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FIBER SURFACES FROM ALTERNATING STATES
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Abstract: In this paper we define alternating Kauffman states of links and we
characterize when the induced state surface is a fiber. In addition we give a different
proof of a similar theorem of Futer on homogeneous states.
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1. Introduction

Given a diagram D of a link L we can construct a collection of disjoint
disks connected by a twisted band at each crossing. We thus obtain a sur-
face whose boundary is the link L. The disks and bands are defined by how
we split the crossings in the diagram of L. At each crrossing there are two
choices of resolutions for the split: an A-resolution or a B-resolution, as pre-
sented in Figure 1.

A Kauffman state σ of a link diagram D is a choice of resolution for each
crossing of D. The resulting surface Sσ is called the state surface of σ. The
boundaries of the disks induce a decomposition of the plane into connected
components that we call regions. The well known Seifert surface of an ori-
ented diagram of a link is a particular case of a state surface, where the
resolution of each crossing is defined by the orientation. It has been an in-
terest of research to identify fibered knots and their fibers. We are interested
in understanding when a state surface is a fiber. In the work of Futer, Kalfa-
gianni and Purcell [1, 2] it was studied for homogeneous states, that is when
all resolutions of the diagram in each region are the same. (See Theorem 2.)
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Figure 1: Resolutions

In this paper we give a different proof of this theorem and we prove a similar
theorem for a different type of Kauffman states, as in the next definition.

Definition 1. A Kauffman state σ is said to be alternating when for each
circle defined by σ, with a choice of orientation on its boundary, if two con-
secutive crossings attached to it in the same region have the same resolution
then they are adjacent to the same circles defined by σ.

Before we present our main result, we associate two graphs to each state of a
link diagram. The state graph Gσ has one vertex for each disk and one edge
for each band defined by σ. We label the edges by the resolution of the re-
spective crossings. The reduced graph G′

σ is obtained from Gσ by eliminating
duplicated edges, with the same label, between two vertices. From the state
surface Sσ we define also a reduced surface S ′

σ by cutting duplicated bands
with the same label attached to the same pair of disks. We note that the
graphs Gσ and G′

σ are not abstract graphs but instead they are embedded in
the surfaces Sσ and S ′

σ as their spines. An inner cycle, of the state graph or
a reduced version of it, is an innermost cycle in a certain region. Our main
result is the following.

Theorem 1. Let σ be an alternating state of a link diagram DL. Then E(L)
fibers over the circle with fiber Sσ if and only if the reduced graph G′

σ is a
tree.

The next examples illustrate that the classes of link diagrams in theorems 1
and 2 are distinct. Certain states can be both homogeneous and alternating,
as for example the Seifert state of the Figure eight knot as in Figure 2.
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Figure 2: The Seifert state of this Figure eight knot diagram is a fiber by
theorems 1 and 2.

But in general a state isn’t both homogenous and alternating. For instance,
in the Figure 3 the Seifert state is alternating and not homogeous.
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Figure 3: The knot 12n0328 is prime, the Seifert state of this diagram is
alternating and not homogenous, and the corresponding state surface is a fiber
by Theorem 1.

Furthermore, in the following example the Seifert state is homogeneous but
not alternating.
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Figure 4: The Seifert state of this granny knot diagram is homogenous and
not alternating, and the corresponding state surface is a fiber by Theorem 2.

The reduced graph of the state in the examples of Figure 2 is a tree, so in
this particular case the state surface is a fiber. We notice that if Gσ has
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edges with different labels between the same pair of vertices then G′
σ is not

a tree and, by Theorem 1, Sσ is not a fiber.

In section 2 we prove this theorem using Murasugi sums and results of Gabai
on knot fibration. In section 3 we give a different, homological proof, of the
following theorem of Futer [1] on homogeneous states. The techniques used
are similar to the ones in the paper [4] by the first author, where he studies
the fibration of augmented link complements.

Theorem 2. Let σ be a homogeneous state of a link diagram DL. Then E(L)
fibers over the circle with fiber Sσ if and only if the reduced graph G′

σ is a
tree.

2. Fibers from alternating states

For this section we use a specific concept of graph decomposition: We say
that two vertices, v and w, decompose a graph G into components G1, . . . , Gk

if
G = G1 ∪ · · · ∪ Gk and Gi ∩ Gj ⊆ {v, w}, for i 6= j. We also make use
of the the following theorem by Gabai [3] on Murasugi sum and knot fibra-
tion.

Theorem 3 (Gabai). Let T ⊂ S3, with ∂T = L, be a Murasugi sum of
oriented surfaces Ti ⊂ S3, with ∂Ti = Li, for i = 1, 2. Then S3−L is fibered
with fiber T if and only if S3 − Li is fibered with fiber Ti for i = 1, 2.

With the following lemma we are able to prove that we neither lose fibra-
tion information by working with the reduced state graph nor with graph
decomposition.

Lemma 1. Let Gσ be a state graph and suppose there are two vertices, v and
w, adjacent by the edge X, that decompose Gσ into connected components X,
H1, H2, . . ., Hk. (See Figure 5.) Consider also the state surface Si induced
by σ and the subgraph X ∪Hi of Gσ, i = 1, . . . , k. Then, Sσ is a fiber if and
only if each surface S1, . . . , Sk is a fiber with respect to its boundary.

Proof : We start by proving that Sσ is a Murasugi sum of the surfaces S1, . . . , Sk.
Consider one of the connected components Hl. If Hl contains only one of the
vertices v or w, then using the disk associated to this vertex and X we can
decompose Sl from Sσ by a Murasugi sum. (See Figure 6.) Notice that Sl is
also the state surface of Hl, since X contains a terminal vertex in X ∪Hl.
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Figure 5: Representation of the decomposition of Gσ by v ∪ w.
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Figure 6: When Hl is adjacent to only v, (a), there is a decomposition of
Sσ, (b), by v ∪ w as a Murasugi sum, (c).

Let us assume now that Hl contains v∪w. Suppose, without loss of general-
ity, that Hl is innermost with respect to X, i.e., there is no other component
between Hl and X in the state graph. We can decompose Sl from Sσ by a
Murasugi sum as depicted in Figure 7.
Repeating this procedure with subsequent innermost components we obtain
the claimed Murasugi sum decomposition. Therefore, by Theorem 3, Sσ is
a fiber if and only if each surface Sl, . . . , Sk is a fiber with respect to its
boundary.

Corollary 1. Suppose that there are two edges with end points v and w. If
the edges have different labels then the surface Sσ is not a fiber. If the edges
have the same label then Sσ is a fiber if and only if the surface obtained by
cutting the band corresponding to one of the edges is a fiber.

Proof : Under the statement of this Corollary, in Lemma 1 one of the surfaces
Si is either an annulus, when the edges have different labels, or a Hopf band,
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Figure 7: When Hl is adjacent to both v and w, (a), there is a decomposition
of Sσ, (b), by v ∪ w as a Murasugi sum, (c).

when the edges have the same label. In the former case, as an annulus is not
a fiber, the surface Sσ is not a fiber; in the latter case, since an Hopf band is
a fiber, then Sσ is a fiber if and only if the remaining Murasugi summands
are fibers, that is the surface obtained by cutting the band corresponding to
one of the edges is a fiber.

Remark 1. In light of Corollary 1 we assume from now on that the state
graph Gσ has no edges with different labels adjacent to the same pair of
vertices.

Let L be a link and σ a state for a diagram DL of L. We denote by L′ the
boundary of the reduced surface S ′

σ, and we observe that the reduced graph
G′

σ is the state graph associated to S ′
σ.

Corollary 2. The link L′ is fibered by S ′
σ if and only if L is fibered by Sσ.

Proof : This is a immediate consequence of Corollary 1.

Lemma 2. Let Gσ be a state graph and suppose there are two vertices, v and
w, that decompose Gσ into two connected components X and Y , and there
is an alternating path α from v to w, in Y , that together with X define an
inner cycle. (See Figure 8.) Consider also the state surface Sy induced by σ

and Y , and the state surface Sx induced by σ and X ∪α. Then, Sσ is a fiber
if and only if each surface, Sx and Sy, is a fiber with respect to its boundary.
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Figure 8: An alternating path α in that together with X define an inner cycle.

Proof : Since X ∪ α defines an inner cycle and α is alternating, with respect
to the labels, then there is a ball Q intersecting Sσ at Sx with the band
associated with α in ∂Q. In this way, we can decompose Sσ as a Murasugi
sum of Sx and Sy, as depicted in Figure 9.
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Figure 9: Decomposition of Sσ by α as a Murasugi sum of Sx and Sy.

From the result of Gabai and this Murasugi sum we have the statement of
the lemma.

Lemma 3. If the state graph Gσ has an inner cycle that is alternating with
respect to the labels A or B then Sσ is not a fiber of L.

Proof : Consider an inner cycle γ of Gσ. In Lemma 2, let X be one edge of γ
and α the remaining edges. Then, Sσ is a fiber if and only if Sx and Sy are
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fibers. Since γ is alternating then Sx is an annulus, which is not a fiber of
its boundary. Hence, Sσ is not a fiber of L.

Proof of Theorem 1: We start by observing that if G′
σ is a tree then S ′

σ is a
disk, and hence a fiber of L′. Therefore, by Corollary 2 L is fibered by Sσ.
Suppose now that G′

σ has a cycle. Then Gσ has also a cycle. Consider an
inner cycle α of Gσ. Two consecutive edges of α are also consecutive in the
common vertex. Since σ is alternating then these two edges have different
resolutions. Hence, α is alternating. Consequently, by Lemma 3 the state
surface Sσ is not a fiber of L.

3. A new proof of Theorem 2

In this section we present a different proof of Theorem 2. This is the main
theorem in [1], where it is proved inductively via Murasugi sums together
with Theorem 3 to deduce fibering information. Some of these ideas were
also independently used in the work of the first author [4] and in the previous
section. The proof we present is a consequence of Stallings’ fibration criteria
[5].

Theorem 4 (Stallings). Let T ⊂ S3 be a compact, connected, oriented sur-
face with nonempty boundary ∂T . Let T × [−1, 1] be a regular neigborhood of
T and let T+ = T ×{1} ⊂ S3−T . Let f = ϕ|T , where ϕ : T × [−1, 1] −→ T+

is the projection map. Then T is a fiber for the link ∂T if and only if the
induced map f∗ : π1(T ) −→ π1(S

3 − T ) is an isomorphism.

We describe the induced map in the case T is the state surface associated
to the reduced graph of a homogeneous link. We will see that when G′

σ is a
tree, the reduced surface S ′

σ is a disk and the map f∗ is trivial, as desired.
When G′

σ has cycles, we show that the map f∗ cannot be an isomorphism by
showing that the corresponding map on first homology is not an isomorphism.
By decomposing the homogeneous link along cut vertices in the graph, we
only need to prove this result for all-A or all-B states. We provide the proof
for the case of an all-A state, the other case being similar.
First note that in the absence of cut vertices in the graph G′

σ, the surface
S ′
σ is a checkerboard surface. If the graph G′

σ is a tree, then the surface S ′
σ is

a disk. Hence S ′
σ is a fiber, and by Corollary 2 the surface Sσ is also a fiber.

Suppose now that Sσ is a fiber but G′
σ has cycles. We will prove that this

contradicts Stalling’s theorem. First note that the fundamental group of the
surface S ′

σ is free. Consider the inner cycles α1, ..., αn in G′
σ oriented in the
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counter-clockwise direction. Since Sσ is a fiber, it is orientable, hence S ′
σ is

also orientable and we choose a base point a of π1(S
′
σ) such that, when seen

from above the projecting plane, we see the base point a in the “+” side of
S ′
σ. Finally, add arcs h1, ..., hn from a to each of the inner cycles above. This

gives loops βi = hiαih
−1
i , based at a. This set of based loops corresponds to

a generating set for π1(S
′
σ). These generators will be denoted by u1, ..., un.

Since the surface S ′
σ is a checkerboard surface, its complement S3−S ′

σ also
has a free fundamental group. We now describe a generating set for this
group. There are two types of white regions in the projecting plane: one
unbounded region and n bounded ones, which correspond to the inner cycles
of G′

σ. Let C0 denote the unbounded white region determined by S ′
σ and let

Ai denote a white region determined by the inner cycle αi. Let γi ⊂ S3 − S ′
σ

be a semi-circle with one endpoint in C0 and the other in Ai, lying under
the projecting plane. Let f : S ′

σ −→ S3 − S ′
σ be the function described in

theorem 4. Associated to each region Ai we construct a simple closed curve
by connecting the endpoints of the arc γi to the point f(a) by straight line
segments. Each of these curves is oriented so that, starting at f(a), we move
along the line segment connecting f(a) to the endpoint of γi in Ai, then move
along γi to the second endpoint and then back to f(a) through the second
line segment. We have built loops with base point f(a) corresponding to a
set of generators for π1(S

3 −S ′
σ). These generators are denoted by x1, ..., xn,

according to the label of region they cross.
Let S

′+
σ be the copy of S ′

σ in S3 − S ′
σ parallel to S ′

σ, obtained from S ′
σ

by pushing it in the “+” direction. This is formally defined by the map
f : S ′

σ −→ S3 − S ′
σ described in Theorem 4. The induced map f∗ can be

described by determining the image of each generator ui ∈ π1(S
′
σ). We write

f∗(ui) as a word on the generators x1, ..., xn, given by the image the loop
βi = hiαih

−1
i :

f∗(ui) = whi
wαi

w−1
hi

where whi
is the word on the letters x1, ..., xn given by the image of the arcs

hi under the map f . The word wαi
is obtained by the image of the cycle

αi as follows. Suppose that αi and αj have a common edge. Vertices are
labeled “+” or “−”, depending on the side of the surface they lie. We have
two possibilities:

Case 1. The orientation induced on the edge by αi is from a “+” vertex to a
“−” vertex. In this case we write the letter xi. (See Figure 10 left.)
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Case 2. The orientation induced on the edge by αi is from a “−” vertex to a
“+” vertex. In this case we write the letter x−1

j . (See Figure 10 right.)

• •

αi

αj
+ −

αi+ −
• •

• •
αi

αj

+ −

αi+ −
• •

Figure 10: Case 1 (left); case 2 (right).

Remark 2. It is important to notice the inner cycle αi may share an edge
with the unbounded region C0. If this is the case, in 2 above, we write no
letters corresponding to this edge.

Remark 3. Observe that the loops αi and αj induce reverse orientations on
the edges they share. Therefore, when we write the letters corresponding to
the loop αj, the letter corresponding to this edge is the same letter as αi,
with opposite sign, i.e., either x−1

i or xj. This is illustrated in figure 10.

Now we consider the map f̄∗ : H1(S
′
σ) −→ H1(S

3−S ′
σ) induced on homology

by f∗. Denote by ū1, ..., ūn the generators of H1(S
′
σ), corresponding to the

generators of π1(S
′
σ). The generators of H1(S

3 − S ′
σ) are defined similarly

and denoted x̄1, ..., x̄n.
The map f̄∗ is given by a n× n matrix A = [aij], where the i-th column is

the vector f̄(ūi) ∈ H1(S
3 − S ′

σ). By the description of the map f∗ and the
remarks above, the matrix A has the following properties:

(i) aii ≥ 2;

(ii) aii ≥
∑

j 6=i

|aij|

(iii) aii ≥
∑

j 6=i

|aji|

(i)follows from the fact that every inner cycle in G′
σ has at least 4 edges; (ii)

and (iii) follow from the fact that, when we go through the cycle αi, at every
other edge we write the letter xi and at the remaining edges we write one of
the other letters xj or write no letters (as in remark 2).
To prove that the map f∗ is not an isomorphism if G′

σ is not a tree (i.e.,
has cycles), it suffices to prove the matrix A is not invertible over Z. This is
straightforward:
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Theorem 5. Let A = [aij] be such that aii ≥ max(2,
∑

j 6=i

|aij|), ∀i ∈ {1, . . . , n}.

If det(A) 6= 0, then det(A) ≥ 2 and this inequality is sharp.

Proof : We will prove the theorem by induction on n.
For n = 1, det(A) = det[a11] = a11 ≥ 2.
Consider now any n ∈ N and suppose that the result is true for n− 1.
Suppose det(A) 6= 0 and let B = [bij] ∈ Mn(Z) be the adjugate matrix of

A. Then AB = (detA)In.
If all elements of the column j of B have the same absolute value bjj, then

det(A) =
∑

k aijbji is a multiple of bjj ≥ 2.
If not, suppose |bij| ≥ |bkj|, ∀k ∈ {1, . . . , n} and |bij| > |bkj| for some k.

Then

∣

∣

∣

∣

∣

n
∑

k=1

aikbkj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

aiibij +
∑

k 6=i

aikbkj

∣

∣

∣

∣

∣

∣

≥ |aiibij|−
∑

k 6=i

|aikbkj| > |aiibij|−|aiibij| = 0.

Since AB is a diagonal matrix, then i = j. Therefore, |bii| > |bki|, ∀k 6= i.
Furthermore, by the induction hypothesis, bii ≥ 2. Hence

det(A) =

∣

∣

∣

∣

∣

n
∑

k=1

aikbki

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

aiibii +
∑

k 6=i

aikbki

∣

∣

∣

∣

∣

∣

≥ |aiibii| −
∑

k 6=i

|aikbki| ≥

≥ aiibii − aii(bii − 1) = aii ≥ 2.

To see that the inequality is sharp, observe that the determinant of the
n× n tridiagonal matrix

A =





















2 2 0 0 0 · · · 0 0
1 2 −1 0 0 · · · 0 0
1 0 2 1 0 · · · 0 0
0 0 1 2 1 · · · 0 0
...

...
...

...
... . . . ...

...
0 0 0 0 0 · · · 2 1
0 0 0 0 0 · · · 1 2





















is 2, for every n ∈ N.
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