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Universidade de Coimbra
Preprint Number 14–21

MATHEMATICAL MODELING TO EFFICIENT
PROTOCOLS TO CONTROL GLIOMA GROWTH

J.R. BRANCO, J.A. FERREIRA AND P. DE OLIVEIRA

Abstract: In this paper we propose a mathematical model to describe the evolu-
tion of glioma cells taking into account the viscoelastic properties of brain tissue.
The mathematical model is established considering that the glioma cells are of two
phenotypes: migratory and proliferative. The evolution of the migratory cells is
described by a diffusion-reaction equation of non Fickian type deduced considering
a mass conservation law with a non Fickian migratory mass flux. The evolution of
the proliferative cells is described by a reaction equation. A stability analysis that
leads to the design of efficient protocols is presented. Numerical simulations that
illustrate the behaviour of the mathematical model are included.
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1. Introduction

Cancer is a complex disease which leads to the uncontrolled growth of
abnormal cells, destruction of normal tissues and invasion of vital organs.
There are different stages of tumor development with varying duration, start-
ing from genetic changes at the cell level and finishing with detachment of
metastasis and invasion. Tumor cell transport and proliferation are the main
contributors to the malignant dissemination ([Swanson et al.(2003)]).
Extensive research has been done to model cancerous growth, specially

on solid tumors, in which growth primarily comes from cellular prolifera-
tion. It is far beyond the aim of the present paper to list exhaustively the
many significant contribution in the topic. References [Fedotov et al.(2007)],
[Giese et al.(1996)], [Habib et al.(2003)], [Harpold et al.(2007)], [Murray(2002)],
[Swanson et al.(2000)], [Swanson et al.(2003)] and the references therein rep-
resent some of these contributions.
Gliomas are diffusive and highly invasive brain tumors accounting for about

50% of all primary brain tumors and, unfortunately, the prognosis for pa-
tients with gliomas is very poor. Median untreated survival time for high
grade gliomas ranges from 6 months to 1 year and even lower grade gliomas
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can rarely be cured. Theorists and experimentalists believe that inefficiency
of treatments results from the high mobility of glioma cells. Additionally
gliomas can exhibit very high proliferation rates.
The understanding of malignant glioma growth still very less complete,

mostly because gliomas proliferate as solid tumors and invade the surround-
ing brain parenchyma actively. Proliferation and specially migration of gliomas
represent a very challenging problem from a mathematical viewpoint.
Cancer research has been a fertile ground for mathematical modeling, be-

ginning with the early concept of simple exponential growth of solid tumors
doubling at a constant rate. The introduction of logistic or gompertzian
growth (there is increased doubling time and decreased growth fraction as a
function of time) allowed to slow the growth in the later stages. With the
recognition that tumor cells might spread outside the grossly visible mass,
invading locally and metastizing distantly, and that some cells die during the
development process, the mathematical concepts necessarily became more
complex than those used in the original simple models for solid tumors.
The initial answer to the question of how to measure the growth of an

infiltrating glioma was provided by Murray in the early 90s ([Murray(2002)]).
He formulated the problem as a conservation law where the rate of change of
tumor’s cell population results from mobility and net proliferation of cells.
An equation of type

∂c

∂t
+∇ · JF = f(c) in Ω× (0,∞) (1)

was used, where Ω ⊂ R
n, n = 1, 2, 3, is the glioma domain, c(x, t) denotes

the tumor cell density at location x and time t, f(c) denotes net prolifera-
tion of tumor cells, and ∇ defines the spatial gradient operator. Under the
assumption of the classical Fick’s law for the mass flux JF

JF = −D̃∇c , (2)

where D̃ is the diffusion tensor, equation (1) can be written as

∂c

∂t
= ∇ · (D̃∇c) + f(c) in Ω× (0,∞). (3)

The mathematical model is complemented by boundary conditions which
impose no migration of cells beyond the brain boundary, that is,

JF .η = 0,
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on the boundary, where η denotes the exterior unit normal to the brain
region, and by initial conditions c(x, 0) = c0(x) , x ∈ Ω , where c0 defines the
initial spatial distribution of malignant cells.
Tumor growth is generally assumed to be exponential, so the cell growth

term is given by f(c) = ρ c, where the net proliferation rate ρ is con-
stant. Logistic and gompertzian growths have been also considered but
found to be unnecessary in the time frames considered for gliomas devel-
opment ([Harpold et al.(2007)]). To apply the modeling approach to specific
patients, a more realistic look at the brain geometry and structure was nec-
essary. Swanson et al. introduced in [Swanson et al.(2000)] the complex
geometry of the brain and allowed diffusion to be a function of the spatial
variable to reflect the observation that glioma cells exhibit higher motility in
the white matter than in the grey matter.
The partial differential equation (3), of parabolic type, was established

combining the mass conservation law (1) with Fick’s law (2) for mass flux.
It is well known that, in this case, if a sudden change on the cell concen-
tration takes place somewhere in the space, it will be felt instantaneously
everywhere. This means that Fickian approach gives rise to infinite speed
of propagation which is not physically observable. To avoid the limitation
of Fickian models an hyperbolic correction has been proposed in different
contexts (see [Edwards et al.(1995b)], [Joseph et al.(1989)], [Fedotov(1998)],
[Fedotov(1999)], [Hassanizadeh(1996)], [Neuman(2009)] and the references
cited in these papers).
It is accepted by the biomedical research community that biochemical and

biophysical properties of the brain tissue, namely of the extracellular ma-
trix (ECM), are key factors in the proliferation and migration of glioma
cells. The aggressiveness of the gliomas is determined by its unique pattern
of interaction with ECM. Experimental studies show that the mechanical
properties of ECM are regularization factors in the evolution of several cell
types in particular glioma cells ([Engler et al.(2006)], [Engler et al.(2007)],
[Lo et al.(2002)], [Tilghman et al.(2010)], [Ulrich et al.(2009)]). In fact it
was observed that the growth, differentiation and functionalities of glioma
cells are determined by the stiffness of the ECM. These observations are
explained by the fact that extracellular matrix stiffness induces complex bio-
chemical phenomena that depend on the type of diffusive cells and microenvi-
ronment properties which are not yet clarified. The complete understanding
of such complex biochemical effect can be used to develop tumor treatments
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based on the characteristics of the mechanical milieu where the cancer cells
move.
The aim of the present paper is to study the influence of these properties

on glioma growth and treatment. To this end we establish of a class of non
Fickian models that take into account the viscoelastic behavior of the brain
tissue. The mathematical model that we consider is defined in a simple ge-
ometry. To apply the modeling approach to specific patients, a more realistic
look at the brain geometry and structure is necessary. In this case we can fol-
low [Swanson et al.(2000)],where, for a Fickian model, a complex geometry
of the brain was considered as well as a space dependent diffusion coefficient
were taken into account to reflect the observation that glioma cells exhibit
higher motility in the white matter than in grey matter ([Giese et al.(1996)]).
Finally we observe that the most popular treatments used to combat gliomas

are chemotherapy and radiotherapy. Some mathematical models that de-
scribe the effect of these treatments were proposed in the literature. Without
being exhaustive we mention [Laperriere et al.(2002)], [Rockne et al.(2009)]
and [Tracqui et al.(1995)]. Chemotherapy involves the use of drugs to dis-
rupt the cell cycle and to block proliferation. The success of chemotherapy
agents varies widely, depending on cell type and the type of drug being used.
The effectiveness of a particular drug depends on the concentration of drug
reaching the tumor, the duration of exposure and the sensitivity of the tumor
cells to the drug.
Tracqui et al. in [Tracqui et al.(1995)] incorporated chemotherapy by in-

troducing cell death as a loss term. If G(t) defines the rate of cells death
then, assuming a loss proportional to the tumour cells density, equation (3)
is replaced by

∂c

∂t
= ∇ · (D̃∇c) + f(c)−G(t)c in Ω× (0, T ] , (4)

where

G(t) =

{

k, when chemotherapy is being administered
0, otherwise .

(5)

Here k describes the rate of cell death due to exposure to the drug. If
f(c) = ρc, for a tumor to decrease in size during chemotherapy, k must be
larger than the growth rate ρ of the cell population. The main question in
this paper is to define k and the periods of chemotherapy applications that
lead to control the glioma mass.
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In chemotherapy protocols a specific drug or a cocktail of drugs is injected
in the circulatory system and are homogeneously distributed in the human
body. The effect of chemotherapy in glioma cells is described here by the
function G(t) defined by (5). However, the death rate of cells that are ex-
posed to the action of a drug should depend on location, duration of exposure
and drug concentration. To incorporate all these interveners in the death rate
we need to define a function G depending on x, t, c(x, t) and cd(x, t)).To de-
fine such death effect on the tumor cells, the equation for the dynamic of
cancer cells needs to be coupled with a diffusion equation for the concen-
tration in the line of the models studied for instance in [Hinow et al.(2009)],
[Norris et al.(2006)] and [Ward (2003)], where Michaelis-Menten kinetic or
its generalization have been considered in the definition of the corresponding
to G. As in the present paper we do not consider such coupling, our assump-
tion on the death rate G(t) while simple, is reasonable and it is mathemat-
ically manipulated to allow the definition of chemotherapy protocols with a
prescribed effect.
Partial differential equations of non-Fickian type that describe the evolu-

tion of cells in a medium where they dye as they move can be establish using
the continuous time random walks approach. Without being exhaustive we
refer [Abad et al.(2010)], [Fedotov(2010)] and [Sokolov et al.(2006)] where
such approach was considered in different contexts. This approach was also
considered, for instance in [Fedotov et al.(2007)] and [Fedotov et al.(2008)],
to establish non-Fickian diffusion models to describe the proliferation and
migration of glioma cells in the absence of the death effect.
Our aim in this paper is the modelling and analysis of glioma growth un-

der the effect of the rheological properties of the brain tissue. The paper
is organized as follows. Since the brain tissue presents a viscoelastic be-
haviour that can be described by a Voigt-Kelvin model (see for instance
[Franceschini(2006)], [Humphrey(2003)], [Mehrabian et al.(2011)]), we present
in Section 2 a class of non Fickian models to describe the space and time evo-
lution of glioma cancer cells constructed by combining the diffusion process
with the viscoelastic properties of the brain tissue. In Section 3 we study the
behaviour of the glioma mass when chemotherapy is considered. Criteria to
define efficient protocols that lead to the decreasing of the tumor mass are
established in this section. In Section 4 we introduce a semi-discrete model
that mimics the continuous model in the sense that it presents the same qual-
itative properties. Plots illustrating the evolution of gliomas are included in
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Section 5. The numerical results illustrate the theoretic results obtained.
Finally, in Section 6 we present some conclusions. It must be pointed out
that the present paper aims to extend the results obtained by the authors in
[Branco et al.(2011)], [Branco et al.(2013a)] and [Branco et al.(2013b)].

2. A viscoelastic model

The class of non Fickian models that we present in what follows is es-
tablished by taking into account the viscoelastic nature of the brain tis-
sue. Following [Edwards et al.(1995a)], [Edwards(1996)], [Edwards(2001)],
[Ferreira et al.(2014)], [Liu et al.(2005)] and [Shaw et al.(1997)], if a diffusion
process occurs in a medium with a viscoelastic behaviour, then a modified
diffusion equation

∂c

∂t
= ∇ · (D̃∇c) +∇ · (D̃v∇σ) + f(c) in Ω× (0,∞), (6)

should be used, where σ represents the normal stress which is assumed to
be the most relevant component of the stress developed in the brain tissue
when the tumor cells move in it. In (6) D̃ and D̃v are diffusion and stress
drive tensors respectively.
The proliferation and migration of several cancer cells depend on the rigid-

ity of ECM growing significantly better on stiff matrices than on soft tissues
([Tilghman et al.(2010)], [Ulrich et al.(2009)]). This phenomenon is usually
called durotaxis or mechanotaxis and it was firstly defined in [Lo et al.(2002)]
when the migration of fibroblasts in vitro from soft to stiff regions of the ECM
was observed. Based on these facts, D̃v in equation (6) is a diagonal tensor
with negative entries.
We assume that the viscoelastic behaviour of the brain tissue is described

by

∂σ

∂t
+ βσ = α1ǫ+ α2

∂ǫ

∂t
, (7)

where ǫ stands for the normal strain. Equation (7) is based on a mechanistic
model which is represented by a spring (restorative force component) and a
dashpot (damping component) in parallel connected with a free spring. In
(7) the viscoelastic characteristic time β is given by β = E0+E1

µ1

, and α1 =
E0E1

µ1

, α2 = E0 where E1 is the Young modulus of the spring element, µ1 repre-

sents the viscosity and E0 stands for the Young modulus of the free spring (see
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[Franceschini(2006)], [Humphrey(2003)], [Mehrabian et al.(2011)]),
[Roniotis et al.(2010)]).
Equation (7) leads to the following expression for σ

σ(t) =

∫ t

0

e−β(t−s)
(

α1ǫ(s) + α2
∂ǫ

∂t
(s)

)

ds+ e−βtσ(0). (8)

If we assume that the strain ǫ satisfies ǫ = λc where λ is a positive con-
stant(see [Edwards et al.(1995a)], [Edwards(1996)], [Edwards(2001)]), we ob-
tain from (6) and (8) an integro-differential equation

∂c

∂t
= ∇ · (D∇c) +

∫ t

0

ker(t− s)∇ · (Dv∇c(s)) ds+ f(c) in Ω× (0,∞), (9)

where D = D̃ + λα2D̃v, Dv = λ(α1 − βα2)D̃v and ker(s) = e−βs.
In this paper we consider that the viscoelastic behavior of the brain tis-

sue is described by the Voigt-Kelvin model (7) and the mass flux of mi-
gration cells J is driven by the gradient of the concentration and by the
gradient of the forces exerted by the brain tissue into the glioma cells, that
is J = −D̃∇c − D̃v∇σ. The stress σ is given by (8) where the strain ǫ is
identified with the results of the action of the glioma cells into the brain
tissue. Here, to simplify, we assume that such results depend linearly on the
glioma cell concentrations. We do not take into account the microenviron-
ment where glioma cells migrate and proliferate, their constituents and their
interactions. Mathematical models based on mixture theory and interaction
forces between intervenients in the cancer growth have been studied, for in-
stance, in [Astanin et al.(2008)], [Byrne et al.(2003)], [Preziozi et al.(2011)],
[Preziozi et al.(2009)] and [Sciume et al.(2013)].
To establish a mathematical model to describe the space-time evolution of

gliomas some medical information is needed. According to [Fedotov et al.(2007)]
and [Fedotov et al.(2008)] the following assumptions are considered in our
model: the glioma cells are of two phenotypes - proliferation (state 1) and
migratory (state 2); in state 2 (migratory phenotype) the cells randomly
move but there is no cell fission; in state 1 (proliferation phenotype) the can-
cer cells do not migrate and only proliferation takes place with rate ρ; a cell
of type 1 remains in state 1 during a random time period and then switches
to a cell of type 2; β1 is the switching rate from state 1 to 2; a cell of type 2
remains in state 2 during a random time period and then switches to a cell
of type 1; β2 is the switching rate from state 2 to 1.
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Let u(x, t) and v(x, t) represent the density of migratory and proliferation
cells at x and t, respectively. The dynamics of glioma cells is then described
by














∂u

∂t
= ∇ · (D∇u) +

∫ t

0

ker(t− s)∇ · (Dv∇u(s)) ds− β1u+ β2v in Ω× (0, T ],

∂v

∂t
= ρv + β1u− β2v in Ω× (0, T ],

(10)
where T > 0 is fixed, D and Dv denote square matrices of order n. The set
of equations (10) is complemented with initial conditions

u(0) = u0, v(0) = v0 in Ω,

and boundary conditions

J.η = 0 on ∂Ω, (11)

where ∂Ω denotes the boundary of Ω, η represents the exterior unit normal

and the non Fickian flux J is given by J(t) = −D∇u(t)−
∫ t

0

e−β(t−s)Dv∇u(s) ds.

Condition (11) means that the glioma is located inside of the brain and the
cancer cells do not cross the pia mater.
In what follows we assume that D = [dij] and Dv = [dv,ij] are diagonal

matrices with diagonal entries di and dv,i such that

0 < α0 ≤ di, dv,i in Ω, i = 1, . . . , n. (12)

Let M(t) be the mass of glioma cells in Ω, M1(t) =

∫

Ω

(u(t) + v(t))dΩ. We

study in what follows the behaviour of M1(t). We start by remarking that

M ′
1(t) =

∫

Ω

(∂u

∂t
(t) +

∂v

∂t
(t)

)

dΩ. (13)

As u and v are defined by the system of equations (10), from (13) we obtain

M ′
1(t) =

∫

Ω

(−∇ · J(t) + ρv(t))dΩ,

that leads to

M ′
1(t) = −

∫

∂Ω

J(t).ηd∂Ω+ ρ

∫

Ω

v(t)dΩ.
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From (11) we conclude that M ′
1(t) = ρ

∫

Ω

v(t)dΩ, which means that the in-

stantaneous time variation of the cancer mass depends only as expected on
the mass of the proliferation cells and on the proliferation rate ρ. Assuming
the positivity of u, we finally obtain the upper bound
M1(t) ≤ eρtM1(0).
To avoid the positivity assumption on u we establish in what follows an

upper bound for the mass related functionalM2(t) = ‖u(t)‖2+‖v(t)‖2, where
‖.‖ denotes the usual L2 norm induced by the usual L2 inner product (., .). As

M1(t) ≤
√

|Ω|
(

‖u(t)‖+ ‖v(t)‖
)

, if we assume that min{‖u(t)‖√

|Ω|
,
‖v(t)‖
√

|Ω|
} ≥ 1,

we conclude that an upper bound for M1(t) can be deduced from an estimate
of M2(t). This assumption is biologically sound because it states that the
tumor density is largen than 1.

As
1

2
M ′

2(t) = (
∂u

∂t
(t), u(t)) + (

∂v

∂t
(t), v(t)), we obtain from (10)

1

2
M ′

2(t) =

∫

∂Ω

−J(t).ηu(t) d∂Ω− ‖
√
D∇u(t)‖2

−((

∫ t

0

ker(t− s)Dv∇u(s) ds,∇u(t)))

−β1‖u(t)‖2 + (−β2 + ρ)‖v(t)‖2 + (β1 + β2)(u(t), v(t)),

(14)

where the inner product in L2(Ω)× L2(Ω) is denoted by ((., .)) and ‖.‖ rep-
resents the induced norm. Considering the boundary condition (11), the
Cauchy-Schwarz inequality and the following equality

d

dt
‖
∫ t

0

ker(t− s)
√

Dv∇u(s) ds‖2 = 2((

∫ t

0

ker(t− s)Dv∇u(s) ds,∇u(t)))

−2β‖
∫ t

0

ker(t− s)
√

Dv∇u(s) ds‖2,
(15)

we deduce from (14) that

E ′(t) ≤ max{β2 − β1, β1 − β2 + 2ρ,−2β}E(t), t > 0, (16)
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where E(t) = M2(t) + ‖
∫ t

0

ker(t− s)
√

Dv∇u(s) ds‖2. Inequality (16) leads

to

M2(t) ≤ e2max{β2−β1
2

,
β1−β2

2
+ρ,−β}tM2(0). (17)

We observe that if max{β2−β1, β1−β2+2ρ,−2β} = −2β then β1+2ρ+2β <
β2 < β1 − 2β which is not possible. This means that we can drop −2β from
the max expression. In the case β2−β1 > β1−β2+2ρ we have β2−β1 > ρ; for
β2 < β1+ρ the maximum is 2ρ−β2+β1 > ρ. In both cases the second member
of (17) is an increasing function of t. As expected, under these assumptions,
we can not select parameters β2, β1, ρ such that M2(t) is bounded in time.
We remark that inequality (17) allow us to conclude the stability of the

proposed mathematical model with respect to perturbations of the initial
conditions in [0, T ], for fixed T > 0.

3. Chemotherapy : control of the glioma growth

To take into account the chemotherapy effect, the viscoelastic model for
glioma growth (10) is modified as follows































∂u

∂t
= ∇ · (D∇u) +

∫ t

0

ker(t− s)∇ · (Dv∇u(s)) ds

−β1u + β2v −G(t)u in Ω× (0, T ],

∂v

∂t
= ρv + β1u− β2v −G(t)v in Ω× (0, T ],

(18)

where G(t) is defined by (5).
From (18) following the proof of the upper bound (16), it can be shown

that

E ′(t) ≤ 2max
{β2 − β1

2
−G(t),

β1 − β2
2

+ ρ−G(t),−β
}

E(t). (19)

In what follows we establish conditions on the parameters that lead to a
decreasing of M2(t) :

(1) If the net proliferation rate is greater than the switching proliferation
rate

ρ > β2 − β1 , (20)
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and the difference between the rate of cells death and the switching
proliferation rate is bounded by the viscoelastic characteristic time

G(t)− β2 − β1
2

< β, (21)

then equation (19) leads to

M2(t) ≤ e2
(

(
β1−β2

2
+ρ)t−

∫ t

0
G(s) ds

)

M2(0). (22)

To conclude that M2(t) decreases we need to combine condition (20)
and (21) with

(β1 − β2
2

+ ρ
)

t <

∫ t

0

G(s) ds, (23)

that is the density of proliferation cells at time t is less than the total
amount of death cells until time t due to chemotherapy effect.
As from condition (21) we obtain

∫ t

0

G(s) ds <
(β2 − β1

2
+ β

)

t, (24)

conditions (23) and (24) are compatible if the difference between the
net and switching proliferation rates is less than the viscoelastic char-
acteristic time

ρ− (β2 − β1) < β. (25)

If no viscoelastic effects are considered, β = 0, we deduce from (24)

that an overall admissible measure of the treatment ,

∫ t

0

G(s) ds,

should be smaller.
(2) Otherwise, if the net proliferation rate is less than the switching pro-

liferation rate

ρ < β2 − β1 (26)

and the difference between the rate of cells death and the resident
proliferation rate is bounded by the viscoelastic characteristic time

G(t)−
(

ρ− β2 − β1
2

)

< β, (27)

then inequality (22) is replaced by

M2(t) ≤ e2
(

β2−β1
2

t−
∫ t

0
G(s) ds

)

M2(0). (28)
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Assuming that the density of switching proliferation cells at time t is
less than the total amount of death cells until time t due to chemother-
apy effect

(β2 − β1
2

)

t <

∫ t

0

G(s) ds, (29)

we conclude that M2(t) decreases. Again we observe that the param-
eter β has influence on the admissible threshold of the chemotherapy
treatment.
We note that as from (27)

(β1 − β2
2

+ ρ+ β
)

t >

∫ t

0

G(s) ds, (30)

we must impose that the difference between the net and switching
proliferation rates is greater than the viscoelastic characteristic time

ρ− (β2 − β1) > β (31)

in order to have the compatibility between (29) and (30).

When chemotherapy is applied, conditions (21) and (23) or conditions (27)
and (29) can be used to determine an effective dosage that induces a rate k
of cell death due to the exposure to the drug that allows to control the total
tumor mass. Obviously the value of k depends of the protocol of chemother-
apy. The typical bang-bang protocol corresponds to treatment which alter-
nate maximum doses of chemotherapy with rest periods when no drug is
administered, as defined by (5) and illustrated in Figure 1.

t

k

Figure 1: Chemotherapy protocol.

4. A semi-discrete model

To compute the artificial mass M2(t) we use a numerical method which is
obtained discretizing the spatial derivatives of (18) using centered difference
operators. In what follows we show that this discretization preserves the
qualitative behaviour of the initial boundary value problem studied in the last
section. More precisely we establish the discrete versions of the inequalities
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(22) and (28) under the conditions (20), (21), (23), (25) or (26), (27), (29),
(31), respectively.

We assume that n = 2, Ω is the square [0, L]× [0, L] and H = (h1, h2) with
hi > 0, i = 1, 2. In Ω we introduce the spatial grid ΩH = {(x1,i, x2,j), i =
0, . . . , Nh1

, j = 0, . . . , Nh2
}, where xℓ,i = xℓ,i−1 + hℓ, i = 1, . . . , Nhℓ

, xℓ,0 =
0, xℓ,Nhℓ

= L, for ℓ = 1, 2. By ∂ΩH we represent the set of boundary points.
We introduce the following auxiliary points xℓ,−1 = xℓ,0 − hℓ, xℓ,Nhℓ

+1 =
xℓ,Nhℓ

+ hℓ, ℓ = 1, 2.
To simplify the presentation we use the notation wi,j = wH(x1,i, x2,j). We

discretize
∂

∂x1
(a

∂u

∂x1
), a is a scalar functions, using the usual second order

finite difference discetization

∇∗
h1
(âH∇h1

uH)(x1,i, x2,j) =
1

h1

(

ai+1/2,jD−x1
ui+1,j − ai−1/2,jD−x1

ui,j

)

, (32)

where ai±1/2,j = a(x1,i ± h1

2 , x2,j) and D−x1
denotes the usual backward finite

difference operator in x1 direction. The second order finite difference dis-

cretization ∇∗
h2
(b̂H∇h2

uH)(x1,i, x2,j) to discretize
∂

∂x2
(b

∂u

∂x2
) is defined anal-

ogously.
The semi-discrete approximation for u and v in ΩH at time t, uh(t) and

vH(t), are defined by the following system of ordinary differential equations


































u′
H(t) =

∑

i=1,2

∇∗
hi
(di∇hi

uH(t)) +

∫ t

0

ker(t− s)
∑

i=1,2

∇∗
hi
(dv,i∇hi

uH(s))ds

−(β1 +G(t))uH(t) + β2vH(t) in ΩH ,

v′H(t) = (ρ− β2 −G(t))vH(t) + β1uH(t) in ΩH ,

(33)
complemented with the initial conditions

uH(0) = RHu0, vH(0) = RHv0 in ΩH , (34)

and the boundary conditions

Dηx1
ui,j(t) = 0, i = 0, Nh1

, j = 0, . . . , Nh2
,

Dηx2
ui,j(t) = 0, i = 0 . . . , Nh1

, j = 0, Nh2
,

(35)
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where, for m = 1, 2,

Dηxmui,j(t) = Dd,ηxmui,j(t) +

∫ t

0

ker(t− s)Dv,ηxmui,j(s)ds, (36)

In (34) RH denotes the restriction operator and in (36) Da,ηx1
is defined by

Da,ηx1
wi,j =

1

2

(

ai+1/2,jD−x1
wi+1,j + ai−1/2,jD−x1

wi,j

)

,

being Db,ηx2
wi,j defined analogously.

To prove a discrete version of the upper bounds (22), (28) we follow
[Ferreira et al.(2012)] to introduce a convenient discrete functional context.
By WH(ΩH) we denote the space of grid functions defined in ΩH . In WH(ΩH)
we introduce the inner product

(wH , qH)ΩH
=

Nh1
∑

i=0

Nh2
∑

j=0

ωi,jwi,jqi,j, wH , qH ∈ WH(ΩH), (37)

where ωi,j = h1h2 in ΩH , ωi,j =
1
2
h1h2 on ∂ΩH−CH , ωi,j =

1
4
h1h2 on CH ,

CH denotes the set of corner points of Ω and ∂ΩH = ΩH ∩ ∂Ω. The norm
induced by the inner product (37) is denoted by ‖.‖H .
To simplify the presentation we use the following notations:

(wH , qH)∂ΩH ,x1
=

∑

i=0,Nh1

(

Nh2
−1

∑

j=1

h2wi,jqi,j +
∑

j=0,Nh2

1

2
h2wi,jqi,j

)

,

for grid functions defined on ∂ΩH , being (wH , qH)∂ΩH ,x2
defined analogously,

and for wH , qH ∈ WH(ΩH)

(wH , qH)h1
=

Nh1
∑

i=1

h1

(

Nh2
−1

∑

j=1

h2wi,jqi,j +
∑

j=0,Nh2

h2

2
wi,jqi,j

)

,

being (wH , qH)h2
defined analogously,

‖wH‖2H = (wH , wH)ΩH
, ‖wH‖21,s =

∑

i=1,2

‖D−xi
wH‖2hi

.
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The following identity has a central role in what follows and it can be
shown using summation by parts

(∇∗
hℓ
(aℓ∇hℓ

wH), wH)ΩH
= −(âℓ,HD−xℓ

wH , D−xℓ
wH)hℓ

+(Daℓ,ηxℓ
wHηxℓ

, wH)∂ΩH ,xℓ
, ℓ = 1, 2.

(38)

In what follows we establish an upper bound for the semi-discrete version
of M2(t)

M2,H(t) = ‖uH(t)‖2H + ‖vH(t)‖2H ,
where uH(t) and vH(t) are defined by (33), (34) and (35). Let EH(t) be the
semi-discrete version of E(t)

EH(t) = M2,H(t) +
∑

i=1,2

‖
∫ t

0

ker(t− s)

√

d̂v,i,HD−xi
uH(s) ds‖2hi

.

Multiplying both equations of (33) by uH(t) and vH(t), respectively, with
respect to the inner product (., .)ΩH

and taking into account (38) we deduce

d

dt
‖uH(t)‖2H = −

∑

i=1,2

(d̂i,HD−xi
uH(t), D−xi

uH(t))hi

−(β1 +G(t))‖uH(t)‖2H + β2(vH(t), uH(t))ΩH

−
∫ t

0

ker(t− s)
∑

i=1,2

(d̂v,i,HD−xi
uH(s), D−xi

uH(t))hi
ds

+
∑

i=1,2

(Dηxi
uH(t)ηxi

, uH(t))∂Ω,xi

(39)

and

d

dt
‖vH(t)‖2H = (ρ− β2 −G(t))‖vH(t)‖2H + β1(uH(t), vH(t))ΩH

. (40)

Considering the boundary conditions (35), the discrete version of (15)

d

dt
‖
∫ t

0

ker(t− s)

√

d̂v,i,HD−xi
uH(s) ds‖2hi

= 2(

∫ t

0

ker(t− s)d̂v,i,HDxi
uH(s) ds,D−xi

uH(t))hi

−2β‖
∫ t

0

ker(t− s)

√

d̂v,i,HD−xi
uH(s) ds‖2,
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and the Cauchy-Schwarz inequality, from (39), (40) we get

E ′
H(t) ≤ 2max

{β2 − β1
2

−G(t),
β1 − β2

2
+ ρ−G(t),−β

}

EH(t), (41)

If (20) and (21) then

M2,H(t) ≤ e2
(

(
β1−β2

2
+ρ)t−

∫ t

0
G(s) ds

)

M2,H(0) (42)

Otherwise, if (26) and (27) then

M2,H(t) ≤ e2
(

β2−β1
2

t−
∫ t

0
G(s) ds

)

M2,H(0), (43)

Finally, if (20), (21), (23) and (25) or (26), (27), (29) and (31), then the
discrete artificial mass M2,H(t) is bounded by M2,H(0). In the first case the

decreasing factor is e2
(

(
β1−β2

2
+ρ)t−

∫ t

0
G(s) ds

)

and e2
(

β2−β1
2

t−
∫ t

0
G(s) ds

)

in the second
case.

5. Results

In this section we present some numerical results illustrating the behaviour
of the glioma cells defined by (33), (34) and (35). The numerical results
were obtained integrating in time the ordinary differential problem using
the implicit Euler method and discretizing the integral term in (33) with
a left rectangular rule. We consider a homogeneous square domain Ω =
[0, 15 cm] × [0, 15 cm], growth rate ρ = 0.012 /day and switching param-
eters β1 = 10−6/day and β2 = 0.036/day . These parameters were ob-
tained from [Roniotis et al.(2010)] and have biological meaning. According
to [Mehrabian et al.(2011)], the initial condition is defined by 105 cells/cm2

of proliferation tumor cells at middle point of the domain, E0 = 3156Pa,
E1 = 6E0 and µ = 8.9× 10−4Pa · s . We also consider λ = 1 cm2, isotropic
behaviour with d̃11 = d̃22 = 0.004 cm2/day2 and to guarantee the positiv-
ity of Dv we take d̃v,11 = d̃v,22 = −10−14 cell/Pa day ([Kee et al.(2005)],
[Liu et al.(2005)]) which leads to d11 = d22 ∼ 0.004 cm2/day and dv,11 =
dv,22 = 0.001 cm2/day2.
In Figure 2 we plot the numerical solution at day 6. Solution is presented

in logarithmic scale, which means that contour plots represent the power
of 10 of the density of tumor cells. In this case we observe a very intense
spreading of proliferation cells and we can conclude that migration cells are
already quite far from the core.
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Figure 2: Numerical results at day 6 (logarithmic scale) .

Let us consider now that the chemotherapy treatment defined by (5) is
applied with a protocol as illustrated in Figure 1. Conditions (21) and (23)
are used to compute a profile for G(t) that lead to control the total tumor
mass. We consider a 24h dosage and different rest periods. In Table 1 we
show the minimum value of k ((5)) defined by conditions (21) and (23), for
a virtual patient as defined in the beginning os this section.

Protocol kmin [./day]

each 2 days 0.064
each 7 days 0.224
each 14 days 0.448

Table 1: kmin as (21) and (23), for a protocol of 24 consecutive hours of
chemotherapy .

In Figure 3 we plot cell distribution at day 104 for an untreated patient
and three patients with different chemotherapy protocols. All three proto-
cols start at day 7, and follow different rest periods represented in Figure
1 (k = 0.065/day is associated to a 24h dosage at days 7, 9, 11, 13, etc;
k = 0.225/day is associated to a 24h dosage at days 7, 14, 21, 28, etc;
k = 0.45/day is associated to a 24h dosage at days 7, 21, 35, 49, etc). We
observe that glioma mass density is significantly reduced when chemother-
apy is used, although we do not observe a significant reduction of the tumor’s
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area. We remind that all plots are presented using logarithmic scale of the
density of cells.
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Figure 3: Numerical results at day 104 (logarithmic scale) .

Finally, in Figure 4 we compare glioma masses of the virtual patient when
no chemotherapy is administered and the results of the adminstration of the
above three chemotherapy protocols. We observe a significant reduction of
glioma masses when compared to glioma’s untreated patient. The results
presented in this figure shows the effectiveness of the our approach to define
chemotherapy protocols.
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Figure 4: Glioma masses M1(t) for 1 year (logarithmic scale) .
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6. Conclusions

In this paper we studied a mathematical model to describe the evolution
of glioma cells with and without chemotherapy. The model was established
combining a mass conservation law with a non Fickian mass flux that takes
into account the viscoelastic behaviour of the brain tissue described by the
Voigt-Kelvin model.
Using the energy method we deduced estimates for a functional related

glioma mass M2(t) defined using L2 norm. These estimates allowed us to
define sufficient conditions on the parameters that lead to the control of
M2(t).
Semi-discrete approximations for the proliferation and migratory cancer

cells presenting the same qualitative behaviour of the continuous counter-
parts were introduced. Sufficient conditions that relate the chemotherapy ef-
fect with the growing rates of the semi-discrete migratory and proliferations
glioma cells that lead to M2,H(t) < M2,H(0) were also established. These
conditions allow us to define efficient protocols that lead to a decreasing of
the cancer mass.
Numerical experiments illustrating the behaviour of the glioma mass under

the conditions deduced for the chemotherapy protocols are also included. The
results obtained suggest that our approach is a promising one.
Models that will take into account the space effect of chemotherapy will

be addressed in a future work. In this case we need to incorporate in the
diffusion equation for the drug concentration the viscoelastic effect of the
brain tissue on the diffusion drug similar to the one considered here in the
migration of glioma cells. As the complete model is composed by integro-
differential quasilinear equations of diffusion-reaction type, its mathematical
and numerical study is a challenging problem. Future work will also address
mathematical models with a real geometry and that takes into account the
white and gray matter of the brain. Comparison of the model with existing
medical protocols will be also considered.
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