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Introduction

The frame of reals, L(R) (“point-free real numbers”), was originally intro-
duced by Joyal in an unpublished manuscript [23] and thoroughly studied by
Banaschewski in [3] (see also Johnstone [22]). As one might expect, it was
not defined as the lattice Ω(R) of open sets in the standard real line R but
as a primarily algebraic entity, the free frame generated by pairs of rational
numbers (which one can intuitively view as rational intervals) factorized by
natural relations (see 2.3 below). Under the Axiom of Choice, L(R) is indeed
isomorphic with Ω(R), but the point is to have the frame of point-free reals
as a frame in its own right and to be able to avoid choice whenever possible
(it should be noted that one can prove in a choice-free way for instance that
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L(R) is the completion of the frame of rationals or that it is continuous, that
is, locally compact, see [3]).

Once one has the frame of real numbers, one can also represent continu-
ous real functions on a general frame L, namely as frame homomorphisms
h : L(R) → L. This was originally done by Banaschewski ([3] – see [26]
for further references). However, the classical theory of real functions, not
necessarily continuous, calls for a point-free counterpart as well. An appro-
priate definition was presented in [15] and developed in subsequent papers
(e.g. [17, 6]). A classical (general) real function on a space (X,Ω(X)) is a
continuous real function on the discrete space (X,P(X)). The lattice P(X)
of all subsets of X has a natural counterpart in S(L)op where S(L) is the
co-frame of all sublocales of L. Hence, a (general) real function on L can be
represented as a frame homomorphism L(R)→ S(L)op.

The present paper is inspired by [25]. Using extensively the technique of
sublocales, we present a survey of some facts on point-free real functions.
Most of the results are not new; the originality is essentially in the presen-
tation. Our main goal is to show how zero sets may be considered in the
localic setting (as zero sublocales) and then how several important notions
and results about real functions may be rewritten and directly proved using
this tool.

After some necessary preliminaries we introduce the point-free real func-
tions and prove a few facts, in particular some results concerning images
and preimages of sublocales are discussed. Then, semicontinuous functions
and their relation with the continuous ones are mentioned. In the following
section, point-free algebraic operations on L(R) are studied, with special at-
tention paid to the addition, multiplication, maximum and minimum. Next
we turn to cozero and zero sublocales. The concept of cozero element is a
well-known standard topic and its sublocale counterpart is straightforward,
but there are no reasonable zero elements while in the context of sublocales
we obtain a sensible notion. This approach allows to formulate the basics of
the theory in a way very much parallel to the classical book of Gillman and
Jerison [12]. We illustrate this in a miscellany of topics.

Regarding general background, we refer to Picado and Pultr [26] for frames
and locales and to Banaschewski [3] and Ball and Walters-Wayland [1] for
specific information on continuous functions on frames.
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1. Preliminaries I. Free constructions

We will work with point-free real numbers as they are usually described in
literature, that is, by generators subject to relations. Since the free generators
come from a set that is in fact a meet-semilattice (while its elements are used
in the free construction simply as elements of a set) we think that it may be
useful for the reader to confront the free frames over sets with free frames
over semilattices.

1.1. Free semilattice with 1. For a set X define

F (X) = {A ⊆ X | A finite}

ordered by ≤ = ⊇ so that we have the meet A ∧ B = A ∪ B. Denote by βX
the mapping

βX = (x 7→ {x}) : X → F (X).

Then we have for each meet-semilattice S with 1 and each mapping f : X →
S precisely one meet-semilattice homomorphism f : F (X) → S such that
fβX = f and f(∅) = 1, namely the homomorphism defined by f(A) =∧
x∈A f(x).

1.2. Free frame generated by a semilattice with 1. For a meet-
semilattice S with 1 set

D(S) = {U ⊆ S | ↓U = U 6= ∅}.

D(S) is a frame with unions for joins and intersections for meets and if we
denote by αS the mapping

αS = (s 7→ ↓s) : S → D(S)

we have a meet-semilattice homomorphism such that for each frame L and
each meet-semilattice homomorphism h : S → L there is precisely one frame
homomorphism h̃ : D(S) → L such that h̃αS = h, namely that defined by

h̃(U) =
∨
s∈U h(s).

1.2.1. The free frame over a set can be now obtained combining F and D,
that is, as DF (X).
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1.3. Free frames over a set and over a meet-semilattice confronted.
Now suppose we have a construction of a frame based on a set which is
endowed by a meet-semilattice structure. We will compare the free construc-
tions as over the carrier |S| and the one based directly on the semilattice
S.

We will use the standard factorization procedure as e.g. in [26, III.11]. On
DF (|S|) define a relation

M = {(↓A, ↓B) |
∧
A =

∧
B in S}

and write κ : DF (|S|) → DF (|S|)/M for the quotient map. Consider the
following diagram:

|S|
β|S|

//

id

��

F (|S|)
αF (|S|)

//

h=id

��

DF (|S|)

κ

��

h̃

yysssssssssssssssssss

S
αS //

f

55
D(S)

ψ
00 DF (|S|)/M

φ
qq

Since h̃ obviously respects the relation M we have a frame homomorphism
φ such that φκ = h̃. Further, define a mapping

f : S → DF (|S|)/M

by setting f(s) = κ(↓{s}). By the definition of M , f is a meet-semilattice
homomorphism and hence there is a frame homomorphism ψ such that ψαS =
f . Now we have

φψ (↓s) = φψαS(s) = φf(s) = φκ (↓{s}) = h̃ (↓{s}) =

= h̃αF (|S|)({s}) = h({s}) = hβ|S|(s) = αS(s) = ↓s and

ψφ (κ (↓{s})) = ψh̃ (↓{s}) = ψh̃αF (|S|)({s}) =ψαS(s) = f(s) = κ (↓{s})

so that φψ and ψφ are identical on systems of generators and hence φ and ψ
are mutually inverse homomorphisms.

Thus, if we represent a construction based on factorizing D(S) identifying
pairs from a relation R as a free construction on |S| we only have to consider
the relation R ∪M with the M as above instead of R.
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2. Preliminaries II

2.1. Localic maps. Since frames can be viewed as a natural generalization
of spaces while the natural functor Ω: Top → Frm from the category of
topological spaces into that of frames (Ω(f) sending an open set U ⊆ Y to
f−1[U ] for any morphism f : X → Y in Top) is contravariant, one introduces
the category of locales Loc as the dual of the category of frames (then the
natural open set functor becomes even a full embedding on the important
subcategory of sober spaces). Often one just considers the formal Frmop but
it is of advantage to represent it as a concrete category with morphisms as
well-defined maps. For this purpose one defines a localic map f : L→ M as
the right Galois adjoint of a frame homomorphism h = f ∗ : M → L. This
can be done since frame homomorphisms preserve suprema; but of course not
every mapping preserving infima is a localic one. Here is a characterization
(see [26] or [25]).

Let f : L→M have a left adjoint f ∗ : M → L. Then it is a localic map iff

(1) f [Lr {1}] ⊆M r {1}, and
(2) f(f ∗(a)→ b) = a→ f(b)

(→ is the Heyting operation in the frames L resp. M).

2.2. The frame of sublocales. A sublocale of a frame L is a subset S ⊆ L
such that

(1) M ⊆ S implies
∧
M ∈ S, and

(2) if a ∈ L and s ∈ S then a→ s ∈ S.

This concept expresses the intuition of a natural subobject of L understood as
a generalized space; in the category of locales and localic maps the inclusion
j : S ⊆ L is a localic extremal monomorphism, hence indeed a sub-locale (in
the frame perspective, it is the image of a nucleus). The set of all sublocales
ordered by inclusion, denoted by

S(L),

is a co-frame, with the lattice operations∧
i∈J

Si =
⋂
i∈J

Si and
∨
i∈J

Si = {
∧
A | A ⊆

⋃
i∈J

Si}.

We have the closed resp. open sublocales

c(a) = ↑a resp. o(a) = {x | a→ x = x} = {a→ x | x ∈ L}
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modelling closed resp. open subspaces. They are complements of each other,
and the o(a) are in a natural one-one correspondence with the elements of
L, preserving joins and finite meets.

We will need, rather, the opposite of S(L), the frame of sublocales, denoted

S(L),

with S ≤ T iff S ⊇ T and∨
i∈J

Si =
⋂
i∈J

Si and
∧
i∈J

Si = {
∧
A | A ⊆

⋃
i∈J

Si}.

Note that S(L) is isomorphic with the frame of congruences on L and we
have a natural frame embedding

cL : L→ S(L) (a 7→ c(a)). (2.2.1)

This means that there is a one-one correspondence between the elements of
L and the closed sublocales of L, agreeing in arbitrary joins and finite meets
in L and S(L).

For our purposes it is particularly important that the operation Scan be
iterated.

2.2.1. Note. Introducing the frame S(L) may seem to be just an ad hoc
inversion of the order for technical purposes, but it is not so. The co-frame
and frame of sublocales are in fact two entities with different roles.

The co-frame S(L) corresponds to the collection Sub(X) of subspaces of a
space in classical topology which is naturally worked with as with a co-frame.
It is, of course, a Boolean algebra, that is, both a co-Heyting and Heyting
one, but note that when computing with subspaces the co-Heyting operation
of difference B r A is ubiquitous while the Heyting B → A = A ∪ (X r B)
is hardly ever employed.

On the other hand, S(L) represents a (generalized) space of sublocales,
loosely analogous to the idea of a space of subspaces. Now our “generalized
space of generalized subspaces” is universal, while the classical spaces of sub-
spaces vary according to their purpose and usually concern special subspaces
only. But anyway we have here a generalized space S(L) naturally extending
the original L (see the frame embedding above; from the covariant point of
view we have a natural localic quotient (S 7→

∧
S) : S(L)→ L).
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2.2.2. Interior and closure. Originally, the closure resp. interior of a
sublocale S in S(L) is the smallest closed sublocale containing S, that is,

S =
⋂
{c(a) | S ⊆ c(a)} = ↑

∧
S (= c(

∧
S))

resp. the largest open sublocale contained in S, that is,

S◦ =
∨
{o(a) | o(a) ⊆ S}.

We work, however, in S(L) and hence we should not forget that here

S ≤ S ≤ S◦.

Note that c(a)◦ = o(a∗) and o(a) = c(a∗) (see [26, III.6 and III.8]).
Further, we recall that the rather below relation ≺ in a frame is defined by

a ≺ b ≡ a∗ ∨ b = 1. Note that for any a, b ∈ L,

a ≺ b iff c(a)◦ ≤ c(b) iff o(a) ≥ o(b). (2.2.2)

Indeed: a ≺ b iff a∗ ∨ b = 1 iff o(a∗) ∧ o(b) = 0 iff c(a)◦ ∧ o(b) = 0 iff
c(a)◦ ≤ c(b); furthermore, c(a)◦ ≤ c(b) iff o(a∗) ≤ c(b) iff c(a∗) ≥ o(b) iff

o(a) ≥ o(b).
The completely below relation ≺≺ is the interpolative modification of the

rather below relation ([8]). Elements a, b ∈ L satisfy a≺≺ b if and only if
there exists a subset {aq | q ∈ [0, 1] ∩ Q} ⊆ L with a0 = a and a1 = b such
that ap ≺ aq whenever p < q in [0, 1] ∩Q.

2.2.3. Images and preimages. Let f : L→M be a localic map. If S ⊆ L
is a sublocale then the standard set-theoretical image f [S] is a sublocale of
M . The set-theoretical preimage f−1[S] of a sublocale is not necessarily a
sublocale, but there is the largest sublocale contained in f−1[S] which we
denote by f−1[S] and refer to it as the (sublocale) preimage (see [25]). In
S(L) we have the Galois adjunction

f [S] ⊆ T iff S ⊆ f−1[T ]

which in S(L) becomes

f−1[T ] ≤ S iff T ≤ f [S]. ( S-image-preimage)

f−1[−] : S(M) → S(L) is a frame homomorphism that preserves comple-
ments and assigns closed resp. open sublocales to closed resp. open sublo-
cales. In more detail, f−1[c(a)] = c(f ∗(a)) and f−1[o(a)] = o(f ∗(a)). By
the adjunction ( S-image-preimage), f [−] : S(L) → S(M) is the associated
localic map. (See, e.g., [25, Ch. 7] or [26, III.6,9].)
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We will use the symbol g[A] also for set-theoretic image of any function
and any set; since our f [S] coincides with the set-theoretic image, there is
no danger of confusion. It is, however, necessary to be careful with f−1[−]
and f−1[−].

2.3. The frame of reals. Considering the standard order in Q we will
define the frame of reals, denoted

L(R),

as D(Qop ×Q)/R where R consists of all pairs

• (↓(p, q) ∪ ↓(r, s), ↓(p, s)) with p ≤ r < q ≤ s,
• (↓(p, q),

⋃
{(r, s) | p < r < s < q}) and

• (
⋃
p,q∈Q(p, q), 1).

All ↓(r, s) are saturated; encoding them simply as (r, s) we can think of
the frame of reals as in [3], that is, as of a frame generated by all ordered
pairs (p, q) ∈ Q×Q satisfying the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s.
(R3) (p, q) =

∨
{(r, s) | p < r < s < q}.

(R4)
∨
p,q∈Q(p, q) = 1.

(Note that (R1) plays the role of the relation M from 1.3.)

Equivalently, L(R) may be defined as the frame with generators of the form
(p,—) and (—, q), p, q ∈ Q, subject to the relations

(r1) (p,—) ∧ (—, q) = 0 whenever p ≥ q.
(r2) (p,—) ∨ (—, q) = 1 whenever p < q.
(r3) (p,—) =

∨
r>p(r,—), for every p ∈ Q.

(r4) (—, q) =
∨
s<q(—, s), for every q ∈ Q.

(r5)
∨
p∈Q(p,—) = 1.

(r6)
∨
q∈Q(—, q) = 1.

With (p, q) = (p,—) ∧ (—, q) one goes back to (R1)-(R4).

2.4. Coproducts of frames. For details about coproducts of frames see,
e.g., [26] (or [22]). For us it is important that such a coproduct L⊕M with
the coproduct injections ιL : L→ L⊕M, ιM : M → L⊕M is generated by
the elements a⊕ b = ιL(a) ∧ ιM(b) such that

•
∨

(ai ⊕ b) = (
∨
ai)⊕ b and

∨
(a⊕ bi) = a⊕ (

∨
bi),
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• (a1 ⊕ b1) ∧ (a2 ⊕ b2) = (a1 ∧ a2)⊕ (b1 ∧ b2), and
• for a, b, c, d 6= 0, a⊕ b ≤ c⊕ d iff a ≤ c and b ≤ d.

2.5. Algebraic operations. An n-ary algebraic operation on a locale L is,
in frame language, a frame homomorphism

ω : L→ L⊕ · · · ⊕ L︸ ︷︷ ︸
n times

where ⊕ designates the coproduct in Frm. Thus in particular we have oper-
ations on point-free reals

ω : L(R)→ L(R)⊕ · · · ⊕ L(R). (∗)

It should be explained how thus defined operations are related to the opera-
tions on classical real numbers.

The functor Ω: Top→ Loc does not generally preserve products (that is,
does not necessarily send products in Top to coproducts in Frm). If we take
a product of topological spaces pi : X × · · · ×X → X, i = 1, . . . , n, we have
in the diagram

Ω(X)⊕ · · · ⊕ Ω(X)
π // Ω(X × · · · ×X)

Ω(X)

ιi

hhQQQQQQQQQQQQQQ Ω(pi)

77nnnnnnnnnnnn

a unique frame homomorphism π satisfying πιi = Ω(pi). It is quite a nice
homomorphism being onto and dense. Hence, in the localic language, π
embeds Ω(X × · · · ×X) into Ω(X) ⊕ · · · ⊕ Ω(X) as a dense sublocale. But
it is not an isomorphism and hence an algebraic operation α : Xn → X does
not necessarily translate into an algebraic operation

Ω(α) : Ω(X)→ Ω(X)⊕ · · · ⊕ Ω(X).

Luckily enough, the space of reals R is locally compact and finite products
of locally compact spatial locales coincide with the topological products.
This holds under the Axiom of Choice, which also implies an isomorphism
L(R) ∼= Ω(R). Without any choice principle it has been proved in [3] that
L(R) is continuous (locally compact). This justifies thinking of the operations
in L(R) defined in (∗) above as of counterparts of the classical ones.
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2.6. Cozero elements. Of central importance in the theory of continuous
real functions in a frame L are the cozero elements of L. A cozero element of
L is an element of the form h((—, 0)∨ (0,—)) for some frame homomorphism
h : L(R)→ L, and for any such map we refer to h((—, 0) ∨ (0,—)) as cozh.

It is good to know that cozero elements can be alternatively described
without reference to the frame of reals as follows [5]: a ∈ L is a cozero element
if and only if a =

∨
n∈N an for some an≺≺a, n = 1, 2, . . . (equivalently,

an≺≺an+1; note that here the plain ≺ suffices).

3. Real functions

3.1. The adjoint situation between Top and Loc yields in particular a natural
isomorphism

Loc(Ω(X),L(R))
∼→ Top(X,ΣL(R))

for each space X. Since ΣL(R) is homeomorphic with the usual space of
reals (that we denote by R) we obtain

Loc(Ω(X),L(R))
∼→ Top(X,R).

This means that the continuous real-valued functions on X are completely
described by localic maps Ω(X)→ L(R) and motivates (and justifies) intro-
ducing a continuous real function on a general frame L as a frame homomor-
phism L(R)→ L (see [3]).

What about arbitrary members of RX , that is, arbitrary, not necessarily
continuous, real functions on X?

First, we should notice that each element of RX is automatically a contin-
uous real function if we regard X with the discrete topology and therefore
that there is a bijection between RX and Top((X,P(X)),R), and thus with

Loc(P(X),L(R)).

Now, for a general frame L, the role of the lattice P(X) of all subspaces
of X should be taken by the frame S(L) of all sublocales of L. This justifies
thinking of localic maps S(L) → L(R) as of general real functions on L
(introduced in [15] as frame homomorphisms L(R)→ S(L)).

Given a real function f : S(L)→ L(R), we will denote by

f ∗ : L(R)→ S(L)

the associated frame homomorphism (recall 2.1). The set of all real functions
on L will be denoted by F(L).
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3.1.1. Recall 2.1: any f ∈ F(L) preserves arbitrary meets including 1, we
have f(S) = 1 only if S = {1}, and f(f ∗(p, q)→ S) = (p, q)→ f(S).

3.2. In accordance with the classical notation used for real functions ([12])
we also denote f ∗(p,—) and f ∗(—, q) by

[f > p] and [f < q]

respectively. We immediately see that for each p, q ∈ Q,

[f > p] =
∧
{S ∈ S(L) | f(S) ≥ (p,—)}

and
[f < q] =

∧
{S ∈ S(L) | f(S) ≥ (—, q)}.

3.2.1. The following facts follow immediately from relations (r1)-(r6).

Facts. For every f ∈ F(L) and p, q ∈ Q we have that

(1) p ≥ q ⇒ [f < q] ∧ [f > p] = 0.
(2) p < q ⇒ [f > p] ∨ [f < q] = 1.
(3)

∨
r>p[f > r] = [f > p].

(4)
∨
s<q[f < s] = [f < q].

(5)
∨
p∈Q[f > p] = 1.

(6)
∨
q∈Q[f < q] = 1.

Remarks. (1) It follows immediately from (2) that

[f < q]∗ ≤ [f > p] and [f > p]∗ ≤ [f < q]

for any p < q.

(2) Note that the frame S(L) does not necessarily satisfy the De Morgan law
for meets. Nevertheless we have

[f > p]∗ =
∨
{S∗ ∈ S(L) | f(S) ≥ (p,—)}.

Indeed:
“≤”: Let T = [f > p]. Since f(T ) = ff ∗(p,—) ≥ (p,—), we have T ∗ ∈ {S∗ |
f(S) ≥ (p,—)}.
“≥”: Since f(S) ≥ (p,—) if and only if S ≥ f ∗(p,—) = [f > p], the inequality
f(S) ≥ (p,—) implies S∗ ≤ [f > p]∗.

Similarly,
[f < q]∗ =

∨
{S∗ ∈ S(L) | f(S) ≥ (—, q)}.
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We will denote [f > p]∗ and [f < q]∗ by

[f ≤ p] resp. [f ≥ q].

It follows from Facts (1) and (2) that

[f < p] ≤ [f ≤ p] ≤ [f < q] and [f > q] ≤ [f ≥ q] ≤ [f > p]

for any p < q in Q. Also, we will write [f = p] to denote [f ≤ p] ∧ [f ≥ p]
and [p < f < q] to denote [f > p] ∧ [f < q].

3.3. Recall 2.2.2. We have now the image map f [−] : S( S(L)) → S(L(R))
(a localic map) and the preimage map f−1[−] : S(L(R))→ S( S(L)) (a frame
homomorphism that preserves complements).

3.3.1. It follows from 2.2.3 that, for every f ∈ F(L) and every p, q ∈ Q,

(P1) f−1[c(p, q)] = f−1[c(p, q)] = c([p < f < q]),
(P2) f−1[c(p,—)] = c([f > p]) and f−1[c(—, q)] = c([f < q]),
(P3) f−1[o(p, q)] = o([p < f < q]), and
(P4) f−1[o(p,—)] = o([f > p]) and f−1[o(—, q)] = o([f < q]).

3.4. F(L) is partially ordered by

f ≤ g ≡ ∀ q ∈ Q, ∀S ∈ S(L) [(—, q) ≤ f(S)⇒ (—, q) ≤ g(S)].

Proposition. Let f, g ∈ F(L). The following are equivalent:

(1) f ≤ g.
(2) ∀ p ∈ Q, ∀S ∈ S(L), [(p,—) ≤ g(S)⇒ (p,—) ≤ f(S)].
(3) ∀q ∈ Q, (—, q) ≤ g([f < q]).
(4) ∀p ∈ Q, (p,—) ≤ f([g > p]).
(5) ∀q ∈ Q, g−1[c(—, q)] ≤ f−1[c(—, q)].
(6) ∀p ∈ Q, f−1[c(p,—)] ≤ g−1[c(p,—)].
(7) ∀q ∈ Q, f−1[o(—, q)] ≤ g−1[o(—, q)].
(8) ∀p ∈ Q, g−1[o(p,—)] ≤ f−1[o(p,—)].
(9) ∀q ∈ Q, [g < q] ≤ [f < q].

(10) ∀p ∈ Q, [f > p] ≤ [g > p].

Proof : (1)⇒(3) is obvious since (—, q) ≤ ff ∗(—, q) = f([f < q]).

(3)⇒(1): Let (—, q) ≤ f(S), that is, [f < q] ≤ S. Then g([f < q]) ≤ g(S)
and consequently (—, q) ≤ g(S).

(2)⇔(4) is similar.
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(3)⇔(5) and (4)⇔(6) follow from (P2).

(5)⇔(7) and (6)⇔(8) follow from the fact that f−1[−] preserves complements.

(9)⇒(10): By Facts 3.2.1 (3) and (1) and Remark 3.2.1 (1) we have that

[f > p] =
∨
r>p

[f > r] ≤
∨
r>p

[f < r]∗ ≤
∨
r>p

[g < r]∗ ≤ [g > p].

(10)⇒(9) is similar. Finally, (3)⇔(9) and (4)⇔(10) are obvious.

3.5. An f in F(L) is lower semicontinuous if

[f > p] ∈ cL[L] for each p ∈ Q,

i.e. f−1[c(p,—)] ∈ c S(L)[cL[L]]. It is upper semicontinuous if

[f < q] ∈ cL[L] for each q ∈ Q.

Then, f is continuous if it is both upper and lower semicontinuous. We
denote by

LSC(L),USC(L) and C(L), respectively,

the sets of all lower semicontinuous, upper semicontinuous, and continuous
real functions on L.

The fact that f is continuous means that f−1[c(p, q)] ∈ c S(L)[cL[L]] for each
p, q ∈ Q. According to the isomorphism cL[L] ∼= L we can then identify
f−1[c(p, q)] with an element of cL[L] and by complementation we may also
view each f−1[o(p, q)] as an open sublocale of L. Hence f−1[S] ∈ S(L) for any
S ∈ S(L(R)) (recall that any element in S(L(R)) is a join of finite meets of
open and closed elements). This explains why any f ∈ C(L) may be regarded
as a localic map L→ L(R) via the 1-1 correspondence

f 7→ f ◦ cL (3.5.1)

Under this identification we have

[f > p] =
∧
{a ∈ L | f(a) ≥ (p,—)} and [f < q] =

∧
{a ∈ L | f(a) ≥ (—, q)}.

Note that then F(L) = C( S(L)).
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4. Algebraic operations

4.1. Consider an n-ary operation ω on Q (that is, a continuous function
ω : Qn → Q). We then have a frame homomorphism Ω(ω) : Ω(Q)−→Ω(Qn).
Note that this is not an algebraic operation on Ω(Q) (Ω does not preserve
powers of Q; in fact, by the closed subgroup theorem there is in particular
no localic addition on Ω(Q), see [21]).

The frame L(R) is the completion of Ω(Q) (both taken with the uniformity
derived from the respective metric uniformities – [3]), where the completion
homomorphism γ : L(R) → Ω(Q) is given by (p, q) 7→]p, q[= {x ∈ Q | p <
x < q}. Then L(R)⊕ · · · ⊕ L(R) (n summands) is the completion of Ω(Qn)
([3]) with the completion map γ given by the coproduct diagram

L(R)
ιi //

γ

��

L(R)⊕ · · · ⊕ L(R)

γ

��

Ω(Q)
Ω(pi)

// Ω(Qn)

(where the pi, i = 1, . . . , n, are the projections Qn → Q). The general theory
of completion (in particular, the general criterion in [7] for the liftability of
a frame homomorphism between uniform frames to their completions) guar-
antees the existence of an operation ω̃ on L(R) that completes the diagram

L(R)

γ

��

ω̃ // L(R)⊕ · · · ⊕ L(R)

γ

��

Ω(Q)
Ω(ω)

// Ω(Qn)

to a commuting square. It is easy to check that the operation ω̃ is given by

ω̃(p, q) =
∨{ n⊕

i=1

(ri, si) |
n∏
i=1

]ri, si[ ⊆ ω−1 (]p, q[)
}
. (4.1.1)

Hence, ω̃(p,—) =
∨
r>p

ω̃(p, r) =
∨{ n⊕

i=1

(ri, si) |
n∏
i=1

]ri, si[ ⊆ ω−1 (]p,+∞[)
}

and ω̃(—, q) =
∨
s<q

ω̃(s, q) =
∨{ n⊕

i=1

(ri, si) |
n∏
i=1

]ri, si[ ⊆ ω−1 (]−∞, q[)
}

.
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4.2. Examples. (1) For each r ∈ Q, the nullary operation ωr in Q that picks
the rational r yields the operation ω̃r : L(R)→ 2 = {0, 1} given by

ω̃r(p, q) = 1 if and only if r ∈ ]p, q[.

(2) For each λ > 0 in Q, the unary operation ωλ representing the scalar
multiplication by λ yields ω̃λ : L(R)→ L(R) defined by

ω̃λ(p, q) =
(
p
λ ,

q
λ

)
.

Similarly, for each λ < 0 in Q, ωλ lifts to ω̃λ given by ω̃λ(p, q) =
(
q
λ ,

p
λ

)
.

(3) For the binary operations ∧ and ∨ we have ∧̃, ∨̃ : L(R) → L(R) ⊕ L(R)
defined respectively by

∧̃(p, q) = (p, q)⊕ (p,—) ∨ (p,—)⊕ (p, q) and

∨̃(p, q) = (p, q)⊕ (—, q) ∨ (—, q)⊕ (p, q).

Equivalently,

∧̃(p,—) = (p,—)⊕ (p,—) and ∧̃(—, q) = ((—, q)⊕ 1) ∨ (1⊕ (—, q)),

∨̃(p,—) = ((p,—)⊕ 1) ∨ (1⊕ ((p,—)) and ∨̃(—, q) = (—, q)⊕ (—, q).

(4) For the binary operation + we have +̃ : L(R)→ L(R)⊕L(R) defined by

+̃(p, q) =
∨
r∈Q

((
r, r + q−p

2

)
⊕
(
p− r, p+q2 − r

))
.

Indeed, for a fixed (p, q) ∈ L(R) we have that (see Figure 1)

+−1 (]p, q[) = {(x, y) ∈ Q×Q | p < x+ y < q}
= {(x, y) | ∃r ∈ Q : r < x < r + q−p

2 and p− r < y < p+q
2 − r}

=
⋃
r∈Q

(]
r, r + q−p

2

[
×
]
p− r, p+q2 − r

[)
∩ (Q×Q) .

Hence (see Figure 1)

+̃(p,—) =
∨
r∈Q

((r,—)⊕ (p− r,—)) and +̃(—, q) =
∨
s∈Q

((—, s)⊕ (—, q − s)).
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x+ y = q

x+ y = p

(r,p−r)

(
r+

q−p
2 ,

p+q
2 −r

)

x+ y = p

(r,p−r)

x+ y = q

(s,q−s)

Figure 1. Sum

(5) For the binary operation · we have ·̃ : L(R) → L(R) ⊕ L(R) defined by
(for simplicity we only describe it on the generators (p,—) and (—, q))

·̃ (p,—) =


∨
r>0

((
(r,—)⊕

(
p
r ,—
))
∨
(
(—,−r)⊕

(
—,−p

r

)))
if p > 0,

(0,—)⊕ (0,—) ∨ (—, 0)⊕ (—, 0) if p = 0,

·̃ (0,—) ∨
∨
r>0

(
(−r, r)⊕

(
p
r ,−

p
r

))
if p < 0,

·̃ (—, q) =


∨
s>0

((
(—,−s)⊕

(
−q
s ,—
))
∨
(
(s,—)⊕

(
—, qs

)))
if q < 0,

(—, 0)⊕ (0,—) ∨ (0,—)⊕ (—, 0) if q = 0,

·̃ (—, 0) ∨
∨
s>0

(
(−s, s)⊕

(
−q
s ,

q
s

))
if q > 0.

In fact, for a fixed (p,—) ∈ L(R) (with p > 0) we have (see Figure 2)

( · )−1 (]p,+∞[) = {(x, y) ∈ Q×Q | p < x · y}
=
⋃
r>0

((
]r,+∞[×

]
p
r ,+∞

[)
∪
(
]−∞,−r[×

]
−∞,−p

r

[))
∩ (Q×Q) .

Hence ·̃ (p,—) =
∨
r>0

(
(r,—)⊕

(
p
r ,—
)
∨ (—,−r)⊕

(
—,−p

r

))
In the case p = 0 we have (see Figure 2)

( · )−1 (]0,+∞[) = {(x, y) ∈ Q×Q | 0 < x · y}
= ((]0,+∞[× ]0,+∞[) ∪ (]−∞, 0[× ]−∞, 0[)) ∩ (Q×Q)

and hence ·̃ (0,—) = (0,—)⊕(0,—)∨(—, 0)⊕(—, 0). Of course, this case could
be included in the previous case since

∨
r>0 ((r,—)⊕ (0,—) ∨ (—,−r)⊕ (—, 0)) =

(0,—)⊕ (0,—) ∨ (—, 0)⊕ (—, 0).
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Finally, when p < 0 we have that (see Figure 2)

( · )−1 (]p,+∞[) = {(x, y) ∈ Q×Q | p < x · y}
= (((]0,+∞[× ]0,+∞[) ∪ (]−∞, 0[× ]−∞, 0[)) ∩ (Q×Q))∪

∪
(⋃
r>0

((
]−r, r[×

]
p
r ,−

p
r

[))
∩ (Q×Q)

)
.

Hence ·̃ (p,—) = ·̃ (0,—) ∨
∨
r>0

(
(−r, r)⊕

(
p
r ,−

p
r

))
.

A similar situation holds for the generators of the form (—, q).

x · y = p

x · y = p

(r,pr)(−r,−p
r)

p > 0

x = 0

y = 0

p = 0

x · y = p

x · y = p

(r,pr)

(−r,−p
r)

p < 0

x · y = q

x · y = q

(s, qs)

(−s,− q
s)

q < 0

x = 0

y = 0

q = 0

x · y = q

x · y = q

(s, qr)

(−s,− q
s) q > 0

Figure 2. Product

4.3. Now there is a standard canonical process of lifting for any frame L
the operations on L(R) to operations on C(L). Indeed, consider an n-ary
operation on L(R),

ω̃ : L(R)→ L(R)⊕ · · · ⊕ L(R).
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Given fi ∈ C(L), i = 1, . . . , n, let f ∗ = (f ∗1 , . . . , f
∗
n) be the frame homomor-

phism given by the coproduct diagram

L(R)
ω̃ // L(R)⊕ · · · ⊕ L(R)

f∗

��

L(R)
ιioo

fi
∗

xxqqqqqqqqqqqqqqqqqq

L

Combining it with ω̃, one gets an ω̃(f1, . . . , fn) ∈ C(L) associated with the
frame homomorphism f ∗ · ω̃. Since f ∗ is given by f ∗(x1 ⊕ · · · ⊕ xn) = x1 ∧
· · · ∧ xn, the formula (4.1.1) yields

ω̃(f1, . . . , fn)
∗(p, q) =

∨{ n∧
i=1

fi
∗(ri, si) |

n∏
i=1

]ri, si[ ⊆ ω−1 (]p, q[)
}
. (4.3.1)

Then

ω̃(f1, . . . , fn)
∗(p,—) =

∨{ n∧
i=1

fi
∗(ri, si) |

n∏
i=1

]ri, si[ ⊆ ω−1 (]p,+∞[)
}

and

ω̃(f1, . . . , fn)
∗(—, q) =

∨{ n∧
i=1

fi
∗(ri, si) |

n∏
i=1

]ri, si[ ⊆ ω−1 (]−∞, q[)
}
.

4.4. Examples. (1) For each r ∈ Q, the nullary operation ω̃r : L(R) → 2
induces the constant function r ∈ C(L) defined by

[p < r < q] = 1 if and only if r ∈ ]p, q[.

(2) For each λ > 0 in Q and any f ∈ C(L), the unary operation ω̃λ : L(R)→ L(R)
induces the multiplication by a scalar function λf defined by

[p < λf < q] = [ pλ < f < q
λ ].

For λ < 0, λf is defined by

[p < λf < q] = [ qλ < f < p
λ ].

In particular, we write −f for (−1)f and so [p < −f < q] = [−q < f < −p].

(3) For the binary operations ∧̃ and ∨̃ and any f, g ∈ C(L), we have the meet
and the join of f and g given by

[f ∧ g > p] = [f > p] ∧ [g > p] and [f ∧ g < q] = [f < q] ∨ [g < q],

[f ∨ g > p] = [f > p] ∨ [g > p] and [f ∨ g < q] = [f < q] ∧ [g < q].
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Of course, f ≤ g iff f ∧ g = f iff f ∨ g = g.

(4) For the binary operation +̃ and any f, g ∈ C(L), we have the sum of f
and g given by

[f + g > p] =
∨
r∈Q

([f > r] ∧ [g > p− r]) and

[f + g < q] =
∨
s∈Q

([f < q] ∧ [g < q − s]).

Of course, if L = S(M) we get the above results for any f, g ∈ F(M). It
follows immediately that

• if f, g ∈ LSC(M) then f + g ∈ LSC(M),
• if f, g ∈ USC(M) then f + g ∈ USC(M).

Defining f − g = f + ((−1)g) we also have that

• if f ∈ LSC(M) and g ∈ USC(M) then f − g ∈ LSC(M),
• if f ∈ USC(M) and g ∈ LSC(M) then f − g ∈ USC(M).

Note also that f ≤ g iff g − f ≥ 0.

(5) For the binary product ·̃ and f, g ∈ F(M) we have the product of f and
g:

[f · g > p] =


∨
r>0

((
[f > r] ∧ [g > p

r ]
)
∨
(
[f < −r] ∧ [g < −p

r ]
))

if p > 0,

([f > 0] ∧ [g > 0]) ∨ ([f < 0] ∧ [g < 0]) if p = 0,

[f · g > 0] ∨
∨
r>0

(
[−r < f < r] ∧ [pr < g < −p

r ]
)

if p < 0,

and

[f · g < q] =


∨
s>0

((
[f < −s] ∧ [g > −q

s ]
)
∨
(
[f > s] ∧ [g < q

s ]
))

if q < 0,

([f < 0] ∧ [g > 0]) ∨ ([f > 0] ∧ [g < 0]) if q = 0,

[f · g < 0] ∨
∨
s>0

(
[−s < f < s] ∧ [−q

s < g < q
s ]
)

if q > 0.
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In particular, if 0 ≤ f, g ∈ F(M) then [f < 0] = [g < 0] = 0 and [f > −r] =
[g > −r] = 1 for any r > 0 and so for each p < 0 we have that

[f · g > p] = ([f > 0] ∧ [g > 0]) ∨
∨
r>0

(
[−r < f < r] ∧ [pr < g < −p

r ]
)

=

(
[f > 0] ∨

∨
r>0

(
[−r < f < r] ∧ [pr < g < −p

r ]
))
∧

∧
(

[g > 0] ∨
∨
r>0

(
[−r < f < r] ∧ [pr < g < −p

r ]
))

=

(∨
r>0

(
[f > −r] ∧

(
[f > 0] ∨ [pr < g < −p

r ]
)))
∧

∧
(∨
r>0

(
([g > 0] ∨ [−r < f < r]) ∧ [g > p

r ]
))

=

(∨
r>0

(
[f > 0] ∨ [pr < g < −p

r ]
))
∧
(∨
r>0

([g > 0] ∨ [−r < f < r])

)
=

(
[f > 0] ∨

∨
r>0

[pr < g < −p
r ]

)
∧
(

[g > 0] ∨
∨
r>0

[−r < f < r]

)
= 1.

On the other hand, [−r < f < r] = [f < r] and [−r < g < r] = [g < r] = 0
for any r > 0 and so in this case the product of f and g reduces to

[f · g > p] =


∨
r>0

(
[f > r] ∧ [g > p

r ]
)

if p ≥ 0,

1 if p < 0,

and

[f · g < q] =

0 if q ≤ 0,∨
s>0

(
[f < s] ∧ [g < q

s ]
)

if q > 0.

Consequently

• if 0 ≤ f, g ∈ LSC(M) then f · g ∈ LSC(M), and
• if 0 ≤ f, g ∈ USC(M) then f · g ∈ USC(M).

If f, g ≤ 0 then f · g = (−f) · (−g) and hence

• if 0 ≥ f, g ∈ LSC(M) then f · g ∈ USC(M), and
• if 0 ≥ f, g ∈ USC(M) then f · g ∈ LSC(M).



NOTES ON POINT-FREE REAL FUNCTIONS AND SUBLOCALES 21

5. Cozero and zero sublocales

5.1. We say that a sublocale S of a frame L is a cozero sublocale if it is of
the form

[f < 0] ∨ [f > 0]

for some f ∈ C(L). We will use the notation

S = CozL(f) or simply S = Coz(f).

Dually, S is a zero sublocale if it is of the form

[f = 0] = [f ≥ 0] ∧ [f ≤ 0] = [f < 0]∗ ∧ [f < 0]∗

for some f ∈ C(L). We will use the notation

S = ZL(f) or simply S = Z(f).

5.2. Of course, each cozero sublocale is a closed sublocale c(a) for some a ∈ L.
By (3.5.1) and 2.6 the a is a cozero element. 2.6 also allows to characterize
cozero and zero sublocales without reference to the frame of reals.

Proposition. Let S ∈ S(L). Then S is a cozero sublocale if and only if
S = c(a) =

∨
n∈N c(an) for some an≺≺a, n = 1, 2, . . ..

Each zero sublocale, being a complement of a cozero sublocale, is an open
sublocale o(a) for some cozero element a. Note that since complemented ele-
ments are always cozero elements, both cozero sublocales and zero sublocales
of L are cozero elements of the frame S(L) (but not conversely).

5.3. Properties of cozero and zero sublocales. Evidently Coz(1) =
Z(0) = 1, Coz(0) = Coz(1) = 0, and

Coz(f) = Coz(fn), Z(f) = Z(fn) for all n ∈ N.
Furthermore

Coz(f) = Coz(|f |) and Z(f) = Z(|f |)
(recall that |f | is defined as f ∨ (−f)). Indeed, from the formulas in 4.4 we
get

[f ∨ (−f) < 0] = [f < 0] ∧ [−f < 0] = [f < 0] ∧ [f < 0] = 0

and [f ∨ (−f) > 0] = [f < 0] ∨ [f < 0], hence Coz(|f |) = [f < 0] ∨ [f < 0].
Further we have:

(Z1) Coz(f) = 0 iff f = 0 iff Z(f) = 1.
(Z2) Coz(f − r) = [f > r] ∨ [f < r] and Z(f − r) = [f ≥ r] ∧ [f ≤ r].
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(Z3) Coz(f + g) ≤ Coz(f) ∨ Coz(g) and Z(f + g) ≥ Z(f) ∧ Z(g).
(Z4) Coz(|f | ∧ |g|) = Coz(f) ∧ Coz(g) = Coz(f · g) and Z(|f | ∧ |g|) =

Z(f) ∨ Z(g) = Z(f · g).

Proof : (Z1) and (Z2) are straightforward.

(Z3) By 4.4,

[f + g < 0] =
∨
s∈Q

([f < s] ∧ [g < −s])

≤
∨
s≤0

[f < s] ∨
∨
s>0

[g < −s] = [f < 0] ∨ [g < 0].

Similarly, [f + g > 0] ≤ [f > 0]∨[g > 0] and so Coz(f+g) ≤ Coz(f)∨Coz(g).

(Z4) We have

[f · g < 0] = ([f < 0] ∧ [g > 0]) ∨ ([f > 0] ∧ [g < 0])

and [f · g > 0] = ([f > 0] ∧ [g > 0]) ∨ ([f < 0] ∧ [g < 0]). Hence

Coz(f · g) = [f · g < 0] ∨ [f · g > 0] = Coz(f) ∧ Coz(g).

5.3.1. Remarks. (1) Every closed sublocale of the form [f < 0] is a cozero
sublocale: [f < 0] = Coz(f ∧ 0) = Coz(f − |f |). Indeed,

Coz(f ∧ 0) = [f ∧ 0 < 0] ∨ [f ∧ 0 > 0] = [f < 0].

Likewise, [f > 0] = Coz(f ∨ 0) = Coz(f + |f |). Hence [f ≥ 0] = Z(f ∧ 0) =
Z(f − |f |) and [f ≤ 0] = Z(f ∨ 0) = Z(f + |f |).

More generally, for any rational r, [f < r] = Coz(f ∧ r), [f > r] =
Coz(f ∨ r), [f ≥ r] = Z(f ∧ r) and [f ≤ r] = Z(f ∨ r).

(2) By (Z4), Z(|f | ∧ 1) = Z(f) for any f ∈ C(L). Let C∗(L) denote the set
of all bounded elements of C(L). Since |f |∧1 ∈ C∗(L), this shows that C(L)
and C∗(L) yield the same zero sublocales in L.

(3) Given f ∈ C(L), we have the formula

[f < 0] =
∨
n∈N

[f ≤ − 1
n ].

Indeed: [f < 0] =
∨
n∈N[f < − 1

n ] ≤
∨
n∈N[f ≤ − 1

n ] ≤ [f < 0].
In terms of the structure of sublocales in S(L) this formula shows that

every cozero sublocale is a Gδ-sublocale, i.e. a countable intersection of open
sublocales, while every zero sublocale is an Fσ-sublocale (i.e. a countable join
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of closed sublocales). Note that by [14, Proposition 3.5] the converse impli-
cations hold under normality: in a normal frame, every closed Gδ-sublocale
is a cozero sublocale and every open Fσ-sublocale is a zero sublocale.

5.3.2. Lemma. The following are equivalent for f, g ∈ C(L):

(1) f ≤ g.
(2) [g − f ≤ r] = 0 for every r < 0.
(3) [g − f ≥ 0] = 1.
(4) Z(g − f) = [g − f ≤ 0].

Proof : (1)⇒(2): If f ≤ g then g − f ≥ 0 and thus [g − f ≤ r] = [g − f >
r]∗ ≤ [0 > r]∗ = 1∗ = 0 for every r < 0.

(2)⇒(3): By Fact 3.2.1(4), [g−f ≥ 0] = [g−f < 0]∗ =
∧
r<0[g−f < r]∗ = 1.

(3)⇒(4) is obvious.

(4)⇒(1): By the hypothesis, [g − f ≤ 0] = Z(g − f) ≤ [g − f ≥ 0] and so
[g − f ≥ 0] = [g − f ≥ 0] ∨ [g − f ≤ 0] = 1. Hence g − f ≥ 0, i.e., f ≤ g.

5.3.3. Corollary. The following are equivalent for g ∈ C(L):

(1) g ≥ 0.
(2) [g ≤ r] = 0 for every r < 0.
(3) [g ≥ 0] = 1.
(4) Z(g) = [g ≤ 0].

5.3.4. Proposition. For any f, g ∈ C(L),

Z(f) ∧ Z(g) = Z(|f | ∨ |g|) = Z(|f |+ |g|).

Proof : Since Z(f) = Z(|f |) we may take f, g ≥ 0. Evidently, [f > 0] ∨ [g >
0] = [f ∨ g > 0] ≤ [f + g > 0]. Then, by complementation and using the
preceding corollary, Z(f) ∧ Z(g) = Z(f ∨ g) ≥ Z(f + g). The conclusion
follows from (Z3).

5.3.5. Corollary. If 0 ≤ f ≤ g in C(L) then Z(f) ≥ Z(g) = Z(f ∨ g) =
Z(f + g).

5.3.6. Remark. The set Coz( S(L)) of all cozero sublocales is immediately
seen to be a sublattice of S(L) by rules (Z4) and Proposition 5.3.4. Further-
more, it is closed under countable joins (and thus a sub-σ-frame of S(L)).
Indeed, consider any cozero sublocale c(an) and using countable dependent
choice take bnk≺≺an, k = 1, 2, . . ., such that an =

∨
k∈N bnk for each n. Then
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a =
∨
n,k∈N bnk where bnk≺≺a for n, k ∈ N, and these bnk form a countable

set. The additional fact that the set of all cozero sublocales is a normal
σ-frame can either be deduced directly or from the well-known fact that the
σ-frame of all cozero elements of L is normal.

Evidently, the set Z( S(L)) of all zero sublocales of L is a sublattice of S(L)
closed under countable meets.

5.4. Completely separated sublocales. The notion of complete separa-
tion in pointfree topology was first introduced in [1] in terms of quotient
maps and cozero elements and equivalently reformulated in [13] in terms of
sublocales and continuous real functions.

Two sublocales S and T of L are said to be completely separated if there
exists an f ∈ C(L) satisfying 0 ≤ f ≤ 1 such that

f(S) ≥ (0,—) and f(T ) ≥ (—, 1)

(equivalently, S ≥ [f > 0] and T ≥ [f < 1]). This implies, in particular, that
S∗ ≤ [f ≤ 0] and T ∗ ≤ [f ≥ 1]. Hence:

5.4.1. Proposition. If S and T are completely separated, then there exist a
cozero sublocale C and a zero sublocale Z such that S ≥ C ≥ Z ≥ T ∗.

5.4.2. Lemma. The following are equivalent for a, b ∈ L:

(1) b≺≺a.
(2) o(b) and c(a) are completely separated.
(3) There exist a cozero sublocale C and a zero sublocale Z such that

c(a) ≥ C◦ ≥ C ≥ Z ≥ c(b).
(4) There exist a cozero sublocale C and a zero sublocale Z such that

o(b) ≥ C ≥ Z ≥ Z ≥ o(a).

Proof : (1)⇒(2): Let {xr | r ∈ [0, 1] ∩ Q} ⊆ L with x0 = b and x1 = a such
that xp ≺ xq whenever p < q in [0, 1]∩Q. First we extend the index set to Q
by setting xr = 0 for r < 0 and xr = 1 for r > 1. Then it is a straightforward
exercise to check that the formulas

[f > p] = f ∗(p,—) =
∨
r>p

o(xr) and [f < q] = f ∗(—, q) =
∨
s<q

o(x∗s)

define an f ∈ C(L), i.e., that f ∗ turns the defining relations of L(R) into
identities in S(L). Finally,

• [f > 0] =
∨
r>0 o(xr) ≤ o(x0) ≤ o(x0) = o(b).



NOTES ON POINT-FREE REAL FUNCTIONS AND SUBLOCALES 25

• [f < 1] =
∨
s<1 o(x∗s) ≤ c(x1) = c(a) (since x∗s∨x1 = 1 for each s < 1).

(2)⇒(3): Let f ∈ C(L) such that 0 ≤ f ≤ 1, o(b) ≥ [f > 0] and c(a) ≥ [f <
1]. Then Z = [f ≤ 1

3 ] ∈ Z ( S(L)), C = [f < 2
3 ] ∈ Coz ( S(L)) and

c(b) ≤ [f ≤ 0] ≤ Z ≤ C ≤ C◦ = [f < 2
3 ]◦ ≤ [f ≤ 2

3 ]◦ = [f ≤ 2
3 ] ≤ [f < 1]◦ ≤ c(a).

The equivalence of (3) and (4) is obvious, by complementation.

(4)⇒(1): Let C and Z be respectively a cozero sublocale and a zero sublocale
satisfying o(b) ≥ C ≥ Z ≥ Z ≥ o(a). Furthermore, let g, h ∈ C(L) such that
0 ≤ g, h ≤ 1, C = [g > 0] and Z = [h ≤ 0]. It is easy to check that the
formulas

[f > p] =


1 if p < 0,

C = [g > 0] if p = 0,∨
r∈(0,1)∩Q

[g > r
1−p ] ∧ [h < r

p ] if 0 < p < 1,

0 if p ≥ 1,

and

[f < q] =


0 if q ≤ 0,∨
r∈(0,1)∩Q

[g < r
1−q ] ∧ [h > r

q ] if 0 < q < 1,

Z∗ = [h > 0] if q = 1,

1 if q > 1,

define an f ∈ C(L), i.e., that f ∗ turns the defining relations of L(R) into
identities in S(L). Let x0 = b, x1 = a and xr = c−1

L ([f < r]) for each
r ∈ (0, 1) ∩Q. Then

o(b) ≥ C = [g > 0] = [f > 0] ≥ [f ≥ q] = [f < q]∗ = o(xq)

for every q > 0, hence x0 = b ≺ xq. On the other hand,

o(xq) = [f ≥ q] ≥ [f ≥ 1] = [h ≤ 0] = Z ≥ o(a)

for every q < 1, hence xq ≺ a = x1. Finally, xp ≺ xq for p < q in (0, 1) ∩ Q
because o(xp) = [f ≥ p] ≥ [f > p] ≥ [f ≥ q] = o(xq).

5.4.3. Corollary. (Cf. [1, Prop. 2.1.4]) The following are equivalent for
a, b ∈ L:

(1) b≺≺a.
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(2) There is a frame homomorphism ϕ : L(R) → L with 0 ≤ ϕ ≤ 1 and
such that ϕ(0,—) ∧ b = 0 and ϕ(—, 1) ≤ a.

(3) There are cozero elements c and d in L such that c∗∨ a = 1, c∨ d = 1
and b ∧ d = 0.

5.4.4. Remark. In Proposition 2.1.4 in [1] the authors include the equiva-
lence

b≺≺a ⇐⇒ there is a cozero element c in L such that b ≺ c ≺ a.

The necessity follows easily from the equivalence (1)⇔(3) above: if c and d
are cozero elements in L such that c∗ ∨ a = 1, c ∨ d = 1 and b ∧ d = 0 then
c ≺ a and b∗ ∨ c ≥ d∨ c = 1, hence b ≺ c. However, the converse implication
does not hold as some easy counterexamples show. In [1] the authors refer
for a proof of the equivalence to [2]. This is mistaken, but their fundamental
results hold true.

5.5. Recall that a frame L is completely regular if a =
∨
{b ∈ L | b≺≺a}

for every a ∈ L. It follows easily from the characterization (3) in the above
lemma that

Corollary. A frame is completely regular iff every closed sublocale is the join
of all cozero sublocales containing it iff every open sublocale is the meet of all
zero sublocales it contains.

Proof : If L is completely regular then c(a) =
∨
{c(b) ∈ S(L) | b≺≺a} for

every a ∈ L. It follows from Lemma 5.4.2 that for each b ∈ L satisfying
b≺≺a there exists some cozero sublocale Cb such that c(b) ≤ Cb ≤ c(a).
Then c(a) ≤

∨
{Cb ∈ S(L) | b≺≺a} ≤ c(a).

Conversely, assume that c(a) =
∨
{C ∈ Coz ( S(L)) | C ≤ c(a)} for every

a ∈ L. Let C = c(xC) be a cozero sublocale such that C ≤ c(a). It follows
from Proposition 5.2 that there exist (aCn )n∈N such that aCn ≺≺xC for each
n ∈ N and C =

∨
n∈N c(a

C
n ). Then aCn ≺≺a for every such C and every n and

c(a) =
∨
C,n c(a

C
n ). In conclusion a =

∨
C,n a

C
n ≤

∨
{b | b≺≺a} ≤ a.

The second part follows immediately by complementation.

This is the pointfree counterpart of the classical well-known fact that a
topological space is completely regular iff every open set is the union of the
cozero sets it contains.
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5.6. We can now characterize cozero and zero sublocales without reference
to the frame of reals.

5.6.1. Corollary. Let S be a sublocale of L.

(1) S is a cozero sublocale if and only if S =
∨
n∈N Sn where for each

n∈ N, Sn is a closed sublocale for which there exists a cozero sublocale
Cn and a zero sublocale Zn satisfying Sn ≤ Zn ≤ Cn ≤ C◦n ≤ S.

(2) S is a zero sublocale if and only if S =
∧
n∈N Sn where for each n∈ N,

Sn is an open sublocale for which there exists a zero sublocale Zn and
a cozero sublocale Cn satisfying S ≤ Zn ≤ Zn ≤ Cn ≤ Sn.

(3) S is both a cozero and zero sublocale if and only if it is both closed and
open.

Proof : (1) Let S be a cozero sublocale. By Proposition 5.2, we may write
S = c(a) =

∨
n∈N c(an) where each an≺≺a. Then, using Lemma 5.4.2 and

2.2.2, we have c(an) ≤ Zn ≤ Cn ≤ C◦n ≤ c(a) for some cozero sublocale
Cn and some zero sublocale Zn. The converse follows from the fact that
countable joins of cozero sublocales are cozero sublocales.
(2) can be be proved similarly by complementation.
(3) For sufficiency: let S = c(a) = o(b), then a and b are complements of
each other and hence cozero elements.

5.6.2. Corollary. Every zero sublocale of a zero sublocale of L is a zero
sublocale of L.

Proof : Let S = o(a) be a zero sublocale of L and let T be a zero sublocale
of S. Then a is a cozero element, that is, a =

∨
n∈N an where an ≺ an+1 for

each n ∈ N. The fact that an ≺ an+1 in L means that there is some cn ∈ L
such that an ∧ cn = 0 and an+1 ∨ cn = 1. On the other hand, T being an
open sublocale of S means that T = o(b) ∩ S = o(b) ∩ o(a) = o(a ∧ b) for
some b ∈ S and being a zero sublocale means that b is a cozero element of S.
Therefore b =

∨
m bm with bm ≺ bm+1 in S and, consequently, there is some

dm ∈ S such that bm ∧ dm = a→ 0 = a∗ and bm+1 ∨ dm = 1. But then each
cn ∨ dn satisfies

(an ∧ bn) ∧ (cn ∨ dn) = an ∧ bn ∧ dn = an ∧ a∗ ≤ a ∧ a∗ = 0

and

(an+1 ∧ bn+1) ∨ (cn ∨ dn) = (an+1 ∨ cn ∨ dn) ∧ (bn+1 ∨ cn ∨ dn) = 1.
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Hence an∧bn ≺ an+1∧bn+1 in L. Since a∧b =
∨
n∈N(an∧bn), this makes sure

that a ∧ b is a cozero element of L and thus T is a zero sublocale of L.

5.7. Remark. Consider the characteristic function χS defined for a comple-
mented sublocale S of L by

[χS > p] =


1 if p < 0,

S∗ if 0 ≤ p < 1,

0 if p ≥ 1,

and [χS < q] =


0 if q ≤ 0,

S if 0 < q ≤ 1,

1 if q > 1.

These functions are precisely the idempotents of the ring F(L) (see [17]).
In any ring A, the set Idp(A) of idempotents forms a Boolean algebra with
meet, join and complement given by

a ∧ b = ab, a ∨ b = a+ b− ab, ¬a = 1− a.

This shows immediately that the map F(L) → S(L) given by f 7→ Coz(f)
restricts to a Boolean isomorphism between Idp(F(L)) and the set of all
complemented sublocales of L (in particular, there is a Boolean isomorphism
between Idp(C(L)) and the set of all complemented elements of L). This
isomorphism might be helpful for a better understanding of the class of com-
plemented sublocales of a locale L and problem 7.3 raised at the end of [24].

6. z-embeddings

6.1. Proposition. Let ϕ : L→M be a localic map. Then:

(1) ϕ−1[−] preserves cozero sublocales.
(2) ϕ−1[−] preserves zero sublocales.

Proof : Since ϕ−1[−] preserves complements, it is enough to show one of the
statements. Let C = CozM(g) for some 0 ≤ g ∈ C(M). Since ϕ−1[−] assigns
closed sublocales to closed sublocales, the composite f ≡ g ◦ϕ[−] belongs to
C(L).

S(L)

ϕ[−]

��

f

��

S(M)

ϕ−1[−]

OO

g
// L(R)

Finally, ϕ−1[C] = ϕ−1[g
∗(0,—)] = (g ◦ ϕ[−])∗(0,—) = CozL(f).
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6.2. Therefore each localic map ϕ : L→M induces frame homomorphisms

ϕ−1[−] : Coz ( S(M))→ Coz ( S(L))

and
ϕ−1[−] : Z ( S(M))→ Z ( S(L)).

The former will be called the cozero map and the latter will be called the
zero map.

Of course, the zero map is onto (and one says that ϕ is a z-embedding) iff
the cozero map is onto (when one says that ϕ is coz-onto); on the other hand,
the zero map is dense (that is, ϕ−1[o(a)] = 0 implies o(a) = 0; one refers to
ϕ as a z-dense map) iff the cozero map is codense (that is, ϕ−1[c(a)] = 1
implies c(a) = 1; in this case one says that ϕ is coz-codense).

In particular, for each sublocale S of L, the cozero map j−1 : S(L)→ S(S)
induced by the embedding j : S ↪→ L is given by j−1[T ] = T ∨ S = T ∩ S.
When j is coz-onto, the sublocale S is said to be z-embedded in L. We have,
immediately:

6.2.1. Proposition. A sublocale S of L is z-embedded if and only if for every
zero sublocale Z of S there is a zero sublocale W of L such that W∩S = Z.

This property captures the corresponding notion of being z-embedded for
a subspace of a topological space.

6.2.2. Remarks. (1) Let S be a sublocale of L. Recall that an f ∈ C∗(S) is
said to have a continuous bounded extension to L if there exists a f ∈ C∗(L)
such that fjS = f for the embedding jS : S(S) → S(L). The sublocale S
is then said to be C∗-embedded in L if every f ∈ C∗(S) has a continuous
bounded extension to L.

Each C∗-embedded sublocale of L is z-embedded in L since every zero
sublocale of S is the zero sublocale of a bounded continuous real function
(by Remark (2) in 5.3.1).

(2) It also follows immediately that an open sublocale o(a) is z-embedded
in L iff the surjection a ∧ − : L → ↓a is a coz-surjection, that is, iff every
cozero element of ↓a is the image under (a ∧ −) of some cozero element in
L. Thus an open sublocale o(a) is z-embedded iff the element a is what is
usually called a coz-embedded element [4].
(3) Recall from [4] that a frame L is an Oz frame if every a ∈ L is coz-
embedded. Then, immediately:

A locale L is Oz if and only if every open sublocale is z-embedded in L.
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6.3. z-Open and z-closed maps. Inspired by the corresponding classical
notions in [9, 27], we say that a localic map ϕ : L→M is z-open if for every
Z ∈ Z( S(L)), ϕ[Z] is an open sublocale of M . Similarly, ϕ is coz-closed
if ϕ[C] is a closed sublocale of M for every cozero sublocale C of L. On

the other hand, ϕ is z-closed (or coz-open) if ϕ[C]◦ ≤ ϕ[Z] for every zero
sublocale Z of L and every cozero sublocale C of L such that C ≤ Z.

6.3.1. Remark. Clearly, open maps and zero-preserving maps (i.e., localic
maps that preserve zero sublocales) are z-open. Moreover, “closed+z-open”
implies “z-closed”.

6.3.2. Proposition. Let ϕ : L → M be a localic map. If L is completely
regular and ϕ is z-open, then ϕ is open.

Proof : Let S be an open sublocale of L. By Corollary 5.5 we may write S =∧
Zi for some zero sublocales Zi. Then ϕ[S] =

∧
ϕ[Zi]. By the hypothesis,

each ϕ[Zi] is open in M and hence ϕ[S] is also open in M .

7. Disconnectivity and perfect normality

7.1. Now recall from [1] that a frame L is basically disconnected if a∗∨a∗∗ = 1
for every cozero element a. Further, L is a P -frame (resp. almost P -frame)
if a∗ ∨ a = 1 (resp. a = a∗∗) for every cozero element a.

7.1.1. Proposition. The following are equivalent for a frame L:

(1) L is basically disconnected.

(2) For every zero sublocale Z(f) of L, Z(f) ∨ Coz(f)◦ = 1.
(3) For every zero sublocale Z(f) of L and every a ∈ L,

Z(f) ∨ o(a) = 1 =⇒ Z(f) ∨ o(a) = 1.

(4) For every zero sublocale Z(f) of L, Z(f) is an open sublocale.

Proof : (1)⇒(2): Let Z(f) = o(b) with b a cozero element of L. Then Z(f) ∨
Coz(f)◦ = c(b∗) ∨ c(b∗∗) = 1.

(2)⇒(3): Let Z(f) be a zero sublocale such that Z(f) ∨ o(a) = 1. Then
Coz(f) ≤ o(a) and hence by the hypothesis we may conclude that 1 =

Z(f) ∨ Coz(f) ≤ Z(f) ∨ o(a).

(3)⇒(4): Let Z(f) = o(b) with b ∈ CozL. Since Z(f) ∨ o(b∗) = 1, it follows

that 1 = Z(f) ∨ o(b∗). Hence Z(f) ≥ o(b∗)
∗

= Z(f)
◦
.



NOTES ON POINT-FREE REAL FUNCTIONS AND SUBLOCALES 31

(4)⇒(1): Let a be a cozero element of L. Since o(a) is a zero sublocale it

follows that o(a) = c(a∗) is an open sublocale and so there exists b ∈ L such
that o(a∗) = c(b). Hence 1 = a∗ ∨ b ≤ a∗ ∨ a∗∗.

7.1.2. Proposition. Let L be a frame.

(1) L is a P -frame if and only if every zero sublocale is a closed sublocale.
(2) L is an almost P -frame if and only if every zero sublocale is the inte-

rior of its closure.

Proof : (1) Let Z(f) = o(a) for some cozero element a ∈ L. Then a∗ ∨ a = 1
and so Z(f) = c(a∗). Conversely, let a ∈ L be a cozero element. Since o(a)
is a zero sublocale it follows that there exists b ∈ L such that o(a) = c(b).
Hence 1 = a ∨ b ≤ a ∨ a∗.

To conclude (2) just notice that a = a∗∗ is equivalent to o(a) =
(
o(a)

)◦
.

7.2. The concept of perfectness for topological spaces (due to Heath and
Michael [19]) is formulated in frames in the following manner [16]:

A frame is perfect if every open sublocale is an Fσ-sublocale, that is, if for
each a ∈ L there exists a sequence (an)n∈N in L such that o(a) =

∧
n∈N c(an)

(equivalently, if every open sublocale is a Fσ-sublocale). By a perfectly normal
frame we understand a perfect plus normal frame.

Contrarily to the situation in spaces, in the category of frames the dual
notion of perfectness (that every closed sublocale is a Gδ-sublocale) is not
equivalent (it is in fact stronger). However, under normality, as proved in [14,
Proposition 3.5], these conditions are equivalent, and they are also equivalent
with the condition

∀a ∈ L ∃(an)n∈N ⊆ L : a =
∨
n∈N

an, an ≺ a. (7.2.1)

Thus we have:

7.2.1. Proposition. A frame is perfectly normal if and only if every open
sublocale is a zero sublocale.

Proof : The necessity follows immediately from the fact (also proved in [14,
Proposition 3.5]) that under normality any a satisfying (7.2.1) is a cozero
element.
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Conversely, if every open sublocale is a zero sublocale then the set of all
cozero sublocales is precisely c[L]. Thus the set Coz( S(L)) of all cozero sublo-
cales is isomorphic to L and the normality of L follows from the normality
of Coz( S(L)). Perfectness of L is obvious.

7.2.2. Corollary. If a frame L is perfectly normal then every sublocale of L
is z-embedded.

Proof : Let S be a sublocale of L and let Z be a zero sublocale of S. Since
Z is an open sublocale of S, it is of the form o(a) ∩ S for some a ∈ S. By
7.2.1, o(a) is a zero sublocale of L. The conclusion follows from Proposition
6.2.1.

7.2.3. Remark. This gives numerous examples of z-embedded sublocales
that are not C∗-embedded. For example, any non C∗-embedded sublocale
of L(R) is z-embedded. This means that z-embedding is a considerable
weakening of C∗-embedding.

8. The support of a real function

8.1. Small sublocales. We say that a sublocale S of L is small if any cozero
sublocale contained in S is compact. We set

Fs(L) = {f ∈ F(L) | [f = 0] is small}
and

Cs(L) = Fs(L) ∩ C(L) = {f ∈ C(L) | Z(f) is small}.
Recall from [10] that an element a ∈ L is said to be small if for any cozero

element x ∈ L such that a ∨ x = 1 the sublocale c(x) is compact.

8.1.1. Proposition. An element a ∈ L is small if and only if the sublocale
o(a) is small.

Proof : ⇒: Let a be small and let S be a cozero sublocale contained in o(a).
Then S = c(x) for some cozero element x so that

S = c(x) ⊆ o(a)⇔ c(x) ≥ o(a)⇔ a ∨ x = 1.

Hence c(a) is compact.

⇐: Let o(a) be small and x a cozero element in L such that a ∨ x = 1.
Arguing as above we obtain that c(x) is a zero sublocale contained in o(a).
Hence c(a) is compact.
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8.1.2. As remarked earlier in 3.5, there is a 1-1 correspondence between C(L)
and the set R(L) of all frame homomorphisms ϕ : L(R)→ L. We will use the
following notation. Given a frame homomorphism ϕ : L(R)→ L, we denote
by fϕ the continuous real function determined by the frame homomorphism

(fϕ)∗ = cL ◦ ϕ : L(R)→ S(L). (8.1.2)

Note that Coz(fϕ) = (fϕ)∗((—, 0)∨(0,—)) = c(ϕ((—, 0)∨(0,—))) = cL(cozϕ)
and Z(fϕ) = oL(cozϕ). It follows immediately from Proposition 8.1.1 that
coz ϕ is small if and only if Z(fϕ) is small. Moreover, denoting by Rs(L) the
set of all frame homomorphisms ϕ : L(R) → L whose corresponding cozero
elements are small, we have:

8.1.3. Corollary. There is a 1-1 correspondence between Rs(L) and Cs(L).

Proof : Just note that

ϕ ∈ Rs(L)⇔ coz ϕ is small⇔ Z(fϕ) is small⇔ fϕ ∈ Cs(L),

so that the 1-1 correspondence between R(L) and C(L) restricts to a 1-1
correspondence between Rs(L) and Cs(L).

8.2. The support of a real function. Given a real function f ∈ F(L),

the support of f is the closed sublocale [f = 0]; we denote it by supp(f). In

particular, if f ∈ C(L) then supp(f) = Z(f).
We set

FK(L) = {f ∈ F(L) | supp(f) is compact}
and

CK(L) = FK(L) ∩ C(L).

8.2.1. Example. For the characteristic function χS (defined for any com-
plemented sublocale S of L), it is clear that Coz(χS) = S∗. Therefore
supp(χS) = S and hence χS ∈ CK(L) if and only if S is compact.

8.2.2. Observe that FK(L) ⊆ Fs(L) and CK(L) ⊆ Cs(L). Indeed, let f ∈
F(L) such that supp(f) is compact and Coz(g) a cozero sublocale contained

in [f = 0]. Then Coz(g) ⊆ [f = 0] and hence Coz(g) is compact. It follows
that [f = 0] is small and so f ∈ Fs(L).

Moreover, for any P -frame L, CK(L) = Cs(L). Indeed, let f ∈ F(L) such
that Z(f) is small. Then, by Proposition 7.1.2, Z(f) is a closed sublocale and
hence a cozero sublocale, by Proposition 5.6.1 (3). It follows that supp(f) =
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Z(f) = Z(f) is compact (since supp(f) is a cozero sublocale contained in the
small sublocale Z(f)).

8.2.3. Remark. We point out that the support of a frame homomorphism
ϕ : L(R)→ L is implicitly defined in [10, p. 212] as

supp(ϕ) = ↑(coz ϕ)∗ = cL ((coz ϕ)∗) = oL (coz ϕ).

Let RK(L) denote the set of all frame homomorphism ϕ : L(R)→ L with

compact support. Since supp(fϕ) = Z(fϕ) = oL(cozϕ) = supp(ϕ), we have
immediately the following:

8.2.4. Corollary. There is a 1-1 correspondence between RK(L) and CK(L).

Proof : Just note that

ϕ ∈ RK(L)⇔ supp(ϕ) is compact⇔ fϕ ∈ CK(L),

so that the 1-1 correspondence between R(L) and C(L) restricts to a 1-1
correspondence between RK(L) and CK(L).

8.2.5. Remark. In [10, Page 212] it is erroneously stated that RK(L) =
Rs(L) holds for any basically disconnected frame. Of course, the intended
statement is for “P -frames” instead of “basically disconnected frames”, that
follows from 8.2.2 and corollaries 8.1.3 and 8.2.4 above. The rest of [10],
however, is not affected by this slight mistake.

8.3. Real functions which vanish at infinity. We say that a real function
f ∈ F(L) vanishes at infinity if [− 1

n < f < 1
n ] is compact for every n ∈ N.

Let

F∞(L) = {f ∈ F(L) | f vanishes at infinity}
and

C∞(L) = F∞(L) ∩ C(L).

Note that Fs(L) ⊆ F∞(L) and Cs(L) ⊆ C∞(L). Indeed, let f ∈ F(L) such
that Z(f) is small. Then [− 1

n < f < 1
n ] is a cozero sublocale contained in

Z(f) and hence [− 1
n < f < 1

n ] is compact for every n ∈ N.

8.3.1. Remark. Note that this concept was originally considered for frame
homomorphisms in [10]: a frame homomorphism ϕ : L(R) → L vanishes at
infinity if ↑ϕ

(
− 1
n ,

1
n

)
is compact for each n ∈ N.
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LetR∞(L) denote the set of all frame homomorphisms ϕ : L(R)→ L which
vanish at infinity. Note that

[− 1
n < fϕ <

1
n ] = cL(ϕ(− 1

n ,
1
n)) = ↑ϕ(− 1

n ,
1
n).

This yields immediately the following:

8.3.2. Corollary. There is a 1-1 correspondence between R∞(L) and C∞(L).

Proof : Just note that

ϕ ∈ R∞(L)⇔ ↑ϕ(− 1
n ,

1
n) is compact for every n ∈ N⇔ fϕ ∈ CK(L),

so that the 1-1 correspondence between R(L) and C(L) restricts to a 1-1
correspondence between R∞(L) and C∞(L).
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Department of Mathematics, University of the Basque Country UPV/EHU, Apdo. 644,
48080 Bilbao, Spain
E-mail address: javier.gutierrezgarcia@lg.ehu.es

Jorge Picado
CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal
E-mail address: picado@mat.uc.pt

Aleš Pultr
Department of Applied Mathematics and ITI, MFF, Charles University, Malostranské
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