):

ẽ(y) =
(
g(y), g(f

−1
(y) ∩ e−1(1))

)
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In particular, if g = 1B and e : X → S is the characteristic map of an open
set V of X, then

ẽ(b) = (b,Xb ∩ V )

Proposition 2.3 ([5]). Let f : X → B be a continuous map in Top0.

1. If f is injective, then it is exponentiable.
2. If f is exponentiable, then:

a. the continuous map pf : P (f, S)→ B is injective;
b. there is an embedding ε : X → P (pf , S) making the diagram commuta-

tive:

X
ε //

f ��

P (pf , S)

ppfzz
B

(2.2)

In the diagram, ε(x) = (f(x),Ox), where Ox = {U ∈ O(Xf(x)) |x ∈ U},
and ppf (b,U) = b.

These results lead to the characterization of injective continuous maps of
[5]:

Theorem 2.4. A continuous map between T0-spaces is injective if and only
if it is a (fibrewise) retract of a partial product of S.

3. Continuous lattices suffice
In this section we will use results of [6] to obtain new characterizations of

injective continuous maps. We start by presenting a theorem that subsumes
the arguments used in the proof of Theorem 1.2 of [6].

Proposition 3.1. Given an adjunction F a G : B → A, with unit η and
counit ε, and classes M and N of embeddings in A and B respectively, with
F (M) ⊆ N , then G(B) is M-injective provided that B is N -injective.

Proof : Assume that B is N -injective and let m : A → A′ belong to M and
f : A→ G(B) be any A-morphism. Since F (m) : F (A)→ F (A′) belongs to
N , there exists f : F (A′) → B such that f · F (m) = εB · F (f). Therefore
G(f) · ηA′ ·m = f as claimed.
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Theorem 3.2. Given a pair of adjunctions < F,G, η, ε > and < G,H, σ, µ >

A

F //

H
//

⊥

⊥
BGoo

and classesM and N of embeddings in A and B, respectively, with F (M) ⊆
N and G(N ) ⊆M, the following conditions are equivalent, for an A-object
A with ηA ∈M:

(i) A is M-injective;
(ii) H(A) is N -injective and ηA is a section.

Proof : (i) ⇒ (ii): From Proposition 3.1 it follows that H(A) is N -injective;
moreover, M-injectivity of A, together with ηA ∈ M, gives the desired re-
traction for ηA.

(ii) ⇒ (i): Proposition 3.1 assures that GH(A) is M-injective. To show
that A is M-injective, we show that µA : GH(A)→ A is a retraction, using
the retraction ρ : GF (A) → A of ηA: consider the mate ρ̂ : F (A) → H(A)
via the second adjunction and the commutative diagram

A
ηA // GF (A)

ρ
//

G(ρ̂) %%

A

GH(A)

µA

;; (3.3)

The category PsTop of pseudotopological spaces is cartesian closed (in
fact, a quasi-topos), hence for every pseudotopological space B the functor

ΠB : PsTop → PsTop ↓ B, with ΠB(X) = (X × B πXB−→ B) and ΠB(f) =
f × 1B, has a right adjoint S : PsTop ↓ B → PsTop. We recall that, for
every f : X → B,

S(f) = {s : B → X continuous | f · s = 1B}.

(For details on this adjunction we refer to [10], while a description of the
pseudotopology of S(f) can be found in [7].) Since the functor ΠB is the right
adjoint to the forgetful functor Dom : PsTop ↓ B → PsTop, with Dom(f :
X → B) = X and Dom(h) = h, we can apply Theorem 3.2, considering in
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both PsTop and PsTop ↓ B the class H of topological embeddings (that is,
embeddings between topological spaces):

PsTop ↓ B

Dom //

S
//

⊥

⊥
PsTopΠB

oo (3.4)

Theorem 3.3. Let X and B be topological spaces. A continuous map f :
X → B is H-injective in PsTop if and only if:

(a) the map 〈1X , f〉 : (X, f)→ (X ×B, πXB ) is a section in PsTop ↓ B;
(b) S(f) is H-injective in PsTop.

Proof : We apply Theorem 3.2 to the adjunctions of (3.4) observing that
η(X,f) = 〈1X , f〉.
Remarks 3.1. 1. If X and B are topological T0-spaces and the continuous

map f : X → B is injective in Top0 ↓ B, then the Theorem says that
〈1X , f〉 is a section in Top0 ↓ B. Moreover, if S(f) is a topological T0-
space, then f is injective in Top0 ↓ B provided that 〈1X , f〉 is a section
and S(f) is a continuous lattice.

2. When f : X → B is injective in PsTop ↓ B, diagram (3.3) provides
a section of the evaluation map ev : S(f) × B → X over B. Indeed,
if ρ : X × B → X is a retraction of 〈1X , f〉 in PsTop ↓ B, it defines
ρ̂ : X → S(f) so that ev · 〈ρ̂, f〉 = 1X .

In parallel with the pseudotopological space S(f), for a continuous map f :
X → B between T0-spaces we consider the topological space of continuous
sections of f

Sec(f) = {s : B → X continuous | f · s = 1X}
endowed with the subspace topology induced by the embedding

Sec(f)
σ //
∏
b∈B

Xb , with σ(s) = (s(b))b∈B.

Lemma 3.4. The identity map ι : S(f)→ Sec(f) is continuous.

Proof : For any b ∈ B, the evaluation map ev : S(f)×B → X maps S(f)×{b}
into Xb, so that its restriction and corestriction

S(f)
evb // Xb , with evb(s) = s(b),
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is continuous. Then, from the equality

( S(f)
evb // Xb ) = ( S(f)

ι // Sec(f)
σ //
∏
b∈B

Xb
πb // Xb ), b ∈ B,

and the fact that σ is an embedding and πb are product projections, it follows
that ι is continuous.

Proposition 3.5. If f : X → B is injective in Top0 ↓ B, then:

1. For each b ∈ B, Xb is a continuous lattice.
2. For any set of continuous sections of f , its pointwise supremum is contin-

uous.

Proof : 1. Injective maps are pullback-stable, hence Xb → 1 is injective in
Top0 ↓ 1, which is equivalent to injectivity of Xb in Top0, that is Xb is a
continuous lattice.

2. Since each fibre Xb is a continuous lattice, the product
∏
b∈B

Xb is a

continuous lattice. Given a set S ⊆ Sec(f), the map š : B → X which
assigns to each b ∈ B the join

∨
{s(b) | s ∈ S} in Xb is a section of f . To

show that š is continuous, we consider the spaces S0 = S ] {0}, with the
topology generated by {{s, 0}, s ∈ S}, and S1 = S]{0, 1}, with the topology
generated by {{s, 0, 1}, {0}, s ∈ S}. In Z = B × S0 and Y = B × S1 we
consider the topologies generated by U × W , U ⊆ B, W ⊆ Sn, n = 0, 1,
such that either both are open or W = {0}. The inclusion ζ : Z → Y is a
topological embedding. We consider now maps h : Z → X and k : Y → B,
with h(b, s) = s(b) for every s ∈ S, h(b, 0) =

∨
s(b), and k the projection

over B. The following diagram

Z
h //

ζ
��

X

f
��

Y
k
// B

is commutative, k is continuous since the topology on Y is finer than the
product topology, and h is also continuous as we show next. For any open
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subset U of X,

h−1(U) = {(b, s) | s(b) ∈ U} ∪ {(b, 0) |
∨

s(b) ∈ U}

=
⋃
s∈S

(s−1(U)× {s, 0}) ∪ ({b |
∨

s(b) ∈ U} × {0})

(because U is upwards-closed), hence h−1(U) is open in Z. Injectivity of f
guarantees the existence of a continuous map d : Y → X such that f · d = k
and d · ζ = h. Now it is easy to check that š is the composition of the
continuous maps

B ∼= B × {1} // Y
d // X

hence it is continuous as claimed. In fact, for any b ∈ B and s ∈ S, in Y
(b, s) ≤ (b, 1) ≤ (b, 0) for all s ∈ S, and so, from

s(b) = d(b, s) ≤ d(b, 1) ≤ d(b, 0) =
∨

s(b) = š(b)

we conclude that d(b, 1) =
∨
s(b).

This way we obtain that Sec(f) is closed under suprema in
∏
b∈B

Xb.

If the fibres of f : X → B are non-empty continuous lattices, we can define
the maximum section s and the minimum section s by s(b) =

∨
Xb and

s(b) =
∧
Xb, with join and meet calculated in the fibre Xb. (When necessary

to stress that they are sections of f , we will use sf and sf .)

Proposition 3.6. Let f : X → B be a continuous surjective map in Top0

such that its fibres are continuous lattices. Then:

1. f is open if and only if the maximum section of f is continuous;
2. f is closed if and only if the minimum section of f is continuous.

Proof : 1. If U ⊆ X is open, hence upwards-closed, then it is easy to check
that s−1(U) = f(U), and the result follows.

The proof of 2. is analogous, arguing with closed subsets instead of open
ones.

From the previous proposition we can conclude immediately that every
injective continuous map is closed. That it is also open is a consequence of
condition (2) of next theorem.

Theorem 3.7. A continuous map f : X → B is injective in Top0 ↓ B if
and only if it satisfies the following conditions.
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(1) For any b ∈ B, Xb is a continuous lattice.
(2) The morphism 〈1X , f〉 : (X, f)→ (X ×B, πB) is a section over B.
(3) Sec(f) is a continuous lattice.

Proof : We have already seen that conditions (1)-(3) are necessary for the
injectivity of f . Using Theorem 3.2, to conclude that f is injective when such
conditions hold, it is enough to prove that Sec(f) is the object S(f) of sections
of f in PsTop, which follows from Lemma 3.4 once we have shown that
the identity map ι′ : Sec(f) → S(f) is continuous, or, equivalently, that the
evaluation map e : Sec(f)×B → X is continuous. Let (t, y) ∈ Sec(f)×B and
U be an open subset of X with x = e(t, y) = t(y) ∈ U . Since t =

∨
{s | s� t}

in Sec(f), and then also t(y) =
∨
{s(y) | s(y)� t(y)} inXy, there exists s� t

such that s(y) ∈ U . Therefore ∅ 6= s(B) ∩ U is an open subset of s(B), and
then its image under f is an open subset of B, since f is an open map (in fact
a homeomorphism when restricted to s(B)∩U). Now, V := ↑↑s×f(s(B)∩U)
is open in Sec(f)×B, (t, y) ∈ V and e(V ) ⊆ U since, for any s′ � s and any
b = f(x′) with x′ ∈ U and x′ = s(b′) for some b′ ∈ B,

e(s′, b) = s′(b) = s′(f(x′)) ≤ s(f(x′)) = s(f(s(b′))) = s(b′) = x′ ∈ U
and U is upwards-closed.

The arguments used prove in fact the following

Corollary 3.8. If f : X → B is injective in Top0 ↓ B, then S(f) and Sec(f)
are isomorphic, yielding a (co)restriction of the functor S : PsTop ↓ B →
PsTop to S : Inj(Top0 ↓ B)→ Inj(Top0)

∼= ContLat.

4. From injective monotone maps to injective continuous
maps

Our next goal is to obtain a characterization that avoids Condition (2) of
Theorem 3.7, so that it uses only the ‘internal’ properties of f : X → B.
First we present some auxiliary results.

Proposition 4.1. Let f : X → B be a continuous map between T0-spaces.
Then, for the following conditions, (2)⇒ (2′)⇒ (2′′).

(2) The morphism 〈1X , f〉 : (X, f)→ (X ×B, πB) is a section over B.
(2′) for each x ∈ X and b ∈ B with f(x) ≤ b, there exists xb ∈ Xb such

that x ≤ xb and, for any net (xλ)λ in Xb, if (xλ)λ converges to x then
(xλ)λ also converges to xb.
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(2′′) for x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum
element xb.

Proof : (2)⇒ (2′): Let ρ : X×B → X be a retraction of 〈1X , f〉 over B. For
x ∈ X and b ∈ B with f(x) ≤ b, let xb := ρ(x, b). Then x = ρ(x, f(x)) ≤
ρ(x, b) = xb. Given a net (xλ)λ in Xb with xλ → x, ρ(xλ, b)→ ρ(x, b) = xb.

(2′) ⇒ (2′′): Let x′ be in Xb with x′ ≥ x. Applying condition (2′) to the
constant net x′, we get that such a net x′ converges also to xb, which means
x′ ≥ xb.

Proposition 4.2. If f : X → B is injective in Top0 ↓ B, then:

(3′) for any directed set Λ and any I-indexed family of nets ((xiλ)λ ∈ Λ)i∈I,
if (xiλ)λ converges to xi, f(xiλ) = bλ and f(xi) = b, then (

∨
i x

i
λ)λ

converges to
∨
i x

i.

Proof : Given ((xiλ)λ)i∈I as in (3′), define the topological spaces Λ∞ = Λ ]
{∞}, with basic open sets {λ} and ↑ λ ∪ {∞}, for λ ∈ Λ, and I0 = I ] {0},
with the topology generated by {i, 0}, i ∈ I, as in the proof of Proposition
3.5. Let Y = Λ∞ × I0 and Z = Y \ {(∞, 0)}. The maps h : Z → X,
with h(λ, i) = xiλ, h(∞, i) = xi and h(λ, 0) =

∨
i x

i
λ, and k : Y → B, with

k(λ, i) = k(λ, 0) = bλ and k(∞, i) = k(∞, 0) = b, are continuous and make
the following diagram

Z
h //

ζ
��

X

f
��

Y
k // B

commute, where ζ is the inclusion. Hence, there exists a diagonal d : Y → X

with f · d = k and d · ζ = h. Since d is continuous and (λ, 0)
λ
// (∞, 0) ≥

(∞, i), we have

d(λ, 0) =
∨
i x

i
λ λ

// d(∞, 0) = x ≥ d(∞, i) = xi.

Hence x ≥
∨
i x

i and then
∨
i x

i
λ λ

//
∨
i x

i as claimed.

Proposition 4.3. Let f : X → B be a continuous map between T0-spaces.
Then condition (3′) of Proposition 4.2 implies:

(3′′) Given a net (xλ)λ in X, if (f(xλ))λ converges to b ∈ B, then limxλ∩Xb

has a top element xΛ.
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Proof : We consider Λ∞ as in the proof of Proposition 4.2 and the inclusion
β of its (discrete) subspace Λ. We define h : Λ → X by h(λ) = xλ, and
k : Λ∞ → B by k(λ) = f(xλ) and k(∞) = b. The maps h and k are
continuous, f ·h = k ·β and so there is a diagonal d : Λ∞ → X which gives a
limit point d(∞) of (xλ)λ in the fibre Xb. Now, to see that lim xλ ∩ Xb has a
top element, we apply condition (3′) of Proposition 4.2 to I := limxλ ∩ Xb,
xiλ := xλ and xi := i for every i ∈ I.

Proposition 4.4. If ζ : (X, f)→ (Z, g) is an embedding in Top0 ↓ B, with
f : X → B injective in Top0 ↓ B, then ζ has a largest continuous retraction
r : Z → X over B.

Proof : By injectivity of f , the set

R := {r | r is a continuous retraction of ζ in Top0 ↓ B}

is non-empty. We consider the topological space R0 = R ] {0} as before
(that is, with basic open sets {r, 0}, r ∈ R, so that r ≤ 0 in the specialization
order), and the embedding ζ0 : Z̃ = (Z × R) ∪ (X × {0}) → Z × R0. We
define h : Z̃ → X by h(z, r) = r(z) and h(x, 0) = x, for x ∈ X, z ∈ Z and
r ∈ R, which is easily checked to be continuous. Since the diagram

Z̃
h //

ζ0
��

X

f
��

Z ×R0

g·πR0 // B

is commutative, injectivity of f : X → B guarantees the existence of a
continuous map h : Z ×R0 → X such that h · ζ0 = h and f · h = g · πR0

. The
continuous map r : Z → X with r(z) = h(z, 0) is the required retraction:
r(ζ(x)) = h(x, 0) = x, and, moreover, since r ≤ 0 for each r ∈ R, one has
r(z) = h(z, r) ≤ h(z, 0) = r(z).

Remark 4.1. If f : X → B is injective in Top0 ↓ B, Proposition 4.4 says,
in particular, that 〈1X , f〉 : X → X × B has a largest continuous retraction
r : X×B → B over B. Note that, according to Proposition 4.1 and its proof,
for all x ∈ X and b ∈ B with f(x) ≤ b, r(x, b) = xb for xb as in condition
(2′).
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Proposition 4.5. Let f : X → B be a continuous map between T0-spaces
satisfying

(1) Xb is a continuous lattice.
(2′′) For x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum

element xb.

Then the largest continuous retraction rb : X → Xb of the inclusion of Xb in
X given by Proposition 4.4 is defined by

rb(x) = inf{x′ ∈ Xb |x ≤ x′} =

{
xb if f(x) ≤ b,
maxXb otherwise.

Proof : Let x ∈ X with f(x) ≤ b: then x ≤ xb and rb(x) ≤ rb(xb) = xb.
The map r : {x} ∪ Xb → Xb with r(x) = xb and the identity otherwise is
continuous. By the injectivity of Xb, we can extend r to X, obtaining a
retraction r̃ : X → Xb, with xb = r̃(x) ≤ rb(x). Consequently, xb = rb(x). If
f(x) � b, there exists in B an open neighbourhood of f(x) not containing b
and then x is open in the induced topology on {x} ∪Xb. As a consequence,
the map r : {x} ∪ Xb → Xb with r(x) = xb = maxXb and the identity
otherwise is continuous (any open set in Xb contains xb). The result follows
as in the previous case.

Theorem 4.6. A continuous map f : X → B is injective in Top0 ↓ B if
and only if it satisfies the following conditions:

(1) For each b ∈ B, Xb is a continuous lattice;
(2′) For each x ∈ X and b ∈ B with f(x) ≤ b, there exists xb ∈ Xb such

that x ≤ xb and, for any net (xλ)λ in Xb, if (xλ)λ converges to x then
(xλ)λ also converges to xb.

(3′′) Given a net (xλ)λ in X, if (f(xλ))λ converges to b ∈ B, then limxλ∩Xb

has a top element xΛ.
(4) For each x ∈ X and U open neighbourhood of x, there exists a con-

tinuous section s of f and an open neighbourhood W of f(x) such
that †s(W ) = {x′|f(x′) ∈ W,x′ ≥ s(f(x′))} is a neighbourhood of x
contained in U .

Proof : Let f : X → B be injective in Top0 ↓ B. Theorem 3.7 and Proposi-
tions 4.1, 4.3 and 4.4 guarantee that (1), (2′) and (3′′) are valid. It remains
to show (4). Let x0 ∈ X and U be an open neighbourhood of x0. Since
U ∩ Xf(x0) is open in Xf(x0) and x0 =

∨
{x ∈ Xf(x0) |x � x0}, there exists

x̃ ∈ U ∩ Xf(x0) such that x̃ � x0. Let ρ : X × B → X be a retraction of
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〈1X , f〉, let ρ̂ : X → S(f) be its mate, and denote the section ρ̂(x̃) : B → X
of f by s̃. By definition, s̃(f(x̃)) = x̃. We will show that W := f(s̃(B) ∩ U)
is the required open neighbourhood of f(x0):

− W is an open subset of B (as shown in the proof of Theorem 3.7).
− †s̃(W ) ⊂ U , since U is upwards-closed on each fibre.
− To show that †s̃(W ) is a neighbourhood of x0, we recall from Remark

3.1.2 that ρ induces an embedding 〈ρ̂, f〉 : X → S(f)×B. Since S(f) is a
continuous lattice, ↑↑s̃ is an open subset of S(f). Then V := ↑↑s̃×W is an
open subset of S(f)×B. Moreover:
− (ρ̂(x0), f(x0)) ∈ V , since x̃� x0 implies ρ̂(x̃) = s̃� ρ̂(x0) and f(x0) ∈
W , and

− 〈ρ̂, f〉−1(V ) ⊆ †s̃(W ), since if, for x ∈ X, ρ̂(x)� s̃ and f(x) ∈ f(s̃(B) ∩
U), then f(x) = f(x′) with x′ = s̃(f(x′)) ∈ U ; then x = ρ̂(x)(f(x)) ≥
ρ̂(x′)(f(x)) = x′ = s̃(f(x′)) and f(x′) ∈ f(s̃(B) ∩ U) = W .

To prove the converse, we assume that the conditions (1)-(4) are satisfied,
and show that f : X → B is a retraction of πB :

∏
b∈BXb × B → B; since

the latter map is injective, according to Corollary 1.6 of [5] because
∏

b∈BXb

is a continuous lattice by (1), we can conclude that f is injective. For any
x ∈ X and b ∈ B, let xb = rb(x) as defined in Proposition 4.5. Consider the
map ν : X →

∏
b∈BXb ×B defined by ν(x) = ((xb)b∈B, f(x)).

− ν is continuous: πB · ν = f is continuous and, for π′b :
∏

b∈BXb×B → Xb,
π′b · ν is the largest retraction rb of the embedding Xb → X as constructed
in Proposition 4.5, for every b ∈ B, hence continuous.

− ν has a retraction r :
∏

b∈BXb × B → X: for each (s, b) ∈
∏

b∈BXb × B,
define

r(s, b) =
∧
{xΛ | (xλ)λ∈Λ in s(B) with f(xλ)→ b}

(where xΛ is as in condition (3′′)). First we observe that r(s, b) ≤ s(b)
since among the (xλ)λ we may consider the constant net s(b). Secondly, r
is continuous: given (s0, b0) ∈

∏
b∈BXb×B and an open neighbourhood U

of x0 := r(s0, b0), let s and W be as in (4), and V := int(†s(W )) ⊆ U with
x0 ∈ V . Consider the subspace A = {b|b ∈ f(V ), s0(b) /∈ V } of B. We
want to show that b0 is not in the closure cl(A) of A. Suppose b0 ∈ cl(A):
then there exists a net (bλ)λ in A with bλ → b0. From (3′′), it follows that
limxλ := s0(bλ) ∩Xb0 has a top element xΛ ≥ r(s0, b0) = x0, by definition
of r. This means that xλ → x0, hence there is a queue contained in V ,
neighbourhood of x0. But this is impossible since any xλ /∈ V . Hence,
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b0 /∈ cl(A) and we can take in B an open neighbourhood O of b0 with
O ∩ A = ∅.

Now Vb, defined by V ∩Xb in case b ∈ f(V )∩O and Xb otherwise, is an

open subset of Xb. Since f is open by (4), Ṽ :=
∏

b∈B Vb × (f(V ) ∩ O) is
an open subset of

∏
b∈BXb ×B such that:

(a) (s0, b0) ∈ Ṽ , since for any b, s0(b) ∈ Vb and b0 = f(x0) ∈ f(V ) ∩O.
(b) r(Ṽ ) ⊆ U : if (t, c) ∈ Ṽ , then t(b) ∈ V and c ∈ f(V )∩O. So, given any

net (bλ)λ in f(V )∩O with bλ → c, the net xλ := t(bλ) ∈ Vbλ ⊆ †s(W ),
hence xλ ≥ s(bλ) and s(bλ) → s(c), thanks to the continuity of s.
Therefore also xλ → s(c). By definition of r, r(t, c) ≥ s(c), then,
since c ∈ W , r(t, c) ∈ †s(W ) ⊂ U.

Finally, r ·ν = 1X : Indeed, if we denote by sx : B → X the (not necessarily
continuous) section of f with sx(b) = xb, then r · ν(x) = sx(f(x)) =
x. To check the equality we consider any net (xλ)λ in sx(B), that is,
xλ = xf(xλ), with f(xλ) → f(x), and we need to show that xλ → x.
Let Λ′ = {λ ∈ Λ | f(xλ) ≥ f(x)} and Λ′′ = Λ \ Λ′. If λ ∈ Λ′, then
xλ = xf(xλ), and if λ ∈ Λ′′ then xλ = maxXf(xλ) by definition of xb. To
show the convergence of (xλ)λ∈Λ it is enough to show that, in case Λ′

and/or Λ′′ define subnets, (xλ)λ∈Λ′ and/or (xλ)λ∈Λ′′ converge to x. For
λ ∈ Λ′, xλ = xf(xλ) ≥ x by definition of xf(xλ), hence xλ → x. Now, let
λ ∈ Λ′′. Since f is open by (4), its largest section s is continuous. Hence,
for λ ∈ Λ′′, xλ = s(f(xλ))→ s(f(x)) ≥ x, and so xλ → x.

5. Injectivity via exponentiability
Here we characterize injective continuous maps using exponentiability. Re-

call from Proposition 2.3 that, if f : X → B is exponentiable in Top0 ↓ B,
then f is embeddable in a partial product over S:

X
ε //

f   

P

p~~
B

with P = P (pf , S), and p = ppf injective.
This embedding ε : X → P is given by: ε(x) = (f(x), {U open in f−1(f(x))|x ∈

U}).
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Lemma 5.1. Let f : X → B be an exponentiable map and b ∈ B such that

(1) Xb is a continuous lattice;
(2′′) for x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum

element xb.

Then ε(xb) = ε(x)b = min {t ∈ Pb|ε(xb) ≤ t}.

Proof : Consider f(x) ≤ b. We have to prove that ε(xb) is the minimum
element ε(x)b of {t ∈ Pb|ε(xb) ≤ t} in Pb, which exists by Theorem 3.7 and
Proposition 4.1, since p is injective.

By definition xb ≥ x, so that by continuity ε(xb) ≥ ε(x)b. Suppose now
ε(xb) 6= ε(x)b := (b,U). As a consequence there exists a W open in Xb s.t.
xb ∈ W and W /∈ U .

Consider the maximal retraction rb : X → Xb of Proposition 4.5 and the
open set r−1(W ) = W . Since rb(x) = xb, we get x ∈ W.

Let χW : X → S be the characteristic map of W . In correspondence to
χW there exists, by the universal property of the partial product P (f, S), a
continuous map χ̃W : B → P (f, S)

X
χW

ss

f

��

��

S P (f, S)×B X

f̂

��

ev
oo // X

f

��

B
χ̃W

xx

1B

��
P (f, S) pf

// B

with χ̃W (b′) = (b′, Xb′ ∩W ), for any b′ ∈ B.
Consider now the subspace {f(x), b} of B, homeomorphic to the Sierpinski

space S, and its inclusion γ in B. Let α : {f(x), b} → P be the continuous
map given by α(f(x)) = ε(x) and α(b) = ε(x)b. Corresponding to α and the
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pullback of γ = pα along pf :

pf
−1{f(x), b}

α

vv
pf

��

γ̄

''

S P ×B P (f, S)

p̂f

��

ẽ
oo // P (f, S)

pf

��

{f(x), b}
α

uu

γ

((
P p

// B

there exists a continuous map α : pf
−1{f(x), b} → P ×B P (f, S) with

α(f(x), A) = (ε(x), A) and α(b, A) = (ε(x)b, A).

Consequently the map β := evα : pf
−1{f(x), b} → S is such that

β(f(x), A) = 1 ⇔ x ∈ A and β(b, A) = 1 ⇔ A ∈ U .
β−1(1) is an open subset D ⊆ pf

−1{f(x), b}, and then there is an open set
D′ of P (f, S) with D′ ∩ pf−1{f(x), b} = D.

Now, since x ∈ Xf(x) ∩W , this means that β(f(x), Xf(x) ∩W ) = 1, i.e.

(f(x), Xf(x) ∩ W ) ∈ D, so that χ̃W (f(x)) = (f(x), Xf(x) ∩ W ) ∈ D′ and

f(x) ∈ χ̃W
−1(D′).

On the contrary, since W /∈ U , β(b,W ) = 0 and then χ̃W (b) = (b,Xb∩W =

W ) /∈ D′. This means that b /∈ χ̃W
−1(D′) and this is impossible, being

f(x) ≤ b.

Lemma 5.2. Let f : X → B be an exponentiable map and b ∈ B such that

(1) Xb is a continuous lattice.
(3′′) Given a net (xλ)λ∈Λ in X, if f(xλ) 6= b converges to b ∈ B, then xλ

has a maximum limit point xΛ in Xb.

Then ε(xΛ) is the maximum limit point in Pb of the net ε(xλ).

Proof : As a consequence of the injectivity of p, we know that the net ε(xλ)
has a maximum limit point ε(xλ)Λ = (b,U) in Pb. By continuity of ε, we get
ε(xΛ) ≤ ε(xλ)Λ. Suppose they are different. This means there is a W ∈ U ,
with xΛ /∈ W . Consider the topological space Λ∞ = Λ ] {∞}, with basic
open sets {λ} and ↑ λ ∪ {∞}. Define the continuous map h : Λ∞ → P as
h(λ) = ε(xλ) and h(∞) = (b,U). By the universal property of the pullback,
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corresponding to h there exists a continuous map h̄ : Λ∞ ×B P (f, S) →
P ×B P (f, S)

Λ∞ ×B P (f, S)
h̄

vv
pf

��

''
S P ×B P (f, S)

p̂f

��

ev
oo // P (f, S)

pf

��

Λ∞

h

uu

ph

((
P p

// B

with

h(λ, f(xλ), A) = (ε(xλ), A) and h(∞, b, A) = (ε(xλ)Λ, A).

If we define e := evh, we get

e(λ, f(xλ), A) = 1 ⇔ xλ ∈ A and e(∞, b, A) = 1 ⇔ A ∈ U .

Since W ∈ U , then (∞, b,W ) ∈ e−1(1), so that there exists a base open
neighborhood (↑ λ̄∩{∞}×O)∪ (Λ∞×B P (f, S)) ⊂ e−1(1), with λ̄ ∈ Λ and
O an open set of P (f, S). Hence, (b,W ) ∈ O and for any λ ≥ λ̄ and any
Uλ ∈ Oλ = O ∩ p−1

f (f(xλ)), e(λ, f(xλ), Uλ) = 1, which means xλ ∈ Uλ.
Since W is open in Xb, then there exists a W ′ open in X with W ′∩f−1(b) =

W . Consider now the closure C in X of the set {xλ, xΛ} and T = W ′\C. Let
us observe that Xb∩C =↓ xΛ, since any f(xλ) 6= b. Consequently X∩T = W.
Take now the characteristic map χT : X → S. By the exponentiability of f
we get the following diagram:

X
χT

ss

f

��

��

S P (f, S)×B X

f̂

��

ev
oo // X

f

��

B
χ̃T

xx

1B

��
P (f, S) pf

// B
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with χ̃T (b′) = (b′, Xb′ ∩T ), for any b′ ∈ B. In particular χ̃T (b) = (b,Xb∩T =
W ) ∈ O, so that b ∈ χ̃T−1(O), which is an open set of B. But for any λ ≥ λ̄,
if χ̃T (f(xλ)) = (f(xλ), Xf(xλ) ∩ T ) ∈ Oλ, xλ should be in T and this is not,

since in Tb there are no xλ. As a conclusion, there is a queue f(xλ) /∈ χ̃−1
T (O)

and this is impossible, since f(xλ) converges to b.

Theorem 5.3. f : X → B is injective in Top0/B if and only if

(0) f is exponentiable and open.
(1) For each b ∈ B, Xb is a continuous lattice.

(2′′) For x ∈ X and b ∈ B with f(x) ≤ b, {x′ ∈ Xb|x ≤ x′} has minimum
element xb.

(3′′) Given a net (xλ)λ∈Λ in X, if f(xλ) converges to b ∈ B, then xλ has a
maximum limit point xΛ in Xb.

Proof : All the above conditions are satisfied if f is injective.
Suppose now that all the conditions are satisfied. Since condition (1) im-

plies that Πb∈BXb is a continuous lattice, it is enough to show that f can be
obtained as a retraction of the injective map πB : Πb∈BXb ×B → B.

We split the proof in several steps, showing that:

(a) ε : X → P can be corestricted to P̌ = P \ sp(B).
(b) The restriction p̌ : P̌ → B of p is injective.
(c) The retraction rP̌ : Πb∈BP̌b ×B → P̌ given in Theorem 4.6, which exists

since p̌ is injective, can be restricted via εb to Πb∈BXb × B, yielding a
continuous retraction rX : Πb∈BXb ×B → X of πB over f .

(a) ε : X → P can be corestricted to P̌ = P \ sp(B): The maximum section
sp : B → P of p is defined by sp(b) = (b,

∨
Pb), and

∨
Pb = O(Xb). Therefore

sp(B) does not meet ε(X) = {(f(x), {U ∈ O(f(x)) |x ∈ U})}.

(b) The restriction p̌ : P̌ → B of p is injective:
P0 = {(b, ∅) | b ∈ B} is a closed subset of P (f, S): Let A = P (f, S) \ P0 =
{(b, U) | b ∈ B, U ∈ O(X) \ ∅}. Then A is open since, for each b ∈ B, Ab is
clearly saturated and has the finite union property; A is binding because f
is open: for each U ∈ O(X), {b |U ∩Xb 6= ∅} = f(U) ∈ O(B).

Now we consider the map

e : P ×B P (f, S) −→ S

(b,U , U) 7−→
{

0 if U = ∅
ev(b,U , U) if U 6= ∅
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which is continuous, because e−1(0) = p̄−1(P0) ∪ ev−1(0) is closed. By the
universal property of the partial product, there exists a unique continuous
map ẽ : P → P such that p · ẽ = p and ev · (ẽ×B 1) = e:

P ×B P (f, S)

p̂f

��

e

rr
ẽ×B1vv

p̄

,,
S P ×B P (f, S)ev
oo p̄ //

p̂f

��

P (f, S)

pf

��

P

ẽ
uu

p

,,P p
// B

] By construction, if (b,U) ∈ P̌ , then ∅ 6∈ U , so that e coincides with ev
when restricted to P̌ ×B P (f, S). Therefore the restriction of ẽ to P̌ is the
identity. Moreover, for any (b,U) ∈ P , ẽ(b,U) = (b, Ũ) must belong to P̌ ,
otherwise ev(b, Ũ , ∅) = 1 6= e(b,U , ∅) = 0. Hence the corestriction of ẽ to P̌
gives a retraction of P into P̌ , and therefore p̌ is injective. Notice that ε can
be considered as an embedding of X into P̌ and that ε sends the maximal
section of f into the maximal section of p̌.

(c) Πb∈BXb is a continuous lattice which can be embedded via the restrictions
εb of ε to each fiber of b, in Πb∈BP̌b. We observe that every εb preserves the
maximum element on each fiber.

So we can consider the following diagram:

X
νX //

ε

��

Πb∈BXb ×B

Πεb×idB

��

P̌ νP̌
// Πb∈BP̌b ×B

where νX and νP̌ are defined as in Theorem 4.6 respectively for f and p̌:

νX(x) = ((xb)b∈B, f(x)), with xb = xb if b ≥ f(x) and xb = maxXb,
otherwise
νP̌ (t) = ((tb)b∈B, p̌(t)), with tb = tb if b ≥ p̌(t) and tb = maxP̌b other-
wise
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Since ε, νP̌ are embeddings, νX (which is continuous by the proof of Theorem
4.6, since therein just conditions (1) and (2′′) are used) is an embedding itself.
The diagram is commutative thanks to Lemma 5.1.

Consider the retraction rP̌ : Πb∈BP̌b ×B → P̌ of νP̌ given in Theorem 4.6,
which is continuous since p̌ is injective:

rP̌ (σ, b) =
∧
{tΛ | (tλ)λ∈Λ in σ(B) with p̌(tλ)→ b}

(where tΛ is as defined in Proposition 4.3).
We now consider the corresponding retraction rX : Πb∈BXb × B → X for

f , defined as:

rX(s, b) =
∧
{xΛ | (xλ)λ∈Λ in s(B) with f(xλ)→ b}

(where xΛ is as in condition (3′′)). We want to prove that such rX is contin-
uous. To this aim it is sufficient to prove that rP̌ (Πεb × idB) = εrX . We will
do it in two steps.

(c1) First, given (s, b) ∈ Πb∈BXb×B, where s is a (not necessarily continuous)
section s : B → X of f and b ∈ B, we will prove that the set A =
{xΛ|xλ ∈ s(B), f(xλ) → b} has a minimum x̃ in Xb, so that we will
have that rX(s, b) =

∧
A =min A = x̃.

(c2) Since p̌ is injective, p̌ shares the same properties with f and then by
(c1) also rP̌ (εs, b)=min {ε(x)Λ | ε(xλ)λ∈Λ in εs(B) with f(xλ)→ b}. By
Lemma 5.2, ε(x)Λ = ε(xΛ) and this implies that

rP̌ (Πεb×idB)(s, b) = rP̌ (εs, b) = min{ε(xΛ) | ε(xλ)λ∈Λ in εs(B) with f(xλ)→ b} =: t̃.

Since x̃ ≤ xΛ, ε(x̃) ≤ ε(xΛ), for any Λ, then ε(x̃) ≤ t̃. But x̃ = xΛ̃ for

some Λ̃, so that

rP̌ (Πεb × idB)(s, b) = t̃ = ε(x̃) = εrX(s, b)

rX is then a retraction of f over B of the injective map πB : Πb∈BXb ×
B → B, and then f is injective.

(c1) We start by proving that A is directed in the inverse order of Xb. Let
xΛ1

, xΛ2
∈ A, maximum limit points respectively of (xλ1

), (xλ2
).

Consider the directed set Λ1×Λ2×N (N natural numbers with the natural
order) and define the net h : Λ1 × Λ2 × N→ X as

h(λ1, λ2, 2n) = xλ1
, h(λ1, λ2, 2n+ 1) = xλ2

.
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We prove that xΛ1
∧ xΛ2

is the maximum limit point of h in Xb. Indeed,
given any open set W with xΛ1

∧ xΛ2
∈ W , since W ∩Xb is upward closed,

xΛ1
∈ W, xΛ2

∈ W . Then there exist λ̄1 and λ̄2 such that for any λ1 ≥ λ̄1

and λ2 ≥ λ̄2, xλ1
, xλ2

∈ W and so the queue of h given by (λ̄1, λ̄2, 1) is in W .
This means that h → xΛ1

∧ xΛ2
. Let now y be another limit point of h in

Xb; if Vy is open with y ∈ Vy, there is a queue of h starting from (λ̃1, λ̃2, ñ)

in Vy. For any λ1 ≥ λ̃1, h(λ1, λ̃2, 2ñ) = xλ1
∈ Vy and for any λ2 ≥ λ̃2,

h(λ̃1, λ2, 2ñ+ 1) = xλ2
∈ Vy, so that

xλ1
→ y xλ2

→ y ⇒ y ≤ xΛ1
∧ xΛ2

Now we want to prove the existence of a net in s(B) converging to
∧
A =: x̃.

First of all, for any a ∈ A, fix a net (xλa)Λa which has a as maximum limit
point.

Consider now the product D = Πa∈AΛa×A directed by the product order.
Let h : D → X be the net given by

h(d) = h((λa)a∈A, ā)) = xλā.

. the net fh converges to b: for any open neighbourhood U of b, f−1(U)
is a neighbourhood of each a ∈ A, so that, for any a ∈ A, there is (λ̄a) s.t.
if λa ≥ (λ̄a), xλa ∈ f−1(U). Then, for any ã ∈ A, the queue of fh given by
((λ̄a)a∈A, ã) is such that for any λa ≥ (λ̄a) and any ā ≥ ã,

fh((λa)a, ā) = f(xλā) ∈ U

so that fh converges to b and consequently h has a maximum limit point
y ∈ A in Xb.

We want to prove that y ≤ a for any a ∈ A, so that y = x̃. For this, it is
sufficient to show that, for any a,

xλa → y, which is equivalent to proving that ε(xλa)→ ε(y),

being ε an embedding.
Let us take an open neighbourhood W of ε(y). By Theorem 4.6 (4), there

exists a continuous section σ : B → P̌ of p̌ : P̌ → B and a neighbour-
hood Z of p̌(ε(y)) = b, such that †σ(Z) = {t|p̌(t) ∈ Z, t ≥ σ(p̌(t))} is a
neighbourhood of ε(y) with †σ(Z) ⊆ W .

Since εh converges to ε(y), there exists d̃ = ((λ̃a)a∈A, ã) such that for any
d = ((λa)a∈A, ā) ≥ d̃, ε(h(d)) = ε(xλā) ∈ †σ(Z).
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Now, for any ā ≥ ã and any λā ≥ λ̃ā, we can define d̄ = ((λ̄a)a∈A, ā) with
λ̄a = λ̃a for any a 6= ā and λ̄ā = λā. Then

ε(h(d̄)) = ε(xλā) ∈ †σ(Z)

Then, for any ā ≥ ã, this queue of ε(xλa) is a net, say (tλ̄)λ̄∈Λ̄ā in P̌ with :

• P̌ (tλ̄)→ b
• tλ̄ ∈ †σ(Z)
• tλ̄ = ε(xλā) and then its maximum limit point is ε(ā)

This will be sufficient to prove that

tλ̄ → σ(b)

and consequently we will have that σ(b) ≤ ε(ā), for any ā ≥ ã.
Let V be an open neighbourhood of σ(b), then V ∩ σ(Z) = V ′ is an open

neighbourhood of σ(b) in σ(B), and p̌(V ′) is an open neighbourhood of b.

Since p̌(tλ̄) → b, there exists λ̂ ∈ Λ̄ā such that, for any λ̄ ≥ λ̂, p̌(tλ̄) ∈
p̌(V ′) ⊆ Z. tλ̄ ∈ †σ(Z), so tλ̄ ≥ σ(p̌(tλ̄)), that is tλ̄ ∈ †V ′ = †σ(p̌(V ′)) ⊆ V ,
since V is open (hence upward closed on each fiber). We can conclude that
tλ̄ → σ(b) and then, as already noticed, σ(b) ≤ ε(ā), for any ā ≥ ã.

Consider now a ∈ A, a � ã; A is directed, hence there is ā ∈ A with ā ≥ ã
and ā ≥ a, which means ā ≤ a in Xb. By the argument above, we have that
σ(b) ≤ ε(ā) and then σ(b) ≤ ε(a) in P̌b. It follows that σ(b) ≤ ε(a), for any
a ∈ A. Then, given any neighbourhood W of ε(y), ε(a) ∈ W , for any a ∈ A
and in the specialization of P̌b this means that ε(y) ≤ ε(a), hence y ≤ a, for
any a ∈ A.

Finally, we can conclude that y = minA =
∧
A = x̃.
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