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1. Introduction
A midpoint algebra is a pair (A,⊕) where A is a set and ⊕ a binary

operation satisfying the following axioms:

(idempotency) x⊕ x = x,
(commutativity) x⊕ y = y ⊕ x,

(cancellation) (∃a ∈ A, x⊕ a = y ⊕ a)⇒ x = y,
(mediality) (x⊕ y)⊕ (z ⊕ w) = (x⊕ z)⊕ (y ⊕ w).

The main example, which attracted our attention to this study, is the unit
interval A = [0, 1] with x⊕ y = x+y

2 .
The category of midpoint algebras is not a Mal’tsev category. Indeed, the

usual order relation on the unit interval, with the arithmetic mean as above,
is clearly a subalgebra of the product [0, 1]×[0, 1], which is reflexive and tran-
sitive but not symmetric, contradicting the well known characterization of
Mal’tsev categories [5, 6, 7]. Nevertheless, the category of midpoint algebras
does have some interesting properties weaker than those of Mal’tsev catego-
ries, namely that each object admits at most one internal monoid structure
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for each choice of a unit. To illustrate this aspect we use another example.
Let (A,⊕) be the midpoint algebra with A =]0, 1], the set of positive real
numbers smaller or equal than one, and the operation

a⊕ b =
2ab

a+ b
.

It is clear that if a and b are positive real numbers then a⊕ b is also positive;
it is also easy to see that if a and b are less or equal than one then a ⊕ b is
less or equal than one. A simple way to see it is to observe that the condition
a⊕ b ≤ 1 is equivalent to the condition

0 ≤ a(1− b) + b(1− a).

Hence the operation is well defined and it is easily checked that (A,⊕) is a
midpoint algebra. The diagram

A× A m // A {1}oo ,

with
m(x, y) =

xy

x+ y − xy
,

is an internal monoid. This internal monoid structure is uniquely determined
by the unit element 1 ∈ A and there is no internal monoid structure for any
other choice of a unit element. Moreover, it is not an internal group as, for
example, 1

2 has no inverse since the equation

x = 1 + x

has no solution in the real numbers.
While proving some of the results presented in this paper, we have observed

that, in many cases, the idempotency law could be dealt with in a separate
way. This suggested to us the study of the more general structure of com-
mutative cancellative medial magmas, which, for simplicity, we will refer to
as ccm-magmas. The medial law has been widely studied over the last three
quarter of a century. In the context of magmas (formerly known as groupoids)
this law was also referred to as bisymmetric, entropic or transposition, among
other names. It has been studied either from an algebraic point of view or
from a more geometrical perspective, see for example [1, 8, 11, 13, 15, 22].

The open-closed unit interval ]0, 1] used in the example above has several
other important structures of ccm-magma: that of a midpoint algebra (with
the arithmetic mean), and that of a commutative monoid with cancellation
(with the usual multiplication), resulting in an interplay between different
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ccm-magmas on the same set. The study of such interactions is certainly
worthy. Nevertheless, for the moment, we dedicate our attention to some
important aspects of the internal structures in the category of ccm-magmas,
such as internal monoid, internal group and internal relation.

This paper is organized as follows: Section 2 recalls some categorical no-
tations and concepts such as the one of an internal monoid; Section 3 intro-
duces the category of ccm-magmas, gives some examples, and some useful
lemmas are proven; Section 4 observes that the category of ccm-magmas is
weakly Mal’tsev and characterizes the existence of an internal monoid struc-
ture on a given object, for every choice of a unit element; Section 5 explores
this property further by considering the notions of e-expansive, e-symmetric
and homogeneous ccm-magmas (a short list of simple examples and counter-
examples is also presented at the end of the section); and finally, Section 6
studies some properties of internal relations, namely symmetry, transitivity,
reflexivity and difunctionality, which are not visible in the case of Mal’tsev
categories.

2. Preliminaries
The basic notions and notations from Category Theory used in this paper

can be found, for instance, in [17]. Let us just recall a few of them. If C is
any category with finite limits, an internal monoid in C is a diagram of the
shape

A× A m // A 1
eoo

in which A is any object in C, m and e are morphisms in C, 1 denotes the
terminal object and the following diagram is commutative (where !A denotes
the unique morphism from A to the terminal object 1).

A3
1A×m//

m×1A
��

A2

m
��

A

||
||

||
||

||
||

||
||

〈e!A,1A〉oo

〈1A,e!A〉
��

A2 m // A A2moo

An internal monoid (A,m, e) is an internal group (see for example the Ap-
pendix in [3]) if and only if the diagram

A A× A
π2 //moo A

is a product diagram (the morphism π2 is the canonical second projection),
in other words, for every two morphisms u, v : X −→ A there exists a unique
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morphism, represented as u− v, from X to A such that

m〈u− v, v〉 = u.

The inverse of a generalized element x : X −→ A is clearly e − x with the
unit element e : 1 −→ A. This is simply another way to say that there is a
morphism t : A −→ A such that

m〈1A, t〉 = e!A = m〈t, 1A〉.

This paper restricts itself to quasi-varieties of universal algebra [4], that is,
categories in which the objects are sets equipped with an arbitrary family of
finite-arity operations, satisfying a collection of axioms which may be either
expressed as identities or as implications. All the results to be proven about
conditions of uniqueness are easily generalized to a category with a faithful
functor into the category of sets, preserving finite limits. However, the results
involving existence conditions depend on the context and do not necessarily
hold in general.

The notion of internal ccm-magma is also a natural one to be considered.
It would be interesting, for example, to study topological ccm-magmas, i.e.
ccm-magmas internal to the category of topological spaces [8, 14].

A congruence on an object A is a subalgebra of A×A, which, if considered
as a relation, is reflexive, transitive and symmetric (see e.g. [3]). We will
also consider difunctional relations: a relation R ⊆ X × Y is difunctional if
the implication

xRy, zRy, zRw ⇒ xRw

holds for all x, z ∈ X and y, w ∈ Y .
A Mal’tsev category is characterized by the property that every reflexive

internal relation is a congruence relation, or equivalently, by the property
that every internal relation is difunctional ([5, 6, 7] see also [3]). As we will
see, this property does not hold in the categories we are considering. Howe-
ver, these have a weaker property: some types of reflexive internal relations
are still congruences, and some types of internal relations are automatically
difunctional.

3. Ccm-magmas
A ccm-magma (commutative cancellative medial magma) may be obtained

from a midpoint algebra simply by not requiring the idempotency axiom.
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Definition 3.1. A ccm-magma is an algebraic structure (A,⊕) with a binary
operation ⊕ satisfying the following axioms:

M1 a⊕ b = b⊕ a
M2 a⊕ c = b⊕ c =⇒ a = b
M3 (a⊕ b)⊕ (c⊕ d) = (a⊕ c)⊕ (b⊕ d)

A morphism of ccm-magmas is simply a homomorphism, that is, a map
preserving the binary operation.

It is known that the category of commutative cancellative magmas is weakly
Mal’tsev ([19]). The third axiom has an important consequence illustrated
in the following proposition.

Proposition 3.2. If f1, f2 : A −→ B are two morphisms of ccm-magmas,
then the map f : A× A −→ B defined by

f(x, y) = f1(x)⊕ f2(y)

is also a morphism of ccm-magmas.

Proof : The result is an immediate consequence of the axiom (M3).

The result of Proposition 3.2 stands even if commutativity is not included
(see also [21], Theorem 12.8); in this case, among all medial-like identities
studied in [20], (M3) is the most appropriate in proving this result. In fact,
as we will see in Section 4, even the weakly Mal’tsev property may be proven
without commutativity. This paper considers the commutativity axiom. In
a future work we will investigate a more general structure where (M1) is not
included.

A simple variation of the previous result shows that for any two ccm-
magmas X and Y , there is a canonical morphism from product into co-
product

X × Y −→ X + Y

sending each pair (x, y) ∈ X×Y to the element ιX(x)⊕ ιY (y) ∈ X+Y , with
ιX : X −→ X + Y and ιY : Y −→ X + Y the canonical inclusions into the
co-product. More generally, for any two given morphisms f1 : X −→ B and
f2 : Y −→ B there is an induced morphism, say f = f1 ⊕ f2 : X × Y −→ B,
even thought there are no canonical injections to insert X and Y in X × Y .

Next we present a short list of examples build up from well-known algebraic
structures.

Example 3.3. A short list of simple examples:
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(1) The open unit interval ]0, 1[ with the operation

x⊕ y =
x+ y

2
or x⊕ y =

√
xy

is a ccm-magma.
(2) Every midpoint algebra is a ccm-magma.
(3) The set of natural numbers with the usual addition is a ccm-magma.
(4) Every commutative semigroup with cancellation is a ccm-magma.
(5) If A is a field, then the formula

x⊕ y = a(x+ y) + b

gives a ccm-magma for every choice of a, b ∈ A with a 6= 0.
(6) If A is any ring, then the formula

x⊕ y = a(x+ y) + b

gives a ccm-magma for every choice of a, b ∈ A, with a an invertible
element.

(7) If V is any real or complex vector space, then the formula

x⊕ y = α(x+ y) + b

gives a ccm-magma on V for every choice of a scalar α 6= 0 and for
every b ∈ A.

(8) If R is a ring and A an R-module, then the formula

x⊕ y = α(x+ y) + b

gives a ccm-magma on A for every choice of an invertible scalar α ∈ R
and any b ∈ A.

(9) If A is the set of positive real numbers, then the formula

x⊕ y =
axy

x+ y

gives a ccm-magma for every choice of a ∈ A.
(10) If (A,+,×, ·, 0, 1) is a commutative and associative classical algebra

over a commutative ring R, then the formula

x⊕ y = α · (x+ y) + β · (x× y)

gives a ccm-magma on the set

{x ∈ A | α · 1 + β · x is invertible}
for every choice of scalars α, β ∈ R with α = α2.
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(11) Every loop with a(bc) = c(ba) is a ccm-magma, see for instance [21].
(12) If (A,⊕) is a ccm-magma and g : A −→ A is a monomorphism, then

the formula
(x, y) 7→ g(x⊕ y)⊕ a

gives a ccm-magma on A, for every choice of a ∈ A.

The last example is obtained directly from the proposition below by letting
f = k = 1A and h = g.

Proposition 3.4. Let (A,⊕) be a ccm-magma and f, g : A −→ B any two
maps. If f and g are injective and there are maps h, k : A −→ B such that

f(g(x⊕ y)⊕ z) = (h(x)⊕ h(y))⊕ k(z), x, y, z ∈ A,
then the formula

(x, y) 7→ g(f(x)⊕ f(y))⊕ a
gives a ccm-magma for every choice of a ∈ A.

Proof : The result is an immediate consequence of the axioms, combined with
the hypotheses on the given maps. Commutativity is immediate. Cancella-
tion follows from f and g being injective. To prove the medial law, on the
one hand we have

f(g(fx⊕ fy)⊕ a)⊕ f(g(fz ⊕ fw)⊕ a)

which by our assumptions on f and g simplifies to

((h(fx)⊕ h(fy))⊕ k(a))⊕ ((h(fz)⊕ h(fw))⊕ k(a)); (1)

while on the other hand we have

f(g(fx⊕ fz)⊕ a)⊕ f(g(fy ⊕ fw)⊕ a),

which by our assumptions on f and g simplifies to

((h(fx)⊕ h(fz))⊕ k(a))⊕ ((h(fy)⊕ h(fw))⊕ k(a)). (2)

Finally we observe that expressions (1) and (2) are equal by a simple mani-
pulation of axiom (M3) on the original ⊕, which completes the proof.

We end this section with two lemmas which will be used later on while
proving that some internal relations, in the category of ccm-magmas, are au-
tomatically difunctional. This contrasts with the case of Mal’tsev categories
in which every internal relation is difunctional, and every internal reflexive
relation is always a congruence.
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Lemma 3.5. Let f, g : A× A −→ B be two morphisms in the category of
ccm-magmas such that f(a, a) = g(a, a) for every a ∈ A. Then:

(i) f(a, b) = g(a, b), f(b, c) = g(b, c)⇒ f(a, c) = g(a, c);
(ii) f(a, b) = g(a, b)⇒ f(b, a) = g(b, a).

Proof : (i) We will show that if f(a, b) = g(a, b) and f(b, c) = g(b, c) then we
always have

f(a, c)⊕ f(b, b) = g(a, c)⊕ g(b, b) (3)

and since f(b, b) = g(b, b) we use (M2) and get f(a, c) = g(a, c). To show (3)
we observe:

f(a, c)⊕ f(b, b) = f(a⊕ b, c⊕ b)
= f(a⊕ b, b⊕ c)
= f(a, b)⊕ f(b, c)

= g(a, b)⊕ g(b, c)

= g(a⊕ b, b⊕ c)
= g(a⊕ b, c⊕ b)
= g(a, c)⊕ g(b, b).

(ii) Since f(a, a) = g(a, a) for every a ∈ A, we always have:

f(b, a)⊕ f(a, b) = f(b⊕ a, a⊕ b)
= f(a⊕ b, a⊕ b)
= g(a⊕ b, a⊕ b)
= g(b⊕ a, a⊕ b)
= g(b, a)⊕ g(a, b)

now, if f(a, b) = g(a, b) then, using (M2) we obtain f(b, a) = g(b, a) as
desired.

Lemma 3.6. Let f, g : X × Y −→ B be any two morphisms in the category
of ccm-magmas. Then: f(x, y) = g(x, y)

f(z, y) = g(z, y)
f(z, w) = g(z, w)

⇒ f(x,w) = g(x,w).
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Proof : Assuming f(x, y) = g(x, y) and f(z, w) = g(z, w) we have:

f(x,w)⊕ f(z, y) = f(x⊕ z, w ⊕ y)

= f(x⊕ z, y ⊕ w)

= f(x, y)⊕ f(z, w)

= g(x, y)⊕ g(z, w)

= g(x⊕ z, y ⊕ w)

= g(x⊕ z, w ⊕ y)

= g(x,w)⊕ g(z, y).

Now, if f(z, y) = g(z, y) then we conclude that f(x,w) = g(x,w) as desired,
using axiom (M2).

4. Mal’tsev and weakly Mal’tsev properties
We have already observed that the category of midpoint algebras, and

hence the one of ccm-magmas, is not a Mal’tsev category. It is a weakly
Mal’tsev category as a result of ccm-magmas being a subcategory of commu-
tative cancellative magmas, known to be weakly Mal’tsev. Nonetheless, we
present an alternative proof using the medial law instead of commutativity.

Proposition 4.1. The category of ccm-magmas is a weakly Mal’tsev cate-
gory.

Proof : From [19] we know that if there exits a ternary term p(x, y, z) such
that

p(x, y, y) = p(y, y, x)

and
p(x, a, a) = p(y, a, a)⇒ x = y

then the category is weakly Mal’tsev. Indeed this is the case for every ccm-
magma (A,⊕) if we define

p(x, y, z) = (y ⊕ x)⊕ (z ⊕ y).

In a weakly Mal’tsev category any diagram of the shape

A
f

//

u
��?

??
??

??
??

??
B

r
oo

s
//

v

��

C
g

oo

w
����

��
��

��
��

�

D

(4)
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with fr = 1B = gs and ur = v = ws, induces a bigger diagram

C

e2����
��

��
�

g ��?
??

??
?? w

''
A×B C

π2
??�������

π1 ��?
??

??
??

B

r����
��

��
�

s
__???????

v // D

A

f
??�������

e1
__???????

u

77 (5)

in which there is at most one morphism, say θ : A×B C −→ D, from the pull-
back (A×BC, π1, π2) of the split epimorphism f along the split epimorphism
g to the object D such that θe1 = u and θe2 = w. Where e1 and e2 are the
induced morphisms of the form

e1(a) = (a, sf(a)), e2(c) = (rg(c), c).

The following result states under which conditions a diagram such as (4)
induces a morphism such as θ.

Proposition 4.2. Given a diagram such as (5) in the category of ccm-
magmas, there is a (unique) morphism θ : A×B C −→ D, such that θe1 = u
and θe2 = w, if and only if, the equation

x⊕ v(b) = u(a)⊕ w(c) (6)

has a solution x ∈ D for every a ∈ A, b ∈ B and c ∈ C with f(a) = b = g(c).
When that is the case, θ(a, c) = x.

Proof : Suppose there is θ : A×B C −→ D such that θ(a, s(b)) = u(a) and
θ(r(b), c) = w(c), where b = f(a) = g(c), then x = θ(a, c) is always a
solution to the equation (6). Indeed, using axiom (M1), we observe that

θ(a, c)⊕ v(b) = θ(a, c)⊕ θ(r(b), s(b))
= θ((a, c)⊕ (r(b), s(b)))

= θ(a⊕ r(b), c⊕ s(b))
= θ(a⊕ r(b), s(b)⊕ c)
= θ(a, s(b))⊕ θ(r(b), c)
= u(a)⊕ w(c).

Conversely, if the equation (6) has a solution (which is unique by axiom (M2))
for every (a, c) ∈ A×BC, then we may define a map θ : A×B C −→ D which
assigns the unique solution of (6) to every pair (a, c) ∈ A ×B C. It remains
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to show that this map is a homomorphism. By axiom (M2), it suffices to
prove that

(θ(a, c)⊕ θ(a′, c′))⊕ v(b⊕ b′) = θ(a⊕ a′, c⊕ c′)⊕ v(b⊕ b′)

for every a, a′ ∈ A and c, c′ ∈ C where

f(a) = g(c) = b ∈ B and f(a′) = g(c′) = b ∈ B.

Now, because u, v and w are homomorphisms and, using axiom (M3), we
have

(θ(a, c)⊕ θ(a′, c′))⊕ v(b⊕ b′) = (θ(a, c)⊕ θ(a′, c′))⊕ (v(b)⊕ v(b′))

= (θ(a, c)⊕ v(b))⊕ (θ(a′, c′)⊕ v(b′))

= (u(a)⊕ w(c))⊕ (u(a′)⊕ w(c′))

= (u(a)⊕ u(a′))⊕ (w(c)⊕ w(c′))

= u(a⊕ a′)⊕ w(c⊕ c′)
= θ(a⊕ a′, c⊕ c′)⊕ v(b⊕ b′)

as desired, which completes the proof.

In particular, any internal reflexive graph admits, at most, one structure
of internal category. This is easily seen from the above result by choosing
D = A = C, r = s = v, and u and w to be the identity morphisms. Even
more particularly, by choosing B to be a singleton, and if (A,⊕) is a ccm-
magma then, for every idempotent e ∈ A, there is, at most, one internal
monoid structure on A which is compatible with the binary operation, that
is, there exists at most one monoid (A, ∗e, e) such that

(x ∗e y)⊕ (z ∗e w) = (x⊕ z) ∗e (y ⊕ w). (7)

Note that e ∈ A must be an idempotent, so that the inclusion {e} −→ A
may be a homomorphism.

Corollary 4.3. Let (A,⊕) be a ccm-magma and e ∈ A an idempotent ele-
ment in A. There is a (unique) internal monoid structure (A, ∗e, e) in A, if
and only if the equation

θ ⊕ e = x⊕ y
has a solution θ = θ(x, y) ∈ A for every x, y ∈ A. In that case x ∗e y is given
by θ(x, y).
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Proof : It follows from the previous proposition with A = D = C, B = 1
the terminal algebra, f and g uniquely determined while r = s = v send the
unique element in 1 to the chosen element e in A (which is a homomorphism
as soon as e⊕ e = e), and u = w is the identity morphism. The fact that the
operation ∗e is associative and has a unit e follows from general arguments
used in [18] but may also be demonstrated directly.

A particular case is when every element a ∈ A can be decomposed as
a = x1 ⊕ x2, studied in [12] as division groupoids. In this case the property
of having an internal monoid structure with unit element e is equivalent to
asking for a solution to the equation x⊕ e = a. We will further study these
properties in the next section.

5. Internal monoids and internal groups
It is well known [5, 6, 7] that, in Mal’tsev categories, every internal monoid

is necessarily and internal group. This property does not apply to ccm-
magmas. In this section, we will study some sufficient conditions for the
existence of an internal monoid or group structure within a ccm-magma
with a chosen unit element, which is necessarily an idempotent. For that we
introduce the following notions, which have already been considered in the
literature for different purposes, see for example [2, 11]:

Definition 5.1. Let (A,⊕) be a ccm-magma and consider any element e ∈ A.
We will say that:

(i) A is e-expansive if for every a ∈ A there exists 2e(a) ∈ A such that
2e(a)⊕ e = a;

(ii) A is e-symmetric if for every a ∈ A there exists −e(a) ∈ A such that
−e(a)⊕ a = e;

(iii) A is homogeneous if it is e-expansive (or e-symmetric) for every e ∈ A.

In fact, a homogeneous ccm-magma is the same as a commutative medial
quasigroup (see for instance [16]).

A sufficient condition for a ccm-magma to admit an internal monoid struc-
ture with an idempotent element e as its unit is to be e-expansive. When that
is the case, then the internal monoid is a group if and only if the algebra is
e-symmetric. Moreover, if every element is an idempotent, that is, if we have
a midpoint algebra, then it is e-expansive if and only if there exists a monoid
structure over e. Also every internal monoid (or group) is commutative and
admits cancellation.
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Proposition 5.2. Let (A,⊕) be a ccm-magma and consider any idempotent
element e ∈ A. If A is e-expansive then (A, ∗e, e) is a monoid with

x ∗e y = 2e(x⊕ y).

Moreover it is a group if and only if A is e-symmetric.

Proof : If A is e-expansive then in particular 2e(x ⊕ y) is a solution to the
equation

θ ⊕ e = x⊕ y,
for every x, y ∈ A. From Corollary 4.3 we may conclude that (A, ∗e, e) is
an internal monoid. Now, if moreover A is e-symmetric then −e(a) is the
inverse of a, for every a ∈ A. Indeed we have that

−e(a) ∗e a = e

is equivalent (by (M2)) to

(−e(a) ∗e a)⊕ e = e⊕ e
which holds because

(−e(a) ∗e a)⊕ e = 2e(−e(a)⊕ a)⊕ e = −e(a)⊕ a = e = e⊕ e.
Conversely, if (A, ∗e, e) is a group, then, for every a ∈ A, its symmetric
element, say a′ ∈ A, is a solution to the equation x ⊕ a = e. Indeed, since
a′ is such that a′ ∗e a = e, or equivalently 2e(a

′ ⊕ a) = e, we use axiom (M2)
and the assumption that e is an idempotent to conclude that

e = e⊕ e = 2e(a
′ ⊕ a)⊕ e = a′ ⊕ a.

In the case when the operation ⊕ has the geometrical meaning of midpoint,
the formula a ∗e b = 2e(a ⊕ b) is intuitively illustrated via the following
diagram.

a

??
??

??
??

??
??

??
? a ∗e b

��
��

��
��

��
��

��

a⊕ b

��
��

��
��

��
��

��
�

??
??

??
??

??
??

??
?

e b
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As a more concrete example, let A be any real vector space. Then, by defining

a⊕ b =
1

2
(a+ b)

we obtain a ccm-magma which is 0-symmetric and 0-expansive with the usual
interpretation of −a and 2a, as illustrated for the particular case of the real
line.

(−a) (−a)⊕ a a 2a //

(−a) 0 0⊕ (2a) 2a //

More generally, for every e ∈ A, this structure of ccm-magma is e-symmetric
and e-expansive, with 2e(a) = 2a− e and −e(a) = 2e−a. This fact is related
to the affine transformation x 7→ x+ e.

We also notice that if a ccm-magma is e-expansive and e-symmetric, for
some element e, then it is so for all elements, in other words it is homogeneous.
This result will be used in the proof of Corollary 6.6.

Proposition 5.3. Let (A,⊕) be a ccm-magma and e ∈ A an element in it.
If it is e-expansive and e-symmetric then it is homogeneous.

Proof : We have to prove that for every u, v ∈ A, there exists a solution x to
the equation x⊕ u = v. Indeed,

x⊕ u = v ⇐⇒ (x⊕ u)⊕ (e⊕−e(u)) = v ⊕ (e⊕−e(u))
⇐⇒ (x⊕ e)⊕ (u⊕−e(u)) = v ⊕ (e⊕−e(u))
⇐⇒ (x⊕ e)⊕ e = v ⊕ (e⊕−e(u))
⇐⇒ x⊕ e = 2e(v ⊕ (e⊕−e(u)))
⇐⇒ x = 2e(2e(v ⊕ (e⊕−e(u)))),

which gives the desired solution to the equation.

As already referred, every homogeneous ccm-magma is a commutative me-
dial quasigroup. This means that for homogeneous ccm-magmas, Proposition
5.2 is a special case (commutative) of the well known Toyoda Theorem [22].
This theorem has been generalized for medial magmas with cancellation (see
for instance [11]), but the result is no longer comparable with the one of an
internal monoid structure.

Restricting the study to homogeneous ccm-magmas has some advantages
but it forces the category to be Mal’tsev (and hence there is no longer the
distinction between internal monoid and internal group). Indeed, adapting
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the well-known formulas describing the category of quasigroups as a Mal’tsev
category, say from [9], we can conclude that if a ccm-magma is expansive for
every element then

p(x, y, z) = 22y(y)(x)⊕ 2y(z)

is a Mal’tsev term.
We continue with another aspect of ccm-magmas which will be used in

Proposition 5.5. If a given ccm-magma is expansive with respect to some
idempotent element e then the respective map 2e is a homomorphism. In
general, we have:

Proposition 5.4. Let (A,⊕) be a ccm-magma. If it is u-expansive and v-
expansive for some u, v ∈ A, then it is also (u⊕ v)-expansive, and moreover,

2u(a)⊕ 2v(b) = 2u⊕v(a⊕ b).

Proof : Suppose there exists 2u⊕v(a⊕ b), then we necessarily have

2u(a)⊕ 2v(b) = 2u⊕v(a⊕ b)

because, by adding u⊕ v in each term, we obtain a⊕ b. It remains to prove
that 2u⊕v exists. In other words we have to prove that for every a ∈ A, there
is x ∈ A such that x⊕ (u⊕ v) = a. We claim that

x = 2u(2u(a))⊕ 2v(u)

is the needed solution. Indeed,

(2u(2u(a))⊕ 2v(u))⊕ (u⊕ v) = (2u(2u(a))⊕ u)⊕ (2v(u)⊕ v)

= 2u(a)⊕ u
= a.

So, we get 2u⊕v(a) = 2u(2u(a))⊕ 2v(u) = 2v(2v(a))⊕ 2u(v).

The next result explains the connection between two induced monoid struc-
tures for two different idempotents u and v.

Proposition 5.5. Let (A,⊕) be a ccm-magma which is u-expansive and v-
expansive for some idempotent elements u, v ∈ A. The two monoid structures
on A, induced by u and v, are isomorphic. Moreover the two structures are
related as follows:

a ∗u b = (a ∗v b) ∗u v.
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Proof : Let a∗ub = 2u(a⊕b) and a∗vb = 2v(a⊕b) be the two monoid operations
induced, respectively by u and v, assuming u and v to be idempotent and
A to be u-expansive and v-expansive. The map f : (A, ∗u, u) −→ (A, ∗v, v),
such that f(a) = 2u(a⊕ v), a ∈ A, is a monoid homomorphism. Clearly, the
units are preserved, since

f(u) = 2u(u⊕ v) = 2u(v ⊕ u) = 2u(v)⊕ 2u(u) = 2u(v)⊕ u = v.

From

f(a ∗u b)⊕ v = f(2u(a⊕ b))⊕ v
= 2u(2u(a⊕ b)⊕ v)⊕ v
= 2u(2u(a⊕ b)⊕ v)⊕ (u⊕ 2u(v))

= (2u(2u(a⊕ b))⊕ 2u(v))⊕ (u⊕ 2u(v))

= (2u(2u(a⊕ b))⊕ u)⊕ (2u(v)⊕ 2u(v))

= 2u(a⊕ b)⊕ (2u(v ⊕ v)

= 2u(a⊕ b)⊕ (2u(v)

= 2u((a⊕ b)⊕ v)

and

(f(a) ∗v f(b))⊕ v = 2v(f(a)⊕ f(b))⊕ v
= f(a)⊕ f(b)

= 2u(a⊕ v)⊕ 2u(b⊕ v)

= 2u((a⊕ v)⊕ (b⊕ v))

= 2u((a⊕ b)⊕ (v ⊕ v))

= 2u((a⊕ b)⊕ v)

we may conclude that f(a ∗u b) = f(a) ∗v f(b). The inverse homomorphism
of f is g : (A, ∗v, v) −→ (A, ∗u, u) with g(a) = 2v(a⊕ u). Indeed,

gf(a) = 2v(2u(a⊕ v)⊕ u) = 2v(a⊕ v) = 2v(a)⊕ 2v(v) = 2v(a)⊕ v = a

and similarly we prove fg(a) = a. Finally, we prove a ∗u b = (a ∗v b) ∗u v by
observing that

(a ∗u b)⊕ u = a⊕ b = ((a ∗v b) ∗u v)⊕ u.
In some cases, a ccm-magma (A,⊕) does not only admit an internal monoid

structure over some idempotent element e, but also the structure itself is a



INTERNAL MONOIDS AND GROUPS IN CCM-MAGMAS 17

monoid with unit element e, that is a⊕ e = a. This property is summarized
in the following proposition.

Proposition 5.6. Let (A,⊕) be a ccm-magma and e ∈ A an idempotent.
The following conditions are equivalent:

(i) the operation ⊕ is associative;
(ii) the element e ∈ A is a unit element for ⊕;

(iii) the ccm-magma is e-expansive with 2e(a) = a;
(iv) the structure (A,⊕, e) is an internal monoid.

Proof : If the operation ⊕ is associative and e ∈ A is idempotent then

(a⊕ e)⊕ e = a⊕ (e⊕ e) = a⊕ e
and hence a ⊕ e = a. If e ∈ A, an idempotent, is also a unit element for
⊕ then 2e(a) = a by definition of 2e. We already know that if the ccm-
magma is e-expansive then (A, ∗e, e) is an internal monoid structure with
x ∗e y = 2e(x ⊕ y). When 2e is the identity map, the operation ∗e is simply
the original ⊕. This proves (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), whereas (iv) ⇒ (i) is
obvious.

Note also that if a ccm-magma (A,⊕) is associative, then it has, at most,
one idempotent. Indeed, if e1 and e2 are two idempotents, and ⊕ is associa-
tive, then

e1 ⊕ (e1 ⊕ e2) = e1 ⊕ e2 = e2 ⊕ (e2 ⊕ e1)

from which it follows that e1 = e2.
In the case of midpoint algebras, that is, when every element is an idem-

potent, there is no distinction between having a monoid structure for some
element e ∈ A and being e-expansive.

Proposition 5.7. Let (A,⊕) be a midpoint algebra with e ∈ A. The following
conditions are equivalent:

(i) there is an internal monoid structure over e;
(ii) for every a, b ∈ A, there is x ∈ A such that x⊕ e = a⊕ b;

(iii) the midpoint algebra is e-expansive.

Proof : The two conditions (i) and (ii) are already equivalent in the context of
ccm-magmas (Corollary 4.3). Also, in the more general case of ccm-magmas,
(iii) implies (i), as it is proven in Proposition 5.2. We are left to prove that
(i) implies (iii). Assuming an internal monoid structure (A, ∗e, e) and the
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fact that every element a ∈ A is idempotent (A is a midpoint algebra), we
have

2e(a) = 2e(a⊕ a) = a ∗e a.
If, in a midpoint algebra (A,⊕), there is an internal monoid structure

(A, ∗e, e), then ∗e is distributive over ⊕, as it immediately follows from (7).
This is not true in general for ccm-magmas.

Proposition 5.8. Let (A,⊕) be a ccm-magma with an internal monoid struc-
ture (A, ∗e, e). The following two conditions are equivalent:

(i) the ccm-magma is a midpoint algebra (every element a ∈ A is an
idempotent);

(ii) for every x, y, z ∈ A,

x ∗e (y ⊕ z) = (x ∗e y)⊕ (x ∗e z). (8)

Proof : If (A,⊕) is a midpoint algebra then (8) follows from (7). Conversely,
if we have an internal monoid structure (A, ∗e, e) together with (8), then
every element a ∈ A is an idempotent

a⊕ a = (a ∗e e)⊕ (a ∗e e) = a ∗e (e⊕ e) = a ∗e e = a.

Note that e is an idempotent because it is the unit element of an internal
monoid.

Some examples illustrating the properties discussed in the pre-
vious results. This section concludes with a short list of examples and
counter-examples showing several particular cases and properties, which a
given ccm-magma may or may not have for some specific choice of an idem-
potent element e in it. First we observe that if the four basic properties in
the left column on the table below are considered, then there are only six
possible combinations between them, namely the ones expressed in the other
columns and denoted by I to VI:

I II III IV V VI
e-expansive yes yes no no no no
e-symmetric yes no yes no no yes

internal monoid over e yes yes no no yes yes
internal group over e yes no no no no yes

The properties I to VI defined in the table above have an obvious inter-
pretation. For example, a ccm-magma has property III if and only if it
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is e-symmetric but not e-expansive for a specific choice of e, it does not
have an internal group structure over e or even an internal monoid; while
the ccm-magmas with property V have an internal monoid structure over
some idempotent element e, they are not e-expansive nor e-symmetric, and
consequently do not posses an internal group structure. Now, combining
the previous properties with the existence of one or more, none, or even
all idempotents, and also with associativity, we observe the following list of
ccm-magmas (A,⊕).

(1) Ccm-magmas with no idempotent elements (in this case there is no
interaction with properties I to VI from above):
(a) Non-associative:

(i) a⊕ b = a+b
2 + 1, A = R

(ii) a⊕ b = 3ab
a+b , A = R+

(iii) a⊕ b = 2(a+ b), A = R+

(b) Associative:
(i) a⊕ b = a+ b+ 1, A = [0,+∞]
(ii) a⊕ b = ab

a+b , A = R+ or A =]0, 1]
(iii) a⊕ b = a+ b+ ab, A = R+

(iv) a⊕ b = a+ b, A = R+

(v) a⊕ b = a+b
1+ab , A =]0, 1[

(vi) a⊕ b = log(exp(a) + exp(b)), A = R
(2) Ccm-magmas with every element an idempotent, that is, midpoint

algebras (due to Proposition 5.7 the properties V and VI do not apply):

Property a⊕ b A e ∈ A
I a+b

2 R every

I 3

√
a3+b3

2 R every

II a+b
2 [0,+∞[ e = 0

II 2ab
a+b ]0, 1] e = 1

III a+b
2 [0, 1] e = 1

2

III 2ab
a+b ]1,+∞[ e = 2

IV a+b
2 R+ N/A

IV 2ab
a+b R+ N/A

(3) Ccm-magmas with at least one idempotent element which are not mid-
point-algebras (in this case again we distinguish between associative



20 J. P. FATELO AND NELSON MARTINS-FERREIRA

and non-associative and give examples of each one of the properties I
to VI from above):
(a) non-associative:

Property a⊕ b A e ∈ A
I 2(a+ b) R e = 0

I 2 3
√
a3 + b3 R e = 0

II 2(a+ b) [0,+∞[ e = 0

III a+b
3 [−1, 1] e = 0

IV a+b
3 [0, 1] e = 0

V 2(a+ b) N0 e = 0
VI 2(a+ b) Z e = 0

(b) associative (in this case we only distinguish properties I and II
from above, as it follows from Proposition 5.6).

Property a⊕ b A e ∈ A
I a+ b R e = 0
II a+ b [0,+∞[ e = 0
II a+ b− ab [0, 1[ e = 0

(4) Finite ccm-magmas. Every finite ccm-magma is homogeneous. Some
examples are as follows. The matrix

A2

 1 3 2
3 2 1
2 1 3


shows an example of the multiplication table for a non-associative
ccm-magma with three idempotents. The matrix

A3

 2 1 3
1 3 2
3 2 1


shows an example of a non-associative ccm-magma with no idem-
potents. However there are no ccm-magmas with a finite and even
number of idempotents. This is due to the fact that if (A,⊕) is a
ccm-magma then the subset {a ∈ A | a⊕ a = a} is a subalgebra of
ccm-magmas and there are no commutative idempotent quasigroups
(homogeneous ccm-magmas) of even order [21].
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6. Internal Relations
As we have observed in the introduction, the category of ccm-magmas

is not Mal’tsev, and so there is no hope of having every internal reflexive
relation automatically as a congruence, nor having any internal relation as
a difunctional one. Nevertheless, as it is shown in [10] a category is weakly
Mal’tsev if and only if every strong relation is difunctional. In particular, if
f, g : X × Y −→ B are any two morphisms of ccm-magmas, then the relation
R ⊆ X × Y , defined by

xRy ⇔ f(x, y) = g(x, y) (9)

is a strong relation.
Hence the following results:

Proposition 6.1. Let f, g : A× A −→ B be two morphisms in the category
of ccm-magmas such that f(a, a) = g(a, a) for every a ∈ A. The internal
relation defined by

xRy ⇔ f(x, y) = g(x, y)

is a congruence.

Proof : It is an immediate consequence of Lemma 3.5.

Proposition 6.2. Let f, g : X × Y −→ B be two morphisms in the category
of ccm-magmas. The internal relation defined by

xRy ⇔ f(x, y) = g(x, y)

is difunctional.

Proof : It is an immediate consequence of Lemma 3.6.

We now present some results involving another special type of internal
relations, namely the ones constructed from a subalgebra of a given ccm-
magma.

Proposition 6.3. Let (A,⊕) be a ccm-magma with a subalgebra X ⊆ A and
an idempotent element e ∈ X. The relation

aRb⇔ ∃x ∈ X, a⊕ e = x⊕ b (10)

(i) is an internal relation;
(ii) is reflexive;

(iii) is transitive whenever X has a (unique) internal monoid structure
with e ∈ X as its unit;
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(iv) is symmetric if and only if X is e-symmetric.

Proof : (i) The relation is an internal relation if and only if R ⊆ A × A is a
subalgebra of the product, or equivalently, if and only if

aRb, a′Rb′ ⇒ (a⊕ a′)R(b⊕ b′).
It is the case because if there exist x, x′ ∈ X such that a ⊕ e = x ⊕ b and
a′ ⊕ e = x′ ⊕ b′ then we have

(a⊕ a′)⊕ e = (a⊕ a′)⊕ (e⊕ e)
= (a⊕ e)⊕ (a′ ⊕ e)
= (x⊕ b)⊕ (x′ ⊕ b′)
= (x⊕ x′)⊕ (b⊕ b′)

showing that there is (x⊕ x′) ∈ X such that

(a⊕ a′)⊕ e = (x⊕ x′)⊕ (b⊕ b′),
and so (a⊕ a′)R(b⊕ b′).

(ii) The reflexivity of R follows from the observation that a⊕ e = e⊕ a
and e ∈ X.

(iii) Suppose there is an internal monoid structure in X with e as its unit
element. Corollary 4.3 tells us that X has a monoid structure with e as unit if
and only if for every x, y ∈ X there is (x∗ey) ∈ X such that (x∗ey)⊕e = x⊕y.
In this case, we prove transitivity by showing that if aRb and bRc, that is

a⊕ e = x⊕ b , b⊕ e = y ⊕ c,
then aRc, because

a⊕ e = (x ∗e y)⊕ c.
It is straightforward to prove the above equality, by composing with (e⊕ e)
and then using cancellation:

(a⊕ e)⊕ (e⊕ e) = (x⊕ b)⊕ (e⊕ e)
= (x⊕ e)⊕ (b⊕ e)
= (x⊕ e)⊕ (y ⊕ c)
= (x⊕ y)⊕ (e⊕ c)
= ((x ∗e y)⊕ e)⊕ (c⊕ e)
= ((x ∗e y)⊕ c)⊕ (e⊕ e).
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(iv) Let us show that R is symmetric if and only if X is e-symmetric. By
definition of R, for every x ∈ X, we have xRe. Hence, if the relation is
symmetric we also have eRx from which we conclude the existence of y ∈ X
such that e = e⊕ e = y ⊕ x. This shows that X is e-symmetric. Conversely,
if X is e-symmetric then for every x ∈ X there is y ∈ X such that x⊕ y = e
and consequently the relation R is symmetric. Indeed, given aRb, that is
a⊕ e = x⊕ b for some x ∈ X, we have, with y = −e(x):

(y ⊕ a)⊕ e = (y ⊕ e)⊕ (a⊕ e) = (y ⊕ x)⊕ (e⊕ b) = e⊕ (e⊕ b)

from which we conclude

y ⊕ a = b⊕ e

and so bRa.

The condition on the existence of a monoid structure in item (iii) above is
sufficient for the relation to be transitive but it is not necessary. Indeed we
only have the operation (x∗e y) well defined for certain pairs (x, y) ∈ X×X,
namely the ones for which given any c ∈ A there are a, b ∈ A such that
a = (y ∗e c) and b = x ∗e (y ∗e c).

This suggests the following necessary and sufficient condition for the tran-
sitivity of this type of internal relations.

Proposition 6.4. Let (A,⊕) be a ccm-magma with a subalgebra X ⊆ A and
an idempotent element e ∈ X. The relation

aRb⇔ ∃x ∈ X, a⊕ e = x⊕ b

is transitive if and only if:

for all x, y ∈ X and c ∈ A, if there exist a, b ∈ A such that

a⊕ e = x⊕ b and b⊕ e = y ⊕ c (11)

then there is z ∈ X such that z ⊕ e = x⊕ y.

Proof : Assume R is transitive. If we have solutions a and b for the equations
(11) then we also have aRb and bRc which, by transitivity, gives us the
desired z ∈ X such that a⊕e = z⊕ c. It is now a simple calculation to check
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that z ⊕ e = x⊕ y. Indeed we have

(z ⊕ e)⊕ (c⊕ e) = (z ⊕ c)⊕ (e⊕ e)
= (a⊕ e)⊕ (e⊕ e)
= (x⊕ b)⊕ (e⊕ e)
= (x⊕ e)⊕ (b⊕ e)
= (x⊕ e)⊕ (y ⊕ c)
= (x⊕ y)⊕ (e⊕ c)

and the result follows from cancellation. Conversely, if aRb and bRc then we
also have x, y ∈ X as in (11) and hence there is an element z ∈ X such that
z ⊕ e = x⊕ y from which we conclude that a⊕ e = z ⊕ c. Indeed

(a⊕ e)⊕ (e⊕ e) = (x⊕ b)⊕ (e⊕ e)
= (x⊕ e)⊕ (b⊕ e)
= (x⊕ e)⊕ (y ⊕ c)
= (x⊕ y)⊕ (e⊕ c)
= (z ⊕ e)⊕ (c⊕ e)
= (z ⊕ c)⊕ (e⊕ e),

this shows that aRc and concludes the proof.

When A is e-expansive, item (iii) in Proposition 6.3 can now be reformula-
ted so to relate the transitivity of R with the property of X being e-expansive.

Corollary 6.5. Let (A,⊕) be a ccm-magma which is e-expansive for some
idempotent element e ∈ A and let X be a subalgebra with e ∈ X. The relation

aRb⇔ ∃x ∈ X, a⊕ e = x⊕ b
is transitive if and only if X is e-expansive.

Proof : If X is e-expansive then in particular it has an internal monoid struc-
ture with x ∗ y = 2e(x ⊕ y)X . Hence the relation is transitive (Proposition
6.3(iii)). Conversely, if the relation is transitive, then for all x, y ∈ X the
element 2e(x ⊕ y) ∈ A is in fact an element in X. Indeed, 2e(x ⊕ y)Ry and
yRe implies 2e(x ⊕ y)Re which is equivalent to 2e(x ⊕ y) ∈ X. This shows
that X is e-expansive.

Combining the two previous results on symmetry and transitivity with X
being e-expansive and e-symmetric we also observe:
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Corollary 6.6. Let (A,⊕) be a homogeneous ccm-magma with a subalgebra
X ⊆ A and an idempotent element e ∈ X. The relation

aRb⇔ ∃x ∈ X, a⊕ e = x⊕ b

is a congruence, if and only if X is homogeneous.

Proof : If X is homogeneous then it is e-expansive with 2e(x) ∈ X and it is
e-symmetric with −e(x) = 2x(e) ∈ X, for every x ∈ X. As a consequence
the relation R is transitive and symmetric, and hence it is a congruence,
since it is always an internal reflexive relation. Conversely, let us suppose R
is a congruence. By Corollary 6.5 and Proposition 6.3(iv) we already know
that X is e-expansive and e-symmetric, hence the result in Proposition 5.3
concludes the proof.

7. Conclusion
This work shows that the category of ccm-magmas admits several clas-

sifications for its objects. One possibility is to differentiate between those
ccm-magmas admitting an internal monoid structure and those who don’t.
A ccm-magma (A,⊕) with a given idempotent, e, admits an internal monoid
structure with e as its unit if and only if the equation

x⊕ e = a⊕ b

has a solution x for every a, b in A. This condition is weaker than A being
e-expansive. However, the two conditions are equivalent when every element
a ∈ A can be decomposed as a = x1 ⊕ x2. This property is considered, for
instance, in [12].

It is shown that every relation R of the form (9), constructed with the two
homomorphisms f and g, is necessarily a difunctional relation. This result
is also a consequence of the fact that the relation R is a strong relation and
the category of ccm-magmas is weakly Mal’tsev. More generally, when f
and/or g are not homomorphisms, it might happen that R is still an internal
relation but not a difunctional one. In a similar way, if f and g are as in
Proposition 6.1, with f(a, a) = g(a, a), but not homomorphisms, then we may
have a reflexive internal relation which is not a congruence. For example, the
relation R in Proposition 6.3, is equivalently defined as aRb if and only if
f(a, b) = g(a, b), where, for all a, b ∈ A, f(a, b) = a⊕ e while g(a, b) = a⊕ e
if there exists x ∈ X such that a⊕ e = x⊕ b, otherwise g(a, b) = e⊕ b.
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Every finite ccm-magma is necessarily homogeneous (Definition 5.1), and
since axiom (M3) is weaker than associativity, these kinds of structures may
be useful to the random generation of finite abelian groups. The procedure
is very simple: randomly generate a ccm-magma M with at least one idem-
potent, say e (although this is only important if we are interested in internal
structures), and then define

A(i,j)=find(M(:,e)==M(i,j))

for every i and j, in order to obtain a matrix A with the multiplication table
for an abelian group with e as unit element.

The notion of ccm-magma may also be defined internally in every category
with binary products (as it is done in [8] for midpoint algebras) and so, some
interesting interactions at this level are also expected, especially for the case
of topological ccm-magmas.
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