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MOLECULAR TRANSPORT IN VISCOELASTIC
MATERIALS: MECHANISTIC PROPERTIES AND

CHEMICAL AFFINITIES

J.A. FERREIRA, P. DE OLIVEIRA, P.M. DA SILVA AND LAURENT SIMON

Abstract: Simulations show that the kinetics of permeant fluids in viscoelastic
matrices depends on the rheological and chemical properties of the material. Fick’s
law fails to describe transport through viscoelastic materials because of the stress
exerted on the incoming fluid which causes a delay. Reversible binding to im-
mobilizing sites also retard permeation of molecules. The effects of mechanical
properties and chemical affinities of materials on the transport of solutes are stud-
ied. An integro-partial-differential equation (IPDE) is used to model the trans-
port. While the differential part of the equation is represented by an elliptic op-
erator, the integral part, describes the contributions of stress and reversible bind-
ing. The stability of the model is investigated. The steady-state flux and effective
time constant are calculated. The lag time is also studied using multiple inte-
gration. Subsequent analyses reveal the dependence of the steady-state flux, the
effective time constant, the lag time on the Young modulus, the viscosity and the
binding/unbinding rates. The results presented in this paper make it possible to
tune the mechanical and chemical properties to achieve a desired transport profile.
Keywords: partial integro-differential equation, viscoelasticity, Laplace transform

1. Introduction

Viscoelastic materials continue to play a pivotal role in applications, such
as controlled release systems, chemical protective clothing and impermeable
liners. In controlled release systems, these materials are used as carriers ([14])
and coatings designed to mask the taste of a medication ([16]). Delivery via
the oral route is difficult for proteins produced in bioreactors because of en-
zymes present in the gastrointestinal tract. In addition, the short life of these
molecules makes it necessary to administer several injections to maintain a
therapeutic plasma concentration. The ideal situation would be to shield the
drug until it reaches the target site, at which point the carrier is able to un-
load its cargo in a predetermined manner. Protective clothing is important to
guard against chemical hazards or biohazards. Some of these compounds are
absorbed through chemical protective clothing permeation, the skin barrier
and the viable epidermis, followed by distribution into the blood capillaries
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resulting in systemic poisoning. Nanotechnology-based materials are inves-
tigated for providing protection in these cases ([24]). Contrary to controlled
release technologies, efforts are devoted to developing a strong barrier to pre-
vent the absorption of chemicals. Impermeable liners, such as geomembranes,
are designed to reduce risks associated with the diffusion of pollutants in the
environment ([13]). To serve as effective sealants against contaminants, the
mechanical properties of the membrane have to be well understood. Studies
should also shed light on how chemicals are being transported through these
polymeric sheets ([13]) to prevent seepage of pollutants.
In spite of the notable success and progress, the lack of adequate math-

ematical models that account for the permeant/polymer structures limits
further development in key research areas. A measure of the time it takes to
achieve a steady-state condition (effective time) and the first moment when
a concentration of permeant is detected (lag time) is sometimes missing from
the literature or not written as an explicit function of the system character-
istics. A clear understanding of the links between the performance criteria
and these key features would provide experimentalists with a great insight
into the governing transport mechanisms.
The motion of a fluid through a polymeric matrix depends not only on the

properties of the fluid but also on the mechanistic and chemical properties of
the material. As a response to the strain caused by permeation, the matrix
offers a resistance in the form of a stress exerted on the incoming fluid. This
means that the brownian motion, underlying Fickian diffusion, is delayed by
the viscoelasticity of the matrix. Furthermore, if the material is reactive, as
it is the case of reversible binding to immobilizing sites, the transport of the
solvent is further delayed.
Transport through viscoelastic matrices and reactive matrices has received

considerable attention by both experimentalists and theorists. In [18] and
[19], the transport of a fluid through a reactive matrix is studied but no
viscoelastic effects are considered. Recheares address a simplified mechanical
model in [8] and [9] and establish an expression for the effective time. In these
papers, the mechanical properties of the matrix is described by a Maxwell or
a Maxwell-Voigt model ([1]) and lag time is not computed.
In the present paper, a generalized Maxwell model is used to examine

viscoelastic effects. Furthermore, the chemical interaction between the per-
meant and the matrix, that is the binding to immobilizing sites in the ma-
trix, which is a feature common to many applications, is also added to the
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model. The problem can be modeled by an integro-partial-differential equa-
tion (IPDE), where the differential part represents the Fickian diffusion. The
integral operators in the equation include memory terms that describe the
viscoelastic behavior and the chemical properties of the material. The stabil-
ity of the IPDE, relative to perturbations of the initially conditions, can be
proved by a technique presented in [25]. The theoretical restrictions needed
to establish stability have a sound physical meaning and are used to select
meaningful parameters in the computations. This model allows researchers
to use experimental rheological information about elasticity and viscosity of
the material. Data generated by experimentalists are easily incorporated in
the model. As Maxwell generalized model may include as many parame-
ters as needed, stress-strain profiles from laboratory data can be described
accurately.
We implement an analytical approach in order to develop closed formulas

for the steady fluxes, and the time constants. These formulas are derived
without explicit knowledge of the solution and highlight the dependence of
the solution on the phenomenological parameters of the model. The theory
of Laplace transforms is employed to characterize the steady-state flux and
the effective time constant that can be interpreted statistically as the waiting
time to achieve equilibrium in the system. An expression for the concept of
lag time is provided using multiple integration in space and time. The depen-
dence of the steady-state flux, the effective time constant and the lag time
on the mechanical and chemical parameters of the model is fully analyzed.
These findings are important tools for designing a system that behaves in a
predefined manner.
Section 2 of this contribution focuses on an integro-differential model of

transport through a viscoelastic matrix. The stability of the model is anal-
ysed. The effective time constant and lag time are computed. In Section
3, the joint influence of viscoelasticity and reversible binding is discussed.
Numerical simulations in Sections 2 and 3 are performed with an Implicit-
Explicit finite difference method. Conclusions are drawn in Section 4.

2. Diffusion and viscoelastic properties

2.1. Mathematical model. We consider a fluid diffusing through a vis-
coelastic cylindrical matrix Ω ⊂ R

3 with a boundary defined by ∂Ω =
Γin ∪ Γout ∪ ΓL, where ΓL is insulated. The matrix is initially void of the
fluid, which later enters the material at Γin, diffuses through the system and
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reaches Γout where it is immediately removed (Fig. 1). The incoming fluid

Ω

ΓL

ΓoutΓin

Figure 1. Geometry of the viscoelastic cylindrical matrix.

strains the molecular chains of the matrix which respond by exerting a stress
in the opposite direction.
Viscoelasticity is described by analogical models where the elastic proper-

ties are represented by springs and the viscous properties by dashpots ([1]).
A spring and a dashpot can be arranged in parallel (Kelvin model) or in
series (Maxwell model) to reproduce a certain viscoelastic behaviour. How-
ever, single Kelvin and Maxwell elements are of limited use when describing
an experimental stress-strain relation. In fact, in both models, only two free
parameters are available (the Young’s modulus of the spring and the viscosity
of the dashpot) to fit an experimental plot. A number n of Maxwell (Kelvin)
elements can be associated in parallel (series) to obtain a model with 2n
free parameters which lead to an accurate fit of experimental results. In this
paper, we define the relationship between the stress σ and the strain ǫ using
a Maxwell generalized model with n Maxwell arms and an isolated spring
(Figure 2).

Figure 2. Maxwell generalyzed model representation.
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The stress response of Maxwell arm i is obtained as the solution of the
linear differential equation,

Ei

µi
σi +

∂σi

∂t
= Ei

∂ǫ

∂t
, i = 1, ..., n, (1)

where Ei stands for the Young’s modulus of arm i and µi its viscosity. The
isolated spring with the Young’s modulus E0 has an elastic behaviour and
consequently σ0 = E0ǫ, where σ0 represents its stress response to the strain
ǫ. The total stress results from the sum of σi, i = 0, 1, ..., n, and, assuming
that σi(0) = 0, it can be given the form

σ =

∫ t

0

(E0+

n∑

i=1

Eie
− t−s

τi )
∂ǫ

∂s
ds in Ω× R

+, (2)

where τi =
µi

Ei
is the relaxation time of arm i. The parameter σ represents

in fact the absolute value of the stress. However, when the meaning of σ,
as a barrier to the permeation, is to be considered, Eq. (2) must reflect the
opposite signs of σ and ǫ.
If u represents the concentration of the incoming fluid in Ω, we assume that

ǫ = αu, where α is a dimensional constant. The ansatz appears physically
sound and it has been adopted by several authors ([4], [5], [17], [26]). As
∂u

∂t
> 0, the polymer exerts on the fluid a force

σ = −α

∫ t

0

(E0+

n∑

1

Eie
− t−s

τi )
∂u

∂s
ds in Ω× R

+. (3)

The assumption
∂u

∂t
> 0 is phenomenological and is a consequence of the

fact that the matrix is initially void and continuously fed by the fluid.
If E0 = 0, Eq. (3) represents a material that completely relaxes as σ(t) → 0

when t → ∞. Otherwise, there is no complete relaxation which means a
permanent bonding exists between the molecular chains.
The diffusion of the fluid in Ω is described by

∂u

∂t
= ∇.(D∇u) +∇.(Dv∇σ) in Ω× R

+, (4)

where σ is defined in Eq (3); D and Dv correspond to the diffusion and
stress-driven diffusion matrices, respectively. The units used in Eqs (3) and
(4) are presented in Annex I.
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For n = 1, Eqs (3) and (4) lead to the models in [8], [9], [17] and [26]. As
shown in [6] and [7], the constant Dv is positive and has a precise physical
meaning whereas the stress is of opposite sign to the strain. The authors in
[17] and [26] applied an equation of type (4) but use the Kelvin-Voigt model
to describe the relation ship between the stress and the strain. These last
two contributions essentially present numerical simulations. In addition, the
time constant was not determined.
Replacing the stress σ in Eq. (4) and assuming that the matrix is initially

void of the fluid, we obtain the following equation

∂u

∂t
= ∇ · (D − D̃vÊ)∇u+

∫ t

0

k(t− s)∇ · (D̃v∇u(s))ds, (5)

where D̃v = αDv, Ê =

n∑

i=0

Ei and

k(s) =

n∑

i=1

Ei

τi
e−s/τi (6)

In what follows, we drop the tilde in Dv. Equation (5) can assume the con-
servative form

∂u

∂t
= −∇.J, (7)

with the flux J defined by

J(x, t) = −(D −DvÊ)∇u−Dv

∫ t

0

k(t− s)∇u(s)ds. (8)

The model is completed with the following boundary and initial conditions





u = u0 on Γin × R
+,

u = 0 on Γout × R
+,

J = 0 on ΓL × R
+,

(9)

and {
u(x, 0) = 0, x ∈ Ω. (10)

The boundary condition on Γout means that the fluid is immediately re-
moved. Condition J = 0 implies that the boundary ΓL is insulated. As a
result if we extend Eq. (7) to the boundary Γout we obtain σ = 0 at Γout.
Other conditions on u, such as a Robin condition of type u(x, t) = kpuext,
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can be considered. This formulation includes the permeability constant kp
and the exterior fluid concentration uext. Our results can be generalized to
this case but the approach would involve more complex computations. We
assume that D − DvÊ is a diagonal matrix. As the entries represent the
overall Fickian diffusion, the matrix needs to be positive definite. We will
study if this condition is sufficient to prove stability.
In what follows, we assume that

0 < Dmin < Dii, 0 < Dv,ii < Dv,max, i = 1, 2, 3

where Dii and Dv,ii stand for the diagonal entries of D and Dv, respectively.

If Dmin − ÊDv,max > 0, then the bilinear form

a(u, v) = ((D − ÊDv)∇u,∇v), u, v ∈ H1
Γ(Ω),

where H1
Γ(Ω) = {v ∈ H1(Ω) : v = 0 on Γon∪Γout}, is elliptic in [H1

Γ(Ω)]
2 and

problem (5) has a unique solution ([10], [11]). The stability analysis follows
the method outline in [25].
Let uγ(x, t) = eγtu(x, t). It can be shown that uγ is solution of




∂uγ

∂t
− γuγ = ∇.((D − ÊDv)∇uγ)

+

∫ t

0

kγ(t− s)eγ(t−s)∇.(Dv∇uγ(s))ds, in Ω, t > 0,

uγ(x, 0) = w0(x), x ∈ Ω, uγ(x, t) = 0, x ∈ ∂Ω, t > 0,

(11)

where kγ(s) = eγsk(s). The energy method leads to

1

2

d

dt
‖uγ(t)‖2 − γ‖uγ(t)‖2

= −‖
√
D − ÊDv∇uγ(t)‖2 −

∫ t

0

kγ(t− s) (Dv∇uγ(s),∇uγ(t)) ds,

(12)
where ‖.‖ denotes both the norm of L2(Ω) and [L2(Ω)]3. The symbol (., .)
is used to describe the inner products of these spaces. The notation

√
A

represents a matrix whose entries are the roots of the entries of A.
Assuming that γ ≤ mini

1
τi
, then

∫ t

0

kγ(t− s)ds ≤ βγ =

n∑

i=1

Ei

1− γτi
.
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As ∫ t

0

kγ(t− s)‖∇uγ(s)‖ds · ‖∇uγ(t)‖ ≤
1

2

∫ t

0

kγ(t− s)‖∇uγ(s)‖2ds+
βγ
2
‖∇uγ(t)‖2,

(13)

we obtain

1

2

d

dt
‖uγ(t)‖2 + 2

(
Dmin − ÊDv,max − γCp −

1

2
Dv,maxβγ

)
‖∇uγ(t)‖2 ≤

Dv,max

∫ t

0

kγ(t− s)‖∇uγ(s)‖2ds, t > 0.

(14)
In (14) Cp is such that ‖v‖2 ≤ Cp‖∇v‖2, ∀v ∈ H1

Γ(Ω). Equation (14) leads to

‖uγ(t)‖2 + 2

(
Dmin −Dv,max(Ê − βγ

2
)− γCp

)∫ t

0

‖∇uγ(s)‖2ds

≤ ‖u0‖2 +Dv,max

∫ t

0

∫ η

0

kγ(η − s)dη‖∇uγ(s)‖2dsdη, t ≥ 0.

(15)
From (15) we have

‖uγ(t)‖2 + 2
(
Dmin −Dv,max(Ê + βγ)− γCp

)∫ t

0

‖∇uγ(s)‖2ds ≤ ‖u(0)‖2, t ≥ 0.

(16)
If

Dmin −Dv,max(Ê +

n∑

i=1

Ei) > 0, (17)

then there exists γ > 0 such that

‖u(t)‖2 + 2
(
Dmin −Dv,max(Ê + βγ)− γCp

)∫ t

0

e−2γ(t−s)‖∇u(s)‖2ds
≤ e−2γt‖u(0)‖2, t ≥ 0,

(18)

which proves that the model is stable.
Note that Eq. (17) is a stronger condition than simply requiring that the

diagonal matrix D −DvÊ be positive definite. For the rest of this work, we
assume that condition (17) holds.
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2.2. Identification of Dynamic Characteristics. The fluid flow proper-
ties are the same over any cross section of Ω perpendicular to the cylinder
axis. This means that the permeation of the fluid can be represented by a
one dimensional equation in space, with Dirichlet boundary conditions.
Closed-form expressions for lag time (tlag) and the effective time constant

(teff) are derived in this section. The performance of these metrics has
been investigated by several researchers ([2], [8], [15], [19], [20], [21], [23]).
Simulations are conducted to study how accurately they predict the steady-
state flux.

2.2.1. Lag time. The first appearance of a penetrant at Γout occurs at the
first instant t∗ such thatQ(t∗) 6= 0, whereQ(t) is the total mass released. The
time constant lag time is an approximation of t∗ and monitors the moment
when a detectable concentration is measured in a receiver cell, at Γout, as is
defined in what follows. From a mathematical point of view, an asymptote
to the graph of Q is computed and tlag is its intersection with the t axis.

Definition 2.1. The lag time is defined by

tlag = − b

m
,

where m = lim
t→∞

Q(t)

t
and b = lim

t→∞

(
Q(t)− lim

s→∞
Q(s)

s
t

)
.

According to a method first introduced by Frisch in [12] and further studied
in [3], Eq. (4) is integrated twice in space and once in time, resulting in

L∫

0

L∫

x

u(y, t)dydx = −LQ(t) +

t∫

0

L∫

0

J(x, s)dxds, (19)

where Ω = [0, L], Q(t) =

∫ t

0

J(L, s)ds and J is the flux defined in (8). From

Eqs. (8) and (19) we have

L∫

0

L∫

x

u(y, t)dydx = −LQ(t)−
t∫

0

L∫

0

D∗∂u

∂x
(x, s)dxds

−Dv

∫ t

0

∫ L

0

∫ s

0

n∑

i=1

Ei

τi
e
− s−τ

τi

∂u

∂x
(x, τ)dτdxds,

(20)
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where D∗ = D −DvÊ.
As

−
t∫

0

L∫

0

D∗∂u

∂x
(x, s)dxds = D∗u0t (21)

and
∫ t

0

∫ L

0

∫ s

0

n∑

i=1

Ei

τi
e
− s−τ

τi

∂u

∂x
(x, τ)dτdxds = −u0

n∑

i=1

Ei(t+ τie
− t

τi − τi) (22)

we conclude from Eqs. (20)-(22) that

Q(t) = − 1

L




L∫

0

L∫

x

u(y, t)dydx−D∗u0t−Dvu0

n∑

i=1

Ei(t+ τie
− t

τi − τi)


 .

(23)
Eq. (23) and the definition of tlag yield the following equation

L∫

0

L∫

x

uS(y)dydx = tlagu0(D −DvE0)−Dvu0

n∑

i=1

Eiτi, (24)

where uS stands for the steady state of u.
The Laplace transform operator is applied to Eq. (4) to determine uS

u(x, p) =
u0

p

sinh δ(L− x)

sinh δL
, (25)

where u(x, p) represents the Laplace transform of u(x, t),

u(x, p) =

∫ ∞

0

e−ptu(x, t)dt,

δ = ±
√√√√

p

D +Dvk(p)−DvE0 −Dv

n∑
i=1

Ei

(26)

and

k(p) =

n∑

i=1

Ei
1

τip + 1
.
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Application of the Final Value Theorem leads to us(x) = lim
p→0

u(x, p) and,

consequently,

uS(x) = u0
L− x

L
. (27)

Replacing the expression of us(x) in Eq. (24) gives

tlag =

L2

6 +Dv

n∑

i=1

Eiτi

(D −DvE0)
. (28)

As D − DvE0 > 0, Eq. (28) gives a positive lag time, as expected . The
Fickian contribution dominates the process and there is an effective penetra-
tion of the fluid in the polymer. After replacing τi =

µi

Ei
in Eq. (28), it is

clear that the lag time is independent of the Young’s modulus of the Maxwell
arms. It is an increasing function of elastic modulus E0 of the free spring

and the global viscosity
n∑

i=1

µi.

Figure 3 shows tlag as a function of E0. A Maxwell generalized model with
n = 1 is used. The following parameters are set:Ω = [0, 10−3], u0 = 1, L =
10−3, D = 3×10−3, Dv = 10−6, E1 = 10, and µ = 10−5. As E0 increases, the
steady-state flux decreases and the lag time increases. The role of E0 is to
lower the effective diffusion coefficient of the fluid. The crosslink density of
the matrix can be quantified by E0

3RT , where R is the universal constant and T
is the absolute temperature. As E0 is raised, the crosslink density increases,
which leads to a large degree of entanglement in the polymer. The net effect
of this change is a delay in the transport of the solute.
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Figure 3. Behavior of the flux and tlag for different E0.
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2.2.2. Effective time constant. The effective time constant indicates the time
elapsed before reaching a steady-state condition. This measure has been first
proposed in [2] and lately addressed in [8], [20], [21] and [22].
Following [2], teff , is calculated by

teff =

∫∞
0 (J(L, s)− JS)sds∫∞
0 J(L, s)− JSds

, (29)

where JS represents the steady flux.
While the lag time monitors the first appearance of the diffusing fluid, teff

measures the onset of an equilibrium state. In fact, it can be proved, using
a statistical interpretation ([8], [9]), that for t = 4teff , we have J(L, 4teff) =
98.17%JS(x) for a first-order system.
Equation (29) can be applied without explicit knowledge of the analyt-

ical form of the flux. As pointed out in [2], if the Laplace transform of
J(L, t), J(L, p), can be written as

J(L, p) =
1

p
(B1 + B2p+ B3p

2) + . . . (30)

for p small and where B2 6= 0, then teff = −B3

B2
.

As

J(x, p) = −(D −DvÊ)
∂u

∂x
−Dv

n∑

i=1

Ei

1 + pτi

∂u

∂x
, (31)

we have from Eqs. (25) and (31)

J(L, p) =

(
D −DvÊ +Dv

n∑

i=1

Ei

1 + pτi

)
u0

δ

sinh δL
, (32)

where δ is defined in Eq. (26). Eq. (32) can be written in the form:

J(L, p) = − u0

pL

1
1
w + p

w2

L2

3! +
p2
w3

L4

5! ...
, (33)

with

w(p) = D −DvÊ +Dv

n∑

i=1

Ei

1 + pτi
. (34)
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Using the Final Value Theorem the steady-state flux becomes

JS(L) =
u0

L
(D −DvE0). (35)

Therefore, JS(L) is a decreasing function of E0 and, consequently, of the
crossslink density, which is a physically sound result. Using the inequality

D > DvE0,

an effective release of the permeant fluid occurs.
The effective time constant is calculated from Eqs. (29)-(34):

teff =
1

D −DvE0

Dv(D −DvE0)
∑n

i=1 µiτi +
7L4

360

Dv

∑n
i=1 µi +

L2

3!

. (36)

When the relaxation times τi are replaced by µi/Ei, it is clear that teff is a
function of the Young’s modulus Ei of the Maxwell arms. The effective time
constant increases with τi.
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Figure 4. Influence of E0 for Maxwell generalized with n = 1.

The influence of E0 is illustrated in Figure 4. As E0 increases, J
S decreases

(Eq.(35)) and teff increases (Eq.(36)). The steady state flux is not very
sensitive to variations in E1 (Figure 5 - left) and in µ (Figure 5 - right). The
parameters used in this simulations are the those used to generate the plot
in Figure 3.
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Figure 5. Influence of E1 and µ for Maxwell generalized with
n = 1.

3. A General Mechanistic-Chemical Model

3.1. Mass Flux. The transport of a fluid across the viscoelastic matrix
Ω, represented in Figure 1, and in the presence of a chemical reaction is
described in this section. We address the case of molecular binding which is
an interaction between the fluid molecules and specific sites in the matrix.
The binding is in most cases reversible. Therefore the ligand and receptor
will join and divide repeatedly. While the stress function is still described by
the generalized Maxwell model, the penetrant is allowed to bind reversibly
to the viscoelastic matrix:





∂u

∂t
= ∇.(D∇u) +∇.(Dv∇σ) + f(u, v) in Ω× R

+,

∂v

∂t
= g(u, v) in Ω× R

+,

σ = −
∫ t

0

(E0+

n∑

i=1

Eie
− t−s

τi )
∂ǫ

∂s
ds in Ω× R

+,

(37)

where u represents the free fluid concentration, v the bound fluid concentra-
tion, D the diffusion and Dv the viscoelastic diffusion. The functions f and
g stand for the affinity between the fluid and the polymer. We stipulate,
as before, that the strain is proportional to the fluid concentration, that is
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ǫ = αu. Therefore, we have from (37)





∂u

∂t
= −∇ · J + f(u, v) in Ω× R

+,

∂v

∂t
= g(u, v) in Ω× R

+,

(38)

where the flux J is defined in (8).
For simplicity the binding and unbinding rates can be described by a linear

relationships. This representation is justified by the fact that the fluid U
(with concentration u) binds to immobilized sites S, in the matrix, with
constant concentration s. The reaction is shown by the equation U+S ⇄ V ,
where V is the bound fluid. The binding step is best explained by a second
order reaction, with rate λsu where s is constant. As a result this reaction
rate can be given the form λ2u. When the bound fluid V becomes free there
is only one reactant, so the reaction is first order of the form λ1v.
The function f is then defined as

f(u, v) = −λ2u+ λ1v, (39)

where λ1 and λ2 are the unbinding and binding rates, respectively ([19]).
According to Eq. (39) an equilibrium can be achieved between bound and
free molecules. As binding is reversible, the function g that appears in the
second equation of (37) is such that g(u, v) = −f(u, v). The variation of v,
in the second equation of system (38), is only due to the balance between
free and bound molecules, because bound molecules do not diffuse.
The system (38) is coupled with initial conditions

u(x, 0) = 0, v(x, 0) = 0, x ∈ Ω (40)

and boundary conditions





u = u0, on Γin × R
+

v =
λ2

λ1
u0(1− e−λ1t), on Γin × R

+

u = 0, on Γout × R
+

J = 0, on Γout × R
+

. (41)
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Assuming that D and Dv are constant matrices, the following equation is
obtained after using Eqs. (38)-(41):

∂u

∂t
= ∇·(D−DvÊ)∇u+

∫ t

0

k(t−s)∇·(Dv∇u(s))ds+λ1λ2

∫ t

0

e−λ1(t−s)u(s)ds−λ2u,

(42)

where Dv, Ê are included in Eq. (5) and the kernel k(s) is defined in Eq.
(6). As before, the tilde in Dv is dropped to simplify the notation. Following
the procedure in Section 2.1 we can establish a stability result for problem
(42), under perturbations of the initial condition.
The flux J associated to Eq. (42) is defined in (8). Using the Final Value

Theorem, JS is written as

Js =
u0

L
(D −DvE0). (43)

Therefore, the steady-state flux is not sensitive to the binding and unbinding
rates.
As in Section 2 we assume uniform properties of the flow over any cross

section of Ω (Figure 1), the problem can be formulated in one dimension.

3.2. Lag time. Let Ω = [0, L]. The lag time is computed by first writing
the temporal changes in u and v as





∂u

∂t
= −∂J

∂x
+ f(u, v) in Ω× R

+,

∂v

∂t
= −f(u, v) in Ω× R

+,
(44)

where J is defined in (8). From (44) we have

∂u

∂t
+

∂v

∂t
= −∂J

∂x
.

Following the Frisch method, we obtain
∫ L

0

∫ L

x

(
∂u

∂t
(y, t) +

∂v

∂t
(y, t)

)
dydx = −LJ(L, t) +

∫ L

0

J(x, t)dx.

After changing the order of integration in the expression on the left hand
side of the last equation we obtain

∫ L

0

x[
∂u

∂t
(x, t) +

∂v

∂t
(x, t)]dx = −LJ(L, t) +

∫ L

0

J(x, t)dx
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and integrating in time gives

∫ L

0

x[u(x, t) + v(x, t)]dx = −LQ(t) +

∫ t

0

∫ L

0

J(x, τ)dxdτ. (45)

To compute the asymptote of Q(t), we calculate the steady state of u and
v using the Final Value Theorem. The expression of us is the same as in Eq.
(27). From Eqs. (37) and (41) we have

v(x, t) = λ2

∫ t

0

e−λ1(t−τ)u(x, τ)dτ.

The Laplace transform of v is

v(x, p) = λ2
1

p+ λ1
u(x, p)

that is

v(x, p) = u0λ2
1

p(p+ λ1)

sinh δ̂(L− x)

sinh δ̂L
, (46)

where δ̂ is defined by

δ̂2 =
p(p+ λ1 + λ2)

(p+ λ1)w
(47)

and w is defined in Eq. (34). The Final Value Theorem applied to Eq. (46)
results in

vS(x) = u0
λ2

λ1

L− x

L
.

The lag time is calculated from Eqs (45), (46) and the expression of vs(x):

tlag =

(1 + λ2

λ1

)L
2

6 +Dv

n∑

i=1

Eiτi

(D −DvE0)
. (48)

When Dv = 0, we obtain tlag = (1 + λ2

λ1

) L
2

6D as referred in [19]. When no

binding occurs we have λ2 = 0 which leads to Eq. (28).
The lag time is insensitive to the reaction rates for a constant λ2

λ1

, as ob-

served in [19], for reactive membranes under no mechanical stress. The pre-
diction is not accurate because Q(t) depends on the binding rate λ2 ([19]).
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Figure 6. Influence of chemical reaction in tlag (Ω = [0, 10−3],
u0 = 1, L = 10−3, D = 3×10−3, Dv = 10−6, E0 = 103, E1 = 10).

Figure 6 shows tlag as a function of λ1 and λ2. As expected, the lag time
is an increasing function of the binding rate λ2 and a decreasing function of
the unbinding rate λ1. These behaviors are clearly observed in Figure 6 for
low values of the unbinding rate λ1 and large values of the binding rate λ2.

3.3. Effective time constant. The effective time constant is derived using
a procedure similar to the one implemented in Section 2.2.
From Eq. (8), the Laplace transform of J is

J(L, p) =
u0

p
w(p)

δ̂

sinh(δ̂L)
,

where w(p) is defined in (34) and

w(p)

p
=

1

δ̂2

p+ λ1 + λ2

p+ λ1
,

with δ̂ given by (47).

Expanding sinh(δ̂L) as a series, in the neighborhood of p = 0, J(L, p) takes
the form given by Eq. (30). After some computations, teff can be written
as:
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teff =
1

D −DvE0

7
360(

λ1+λ2

λ1

)
2L4

+Dv(D −DvE0)
n∑

i=1

ηiτi + (λ2

λ2
1

)L
2

3! (D −DvE0)

Dv

n∑
i=1

ηi +
L2

3!
λ1+λ2

λ1

.

(49)
The effective time, teff , depends on λ1 and λ2, and not only on λ2

λ1

as it
occurs for tlag. The quantitative dependence of teff on the unbinding rate is
presented in Table 1, when λ2 = 0.1.
Figure 7 shows the effect of binding on teff when Dv = 0. The effective

time constant decreases with an increase in the unbinding rate λ1. For larger
values of D, the influence of the unbinding rate λ1 is less significant because
diffusion becomes the driving mechanism. The time constant increases with
the binding rate (Fig. 7). As D increases, the chemical effects play a minor
role.
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Figure 7. Influence of chemical reactions on teff for two diffu-
sion coefficients, with λ2 = 1 (left) and λ1 = 1 (right).

In Figure 8, teff is plotted as a function of λ1 and λ2. When λ2 is held
constant, teff is a decreasing function of λ1. The larger the unbinding rate,
the less time it takes to reach the steady-state flux. Note that when λ2 = 0,
Eq. (36) is obtained.
Table 2 shows the effects of the reaction rates on teff . The effective time

constant for the mechanistic model Section 2 is 5.833× 10−5. When λ2

λ1

= 1,

teff is only a function of λ1, as shown by Eq. (49). As λ1 increases, the
equilibrium state is attained more quickly. When λ2

λ1

< 1, the binding rate
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λ1 teff 4teff
J(4teff )

Js

10 0.0246 0.0984 98.236%
5 0.0277 0.1108 98.908%
1 0.1166 0.4664 99.784%
0.5 0.3613 1.4452 99.836%
0.1 5 20 99.956%

Table 1. Influence of λ1 on the effective time and on the steady-
state flux (D = 5× 10−4, Dv = 0, λ2 = 0.1, L = 1 × 10−2, E1 =
10).

Figure 8. Influence of chemical reactions on teff (Ω = [0, 10−3],
u0 = 1, L = 10−3, D = 3×10−3, Dv = 10−6, E0 = 103, E1 = 10).

λ1 = λ2 = 10−3 λ1 = λ2 = 0.1 λ1 = 10−3, λ2 = 0.1 λ1 = 0.1, λ2 = 10−9

teff 499.9851 5 990.1043 5.843× 10−5

Table 2. Effective time constant for problem (37) for different
values of λ1 and λ2 (Ω = [0, 10−3], u0 = 1, L = 10−3, D =
3× 10−3, Dv = 10−6, E0 = 103, E1 = 10).

is smaller than the unbinding rate, a condition which promotes molecular
transport. Chemical affinity always induces a delay when compared with
diffusion through a membrane where only mechanical effects are modelled.
For a small binding rate λ2, teff estimated from Eq. (49), approaches the
value predicted by Eq. (36).
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teff = 2, Js = 1 teff = 1, Js = 0.5 teff = 10, Js = 0.5

λ 0.25 0.5 0.05
D 2× 10−3 1.5× 10−3 1.5× 10−3

Table 3. Characterization of a membrane with a predefined flux
profile (u0 = 1, L = 10−3, µ = 10−5, Dv = 10−6, E0 = 103, E1 =
10, λ = λ1 = λ2).

teff = 2, Js = 2× 10−4 teff = 2, Js = 2 teff = 10, Js = 0.5

λ 0.6 0.25 0.05
E0 3000 1000 2500
Table 4. Mechanical and chemical characterization of a chem-
ical and mechanical properties of a membrane with a predefined
flux profile (u0 = 1, L = 10−3, µ = 10−5, D = 3 × 10−3, Dv =
10−6, E1 = 10).

Equations (43), (48) and (49) can be used to design systems with pre-
defined steady-state fluxes. This approach leads to the estimation of the
binding/unbinding rates, the diffusion coefficient or the Young modulus.
Some numerical results are shown in Tables 3 and 4. The effective time

constant and steady-state flux were a priori fixed (Table 3). The parameter λ
is such that λ = λ1 = λ2. As the steady-state flux (43) in the second column
is half the value of the flux in the first column, we have

D(2) −DvE0 =
1

2
(D(1) −DvE0), (50)

where D(i) is the value of diffusion in column (i), i = 1, 2. From Eq. (50) we
obtain

D(2) =
1

2
D(1) +

1

2
DvE0.

The diffusion in the conditions of column 2 is larger than 1
2
D(1) because

mechanical effects are present. If Dv = 0, we have D(1) = 1
2D

(2). As λ2

λ1

= 1,
an unbinding rate larger than the one listed in column 1 must be considered
to set a smaller effective time constant in column 2. The diffusion coefficients
in the second and third columns are equal because the flux is the same in both
cases. As λ decreases to 0.05, it takes a longer time to reach the steady-state
flux (Column 3).
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In Table 4, values of λ and E0 are selected such that the predefined val-
ues for the effective time constant and steady-state flux are achieved. The
Young’s modulus E0 of the free spring is chosen so that the steady-state
flux satisfies Eq. (43). As E0 decreases, teff and the stress exerted by the
polymer on the penetrant decreases. Considering that in column 2 the effec-
tive time is the same as in column 1, the value of the unbinding rate must
decrease. A similar trend is observed in column 3.

4. Conclusions

This paper presents a model of transport of a permeant fluid through a
viscoelastic material where reversible binding can occur. The model assumes
that the polymer offers a resistance to the diffusion, by exerting a stress on
the incoming fluid. The physical intuition that the fickian diffusion should
dominate the non fickian one, to have effective permeation, is mathemati-
cally supported by the stability of the model. It is shown how to use the
mechanical and chemical properties to “taylor” the matrix in order to obtain
a predefined flux profile at the outlet boundary. This is achieved through the
establishment of closed form formulas for the steady flux, the time lag and
the effective time. As these expressions depend on the model parameters, an
inverse problem can be solved to define the properties of the matrix. Our
results provide guidelines for experimentalists because the mechanical prop-
erties of polymers can be tuned by blending together different polymers or
connecting molecular chains by cross-links. Similarly the chemical properties
of permeation can be changed by the inclusion of binding sites in the matrix
or the use of polymers with affinities for the diffusing fluid. The qualita-
tive dependence of the time constants on the parameters is physically sound.
The main contribution of this study is the quantification of such dependence,
which make it possible to tailor the mechanical and chemical properties of
the matrix for specific applications.
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Appendix A.Annex
Symbol Definition (unities)
u concentration of the penetrant (mol/m3)
D diffusion coefficient (m2/s)
Dv stress-driven diffusion coefficient (mol/(m.s.Pa))
σ stress (Pa)
E0 Young modulus (Pa)
Ei Young modulus of arms (Pa)
ǫ strain
τi relaxation time (s)
µi viscosity (Pa.s)
J flux (mol/(m2.s))
λ1 unbinding rate (s−1)
λ2 binding rate (s−1)
L length of the polymeric matrix (m)
Js steady-state flux (mol/(m2.s))
teff effective time (s)
tlag lag time (s)
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