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1. Introduction

Many physical problems are modeled by nonlinear partial differential equa-
tions for which, unfortunately, the Fourier transform method fails to solve
the problem. There was no unified method by which classes of nonlinear
partial differential equations could be solved, and the solutions were often
obtained by rather ad hoc methods. A significant result was posed by Gard-
ner, Greene, Kruskal and Miura in [6, 7] of a method for the exact solution
of the initial-value problem for the KdV equation [13]

ut + 6 u ux + uxxx = 0 ,

for initial values which decay sufficiently rapidly, through a series of linear
equation, which is now referred to as the Inverse Scattering Transform [2].
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P. D. Lax in [14] put the inverse scattering method for solving the KdV equa-
tion into a more general framework which subsequently paved the way to gen-
eralizations of the technique as a method for solving other partial differential
equations. He considered two time-dependent operators L and M, where L
is the operator of the spectral problem and M is the operator governing the

associated time evolution of the eigenfunctions L v = λ v ,
dv(t)

dt
= M v ; and

hence we get
dL

dt
= LM − ML if, and only if,

dλ(t)

dt
= 0 . If a nonlinear

partial differential equation arises as the compatibility condition of two such
operators L and M, then the last equation is called the Lax representation
of the partial differential equation and L and M is the Lax pair.

Orthogonal polynomials [21, 22] have profound connections with several
other areas of classical analysis: special functions, moment problems, Hankel
and Toeplitz determinants, spectral theory of Jacobi matrices, and random
matrices. The more recent connection is to the integrable systems (i.e. sys-
tems that are solvable as the KdV equations). Starting in the early 1990s,
the connection of the orthogonal polynomials to the integrable systems has
been increasingly appreciated and used by the orthogonal polynomial com-
munity. Many long-standing problems in the area of orthogonal polynomials
have been solved using this connection and several new exciting sides of this
connection have been discovered. A very recent one is concerned with the
relation between orthogonal polynomials and discrete Painlevé equations [10]
using the Riemann-Hilbert formalism for orthogonal polynomials [11].

On the other hand, the Toda lattice [27] appears in several contexts. Alge-
braic aspects related to integrability can be found in [24]; uses of symplectic
geometry to the analysis of the original Toda system in [16]; a relativistic mu-
tation is described in [25]. We do not intend to give a full list of applications
but to show the wide range of them.

As it has been discovered by Moser [19, 20], the dynamic of the solutions
of the Toda equations

a−1 ≡ 0 , a0 ≡ 1 ,











dan(t)

dt
= an(t) (bn−1(t) − bn(t)),

dbn(t)

dt
= an(t) − an+1(t),

n = 0, 1, . . . , (1)

with bounded initial data

bn(0) ∈ R , an(0) > 0 , (2)
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corresponds to the simple evolution of the spectral measure,

dµ(x; t) =
exp(−xt)dµ(x, 0)

∫

exp(−xt)dµ(x, 0)
, (3)

of a self-adjoint operator, J(t) , defined in the standard basis of ℓ2(0,∞) ,
ek = (0, . . . , 0, 1, 0, . . . )T , k = 0, 1, . . . , by a Jacobi matrix

J(t) = (Ji,j(t)) =









b0(t) 1 0
a1(t) b1(t) 1 0

0 a2(t) b2(t) 1 0
. . . . . . . . .









. (4)

In the case of arbitrary bounded complex initial data, the operator J(t) is
no longer self-adjoint and therefore the notion of real valued spectral measure
looses sense. However, it was possible to establish a simple evolution of the
resolvent function, or Stieltjes function [8],

S(z; t) = eT
0 Rz(t) e0 , (5)

for the resolvent operator, Rz(t) = [J(t)−z I]−1 , associated with the operator
J(t) (cf. [3]).

Here we highlight some properties of the resolvent function and of the Padé
aproximants of resolvent function (5) which can be taken as a basement for
the solution of the spectral problem. In this direction, S(z; t) defined in (5)
satisfies

S(z; t) = eT
0 Rz(t) e0 = eT

0 (J(t) − z I)−1e0 = eT
0

∞
∑

n=0

J(t)n

zn+1
e0

=

∞
∑

n=0

Jn
1,1(t)

zn+1
=

∞
∑

n=0

un(t)

zn+1
= 〈u(t),

1

z − x
〉,

where u(t) is the linear functional associated to the Jacobi matrix J(t) [18],
we have used [4]

〈u(t), xn〉 = Jn
1,1(t), n ∈ N, (6)

and the sequence of moments un(t) = 〈u(t), xn〉, n ∈ N , exists.
By definition, the diagonal Padé aproximants of index n, Πn, for the power

series

S(z; t) =

∞
∑

n=0

un(t)

zn+1
(7)
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is a rational function

Πn(z) =
Pn(z)

Qn(z)
, with deg Pn ≤ n and deg Qn ≤ n, (8)

such that

Qn(z)S(z; t) − Pn(z) =
c

zn+1
+ · · · .

An important property of the Padé aproximants for the resolvent function (5)
of the operator (4) is that their numerators and denominators satisfy a three
term recurrence relation,

wn+1(z) = (z − bn)wn(z) − anwn−1(z), n ∈ N ,

with initial conditions Q0 = 1, Q−1 = 0 and P0 = 0, P−1 = 1, where an

and bn are the coefficients of the matrix J(t) in (4). The sequence of monic
polynomials Qn are orthogonal with respect to the linear functional u(t). In
these conditions we say that u(t) is the regular linear functional associated
with the sequence {Qn}, assuming that detHn(t) 6= 0, where for n ∈ N,
Hn(t) =

[

ui+j(t)
]n

i,j=0
, are Hankel matrices (see [26]).

Furthermore, if det Hn(t) > 0, n ∈ N , then u(t) has an integral represen-
tation in terms of a positive Borel measure, ̺(x; t), supported on an infinite
point set, I, of the real line,

〈u(t), xn〉 =

∫

I

xn ̺(x; t) dx , n ∈ N ,

and the orthogonality condition reads as

〈u(t), Pn(x)Pm(x)〉 =

∫

I

Pn(x)Pm(x)̺(x; t)dx = hnδn,m , hn > 0 , n, m ∈ N .

This property is equivalent to the fact that the diagonal Padé approxi-
mants are the convergents of the continued fraction expansion for the power
series (7), i.e.

S(z; t) =
1

z − b0 −
a1

z − b1 −
a2

z − b2 −
. . .

. (9)

This relation between the coefficients of the operator J(t) and the rational
approximants for its resolvent function gives a procedure for the solution of
direct and inverse problems for the operator J(t) with complex coefficients.
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Thus, the direct problem, i.e. the determination of the resolvent function (5)
by means of the coefficients an(t), bn(t) of the operator J(t), can be solved
by direct computation of the moments

un(t) = eT
0 Jn(t) e0 , (10)

of the resolvent function and then, applying the theory of uniform conver-
gence of the diagonal Padé approximants to the resolvent function (see [9]).

The inverse problem [3], i.e. the determination of the coefficients an(t),
bn(t) of the operator J(t) by means of the resolvent function S(z; t), can be
solved by computing the coefficients of the power series expansion for S(z; t),
and then, applying the algorithm of expansion of a power series (7) for the
resolvent function in the continued fraction (9).

Let P be the column vector of monic orthogonal polynomials with respect
to a linear functional u(t) and J(t) the corresponding Jacobi matrix (4).
Then, the recurrence relation for the monic orthogonal polynomials can be
written as

J(t)P = xP .

We shall consider linear functionals normalized to have their first moment
equal to one, i.e.

u0(t) = 〈u(t), 1〉 = 1 . (11)

Next, we summarize the known results in relation with the dynamic so-
lutions of the Toda equations (1) and that are dispersed in the literature
(see [3, 17, 23] and references therein):

Theorem 1. Let us assume that the sequences {an(t)}n∈N and {bn(t)}n∈N are
uniformly bounded. The following conditions are equivalent:

(1) The Jacobi matrix J(t) defined in (4) satisfies the matrix differential

equation
d

dt
J(t) = J−(t)J(t) − J(t)J−(t), where

J−(t) =









0 0 0
a1(t) 0 0 0

0 a2(t) 0 0 0
. . . . . . . . .









. (12)

(2) The moments un(t), defined by (10), satisfy

d

dt
un(t) = un(t)u1(t) − un+1(t), n ∈ N. (13)
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(3) The Stieltjes or resolvent function associated with J(t) satisfies

d

dt
S(z; t) = −zS(z; t) + u1(t)S(z; t) + 1. (14)

(4) The derivative of the linear functional u(t) associated with J(t) satis-
fies

Du(t) = −xu(t) + u1(t)u(t), (15)

where xu(t) denotes the left product of the linear functional u(t) by
the first degree polynomial x.

In this work we analyze the correspondence between dynamics of ∆-Toda
equations for the coefficients of the Jacobi operator and its resolvent function.
Equivalent conditions in terms of difference equation for the Jacobi matrix,
the linear functional, the moments and the Stieltjes function are proved. The
main ingredient are orthogonal polynomials which satisfy an Appell condition
with respect to the forward difference operator ∆. Explicit examples related
with Jacobi and Laguerre orthogonal polynomials and ∆-Toda equations are
given. As a byproduct relations between confluent hypergeometric series are
explicitly given.

2. ∆-Toda equations

The main aim of this paper is to analyze the following system of difference
equations (∆-Toda equations):

{

∆tan(t) = αn
1 (t) (bn−1(t) − bn(t + 1)) ,

∆tbn(t) = αn
1(t) − αn+1

1 (t) ,
(16)

where

αn
1(t) =

gn(t)

u1(t + 1) + 1
, (17)

and

gn(t) =
n

∏

k=1

ak(t + 1)

ak−1(t)
, (18)

assuming that u1(t + 1) + 1 6= 0 and a0(t) = 1, where the forward difference
operator ∆t is defined by

∆tg(t) = g(t + 1) − g(t) .
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We shall also consider the backward difference operator, ∇t, defined by

∇tg(t) = g(t) − g(t − 1) .

A discrete extension of the results given in Theorem 1 is summarized in
the following theorem.

Theorem 2. Let us assume that the sequences {an(t)}n∈N and {bn(t)}n∈N are
uniformly bounded. The following conditions are equivalent:

(1) The Jacobi matrix J(t) defined in (4) satisfies the matrix difference
equation

∆tJ(t) = A(t)J(t)− J(t + 1)A(t), (19)

where

A(t) =











b0(t + 1) 0
g1(t) b0(t + 1) 0

0 g2(t) b0(t + 1) . . .
. . . . . . . . .











. (20)

(2) The moments un(t), defined by (10), satisfy

∆tun(t) = −un+1(t + 1) + u1(t + 1)un(t), n ≥ 0 . (21)

(3) The Stieltjes function associated with J(t) satisfies

∆tS(z; t) = −zS(z; t + 1) + u1(t + 1)S(z, t) + 1 . (22)

(4) The linear functional u(t) associated with J(t) satisfies

∆tu(t) = −xu(t + 1) + u1(t + 1)u(t) . (23)

(5) The monic polynomials pn(x; t) defined by the three term recurrence
relation

pn+1(x; t) = (x − bn(t))pn(x; t) − an(t)pn−1(x; t) ,

with p−1(x; t) = 0 and p0(x; t) = 1, satisfy an Appell property

∆tpn(x; t) = αn
1 pn−1(x; t) , (24)

where

αn
1 (t) =

〈u(t + 1), xnpn(x; t + 1)〉

(1 + u1(t + 1))〈u(t), xn−1pn−1(x; t)〉
=

gn(t)

1 + u1(t + 1)
, n ≥ 1 . (25)
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Proof : (1) ⇒ (2). By induction it can be proved that

∆tJ
n(t) = A(t)Jn(t) − Jn(t + 1)A(t) , (26)

where A(t) is defined in (20). By using (10)

eT
0 ∆tJ

n(t)e0 = ∆t

(

eT
0 Jn(t)e0

)

= ∆tun(t) ,

where eT
0 = (1, 0, . . . ). Moreover, from (26) we have

eT
0 ∆tJ

n(t)e0 = u1(t + 1)Jn
1,1(t) −

(

Jn
1,1(t + 1)u1(t + 1)

+Jn
1,2(t + 1)a1(t + 1)

)

= u1(t + 1)un(t) − Jn+1
1,1 (t + 1) ,

since b0(t + 1) = u1(t + 1), which completes the proof.
(2) ⇒ (3). From (7), then

∆tS(z; t) =
∞

∑

n=0

∆tun(t)

zn+1
= −

∞
∑

n=0

un+1(t + 1)

zn+1
+ u1(t + 1)

∞
∑

n=0

un(t)

zn+1

= −zS(z; t + 1) + u1(t + 1)S(z; t) + 1 ,

where we have used that u0(t) = 1.
(3) ⇒ (4). By using

S(z; t) = 〈u(t),
1

z − x
〉,

and (11), if we apply the ∆t operator, we have that the equation (22) reads as

∆tS(z; t) := 〈∆tu(t),
1

z − x
〉 = 〈u(t + 1),

−z

z − x
+ 1〉 + 〈u(t),

u1(t + 1)

z − x
〉

= 〈u(t + 1),
−x

z − x
〉 + 〈u(t),

u1(t + 1)

z − x
〉 ,

which implies

〈∆tu(t) + xu(t + 1) − u1(t + 1)u(t),
1

z − x
〉 = 0 ,

and so, all the moments for the linear functional ∆tu(t) + xu(t + 1)− u1(t +
1)u(t) are zero, and (23) is obtained.

(4) ⇒ (5). First of all, let us show that a regular linear functional u(t)
satisfying (21), is such that u1(t+1) 6= −1. Let us assume that u1(t+1) = −1.
Then, from (21) we obtain that u2(t + 1) = 1 which yields

det H1(t + 1) =

∣

∣

∣

∣

u0(t + 1) u1(t + 1)
u1(t + 1) u2(t + 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

1 −1
−1 1

∣

∣

∣

∣

= 0,
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in contradiction with being u(t) a regular linear functional (cf. for in-
stance [5]).

Let {pn(x; t)} the sequence of monic orthogonal polynomials with respect
to the linear functional u(t). Since {pn(x; t)} is a basis in the space of poly-
nomials of degree n, we have

∇tpn(x; t + 1) = pn(x; t + 1) − pn(x; t) =

n
∑

k=1

αn
k pn−k(x; t) . (27)

By convention we shall assume that α0
1 = 0. We shall prove for n > 1 that

αn
k = 0 for k = 2, . . . , n and αn

1 6= 0. By applying the linear functional u(t)
to (27) and using the orthogonality of pn(x; t) it holds

αn
n〈u(t), p0(x; t)〉 = 〈u(t),∇tpn(x; t + 1)〉 = −〈∆tu(t), pn(t + 1)〉 ,

where we have used that [1]

〈∆tu, p(x; t)〉 = −〈u,∇tp(x; t)〉 .

From (23) we obtain

αn
n〈u(t), p0(x; t)〉 = 〈xu(t + 1), pn(x; t + 1)〉 − u1(t + 1)〈u(t), pn(x; t + 1)〉

= −u1(t + 1)〈u(t), pn(x; t + 1)〉,

for n > 1, by using the orthogonality. From (27) the above expression can
be written as

αn
n〈u(t), p0(x; t)〉 = −u1(t + 1)〈u(t), pn(x; t) +

n
∑

k=1

αn
k pn−k(x; t)〉

= −u1(t + 1)αn
n〈u(t), p0(x; t)〉 ,

for n > 1, by using again the orthogonality. Since 〈u(t), p0(x; t)〉 = 1,

(1 + u1(t + 1))αn
n = 0,

and we obtain αn
n = 0. Similar arguments recursively can be used to prove

that αn
k = 0, for k = 2, . . . , n. Therefore,

∇tpn(x; t + 1) = αn
1 pn−1(x; t) .

Finally, we will determine αn
1 by using the orthogonality of pn(x; t):

αn
1〈u(t), xn−1pn−1(x; t)〉 = 〈u(t),∇t(x

n−1pn(x; t + 1))〉

= −〈∆tu(t), xn−1pn(x; t + 1)〉 .
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In order to compute the last inner product we shall use

pn(x; t + 1) = pn(x; t) + αn
1pn−1(x; t),

as well as the orthogonality:

〈∆tu(t), xn−1pn(x; t + 1)〉

= 〈u(t + 1), xnpn(x; t + 1)〉 − u1(t + 1)〈u(t), xn−1pn(x; t + 1)〉

= 〈u(t + 1), xnpn(x; t + 1)〉 − u1(t + 1)〈u(t), xn−1 (pn(x; t) + αn
1pn−1(x; t))〉

= 〈u(t + 1), xnpn(x; t + 1)〉 − u1(t + 1)αn
1〈u(t), xn−1pn−1(x; t)〉

which gives the value of αn
1 given in (25).

(5) ⇒ (1) If we apply ∇t to the recurrence relation

xpn(x; t + 1) = pn+1(x; t + 1) + bn(t + 1)pn(x; t + 1) + an(t + 1)pn−1(x; t + 1),

we get

αn
1xpn−1(x; t) = αn+1

1 pn(t) + bn(t + 1)αn
1pn−1(x; t)

+ ∆tbn(t)pn(x; t) + an(t + 1)αn−1
1 pn−2(x; t) + ∆tan(t)pn−2(x; t).

If we use again the recurrence relation to expand

xpn−1(x; t) = pn(x; t) + bn−1(t)pn−1(x; t) + an−1(t)pn−2(x; t),

by equating the coefficients in pn(x, t), pn−1(x; t) and pn−2(x; t), we get the
∆-Toda equations

{

αn
1 (t) = αn+1

1 (t) + ∆tbn(t),

αn
1 (t) (bn−1(t) − bn(t + 1)) = ∆tan(t),

(28)

with αn
1(t)an−1(t) = αn−1

1 (t)an(t + 1) , n ∈ N, which completes the proof.

Theorem 3. In the hypothesis of Theorem 2, assume that the normalized
functional u(t) verifies

u(t) = κ (1 + x)1−t v , (29)

where κ is the normalizing constant and v is a positive definite linear func-
tional. Then, the coefficients {an(t)}n∈N, {bn(t)}n∈N of the Jacobi matrix J(t)
associated to u(t) are solution of the ∆-Toda equations (16).
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Proof : Let
f(x, t) = (1 + x)1−t , (30)

and the moments

〈v, xn〉 =

∫

xnd̺(x) , n = 0, 1, . . . .

Let un(t) the moments of the linear functional u(t),

un(t) =

∫

f(x, t)xnd̺(x)
∫

f(x, t)d̺(x)
.

Since

∆t(f(t)/g(t)) =
∆f(t)g(t) − f(t)∆g(t)

g(t)g(t + 1)
,

then

∆tun(t) =

∫

∆tf(x, t)xnd̺(x)
∫

f(x, t + 1)d̺(x)
−

(∫

f(x, t)xnd̺(x)
) (∫

∆tf(x, t)d̺(x)
)

(∫

f(x, t)d̺(x)
)(∫

f(x, t + 1)d̺(x)
) .

By using ∆tf(x, t) = −xf(x, t + 1), we obtain

∆tun(t) = −un+1(t + 1) + u1(t + 1)un(t),

which completes the proof.

Remark 1. Let us consider the difference operator

∆t,hf(x, t) =
f(x, t + h) − f(x, t)

h
, lim

h→0
∆t,hf(x, t) =

∂

∂t
f(x, t).

In this case, the function fh(x, t) to be considered analogue of (30) is

fh(x, t) =

(

1

1 + h/x

)−1+t/h

.

It yields,

lim
h→0

(

1

1 + h/x

)−1+t/h

= exp(−xt),

which is the evolution (3) associated to the continuous case [12, 19].

Next, we prove a Lax-type theorem [15, Theorem 3, p. 270].

Theorem 4. In the hypothesis of Theorem 2, let λ(t) be a spectral point of
J(t) such that verifies (19). Then,

∆tλ(t) = 0 .
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Proof : If we apply the ∆t operator to

J(t)P(λ(t)) = λ(t)P(λ(t))

we obtain

∆tJ(t)P(λ(t)) + J(t + 1)∆tP(λ(t)) = ∆tλ(t)P(λ) + λ(t + 1)∆P(λ(t)).

Then,

Aλ(t)P(λ(t))− J(t + 1)AP(λ(t)) + (J(t + 1) − λ(t + 1) I)∆tP(λ(t))

= (∆tλ(t))P(λ(t)).

Since (J(t + 1) − λ(t + 1) I)(∆tP(λ(t)) − AP(λ(t))) = 0, it yields

(∆tλ(t) I + (λ(t + 1) − λ(t))A)P(λ(t)) = 0.

The element (1, 1) of the above column vector is given by

(λ(t) − λ(t + 1))u1(t + 1) = ∆tλ(t)

and then

(1 + u1(t + 1))∆tλ(t) = 0 ,

which gives the result by using that u1(t + 1) + 1 6= 0.

3. Examples

3.1. Modified Jacobi functional. Let v(α,β) be the normalized Jacobi
linear functional, with α, β > −1, defined as

〈v(α,β), p(x)〉 =

∫ 1

−1

p(x)(1− x)α(1 + x)β 2−α−β−1Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
dx.

We have that

〈v(α,β), 1〉 = 1, 〈v(α,β), x〉 =
β − α

α + β + 2
. (31)

Let us consider —see (29)—

u(t) = κ (1 + x)1−t v(α,β), (32)

where κ is a normalizing constant. In terms of measures the linear functional
u(t) has associated the weight function

̺(x, t; α, β) =
2−α−β+t−2Γ(α + β − t + 3)

Γ(α + 1)Γ(β − t + 2)
(1 − x)α(1 + x)β−t+1,
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where α > −1 and β > t − 2. We have that
∫ 1

−1

̺(x, t; α, β) = 1,

and moreover from (31) it yields

u1(t) =

∫ 1

−1

x̺(x, t; α, β) =
−α + β − t + 1

α + β − t + 3
.

Thus,

u1(t + 1) =
−α + β − t

α + β − t + 2
= 1 −

2(α + 1)

α + β − t + 2
6= −1.

As it is well-known, monic Jacobi polynomials P
(α,β)
n (x) satisfy the follow-

ing three term recurrence relation

P
(α,β)
n+1 (x) = (x − B(α,β)

n )P (α,β)
n (x) − A(α,β)

n P
(α,β)
n−1 (x),

with initial conditions P
(α,β)
−1 (x) = 0, P

(α,β)
0 (x) = 1, where

B(α,β)
n =

β2 − α2

(α + β + 2n)(α + β + 2n + 2)
,

A(α,β)
n =

4n(α + n)(β + n)(α + β + n)

(α + β + 2n − 1)(α + β + 2n)2(α + β + 2n + 1)
.

Thus, the polynomials orthogonal with respect to u(t) defined in (32) satisfy

a three term recurrence relation as above with coefficients bn(t) = B
(α,β−t+1)
n

and an(t) = A
(α,β−t+1)
n .

From (18), we have

gn(t) =
n

∏

k=1

A
(α,β−(t+1)−1)
k

A
(α,β−t+1)
k−1

=
4n(α + n)(β − t + 1)

(α + β − t + 2)(α + β + 2n − t)(α + β + 2n − t + 1)
,

and therefore

αn
1 (t) =

gn(t)

u1(t + 1) + 1
=

2n(α + n)

(α + β + 2n − t)(α + β + 2n − t + 1)
.

Thus, we have that bn(t) = B
(α,β−t+1)
n , an(t) = A

(α,β−t+1)
n and αn

1(t) are
solution of the ∆-Toda equations (16).
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3.2. Modified Laguerre functional. Let us consider the Laguerre linear
functional, with α > −1 defined as

〈v(α), p(x)〉 =

∫ ∞

0

p(x)
exp(−x)xα

Γ(α + 1)
dx.

We have that the moments are explicitly given by

〈v(α), xn〉 =
Γ(α + n + 1)

Γ(α + 1)
= (α + 1)n,

where (A)n = A(A+1) · · · (A+n−1) with (A)0 = 1 denotes the Pochhammer
symbol.

Let us consider

u(t) = κ (1 + x)1−t v(α),

where κ is a normalizing constant. In terms of measures, the linear functional
u(t) has associated the weight

̺(x; t; α) = (1 + x)1−t exp(−x)xα

U(1 + α, 3 + α − t, 1) Γ(α + 1)
, x ≥ 0,

where

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt,

is the confluent hypergeometric function [21, 22].
We have that

∫ ∞

0

̺(x; t; α) = 1,

and moreover the moments of u(t) can be written as

un(t) = 〈u(t), xn〉 =

∫ ∞

0

xn̺(x; t; α)

=
Γ(α + n + 1)U(t− 1,−α − n + t − 1, 1)

Γ(α + 1)U(t− 1,−α + t − 1, 1)
.

In particular

u1(t + 1) =
(α + 1)U(t,−α + t − 1, 1)

U(t, t − α, 1)
6= −1.
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The moments un(t) satisfy relation (21) which in this case provides the fol-
lowing relation involving confluent hypergeometric functions

U(t,−α − n + t, 1)

U(t, t − α, 1)
−

U(α + n + 1, α + n − t + 3, 1)

U(α + 1, α − t + 3, 1)

= −
(α + n + 1)U(α + n + 2, α + n − t + 3, 1)

U(t, t − α, 1)

+
(α + 1)U(t,−α + t − 1, 1)U(α + n + 1, α + n − t + 3, 1)

U(α + 1, α − t + 3, 1)U(t, t− α, 1)
.
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