
Pré-Publicações do Departamento de Matemática
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Abstract: In this paper we study the unidirectional transport effect for Brownian
ratchets modeled by Fokker–Planck-type equations. In particular, we consider the
adiabatic and semiadiabatic limits for tilting ratchets, generic ratchets with small
diffusion, and the multi-state chemical ratchets. Having established a linear relation
between the bulk transport velocity and the bi-periodic solution, and using relative
entropy estimates and new functional inequalities, we obtain explicit asymptotic
formulas for the transport velocity and qualitative results concerning the direction
of transport. In particular, we prove the conjecture by Blanchet, Dolbeault and
Kowalczyk that the bulk velocity of the stochastic Stokes’ drift is non-zero for every
non-constant potential.
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1. Introduction
Brownian ratchets or Brownian motors are generic terms for tiny de-

vices which are able to produce unidirectional transport of matter when
all acting forces and gradients vanish after averaging over space and time,
and at the presence of (and often due to) overdamped Brownian motion
[2, 15, 19, 27, 32, 33]. Motor proteins are generally considered to be the
most celebrated example of Brownian ratchets [1]. However, during recent
years there has been a huge progress [18] in realizing and observing bulk
motion without net bias in SQUIDs, Josephson junctions, cold atoms in op-
tical lattices, nanopores, etc., as well as in microfluidics experiments. The
Stokes’ drift with diffusion is also an example of a Brownian ratchet mech-
anism [4, 19, 21]. Although the idea of micro-level motors goes back to the
dawn of thermodynamics, the discovery of ratchets has boosted the contem-
porary nano-technological interest in the development of hybrid and artificial
molecular machines [7, 22].
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The dynamics of a ratchet can be described by the Fokker–Planck equation

ρt − σρxx − (Ψxρ)x = 0, (1.1)

where σ is the given diffusion coefficient, and ρ(x, t) is the unknown probabil-
ity density of distribution of Brownian particles governed by a given potential
Ψ(x, t), which is supposed to be T -periodic in time t, and to have a 1-periodic
in x derivative Ψx(x, t). Note that we do not assume the potential Ψ(x, t)
itself to be x-periodic, so various tilting regimes are allowed, and the ‘tilting
forces’ are contained within the potential.

A related model which has particular relevance in biological applications
is the chemical motor. Here the particles can be in several states, and the
total amount of particles is fixed. Particles in different states are sensitive
to different time-independent potentials. The underlying chemical processes
cause transitions between the particles’ states, which we can consider to be
random. This is described by the following system of Fokker–Planck-type
equations:

(ρi)t − σ(ρi)xx − ((Ψi)xρi)x +
∑
j, j 6=i

νjiρi =
∑
j, j 6=i

νijρj, i = 1, . . . , N, (1.2)

where Ψi(x) are the given potentials, and σ is the diffusion coefficient (for
definiteness, we set it to be the same for all states). We assume that (Ψi)x(x)
(not the Ψi themselves) and the transition rates νij(x) are 1-periodic.

Various particular cases of (1.1) and (1.2), including the so-called flashing
ratchets, were studied in [5, 6, 8, 9, 13, 20, 23, 24, 28, 29, 30, 36, 37]. To
catch the motor effect, the majority of these papers consider (1.1) or (1.2)
with no-flux boundary conditions on a bounded segment, and show, under
appropriate assumptions, that the mass is eventually concentrated closer to
one edge of the segment than to the other. Yet equation (1.1) with the
travelling potential Ψ(x, t) = ψ(x− ωt) and the flashing potential Ψ(x, t) =
h(t)ψ(x), where ψ is 1-periodic, and

h(t) =

{
1 if kT < t ≤ (k + 1/2)T,

0 if (k + 1/2)T < t ≤ (k + 1)T,
(k = 0, 1, . . . )

was examined on the whole real line in [5, 6] and [24], respectively. In [24] it
was observed that the solutions of a homogenized equation tend to propagate
with constant speed or not to move at all as the period length goes to zero.
In [5, 6] it was shown that with the course of time the velocity of the centre of
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mass eventually becomes the same for all solutions (see also [12]). Moreover,
this asymptotic speed is equal to

v∞ = − 1

T

∫ T

0

∫ 1

0

Ψx(x, t)g∞(x, t) dx dt, (1.3)

where g∞ is the bi-periodic (in x and t) travelling wave solution to (1.1).
In this paper, we develop a unified approach for detecting transport for

generic equations (1.1) and (1.2). We prove that the averaged velocity stabi-
lizes as time goes to infinity, and the limiting velocity is independent of the
solution. We establish a linear relation between this velocity and a certain so-
lution to (1.1) or (1.2), respectively. This solution is actually the bi-periodic
solution in the case of (1.1), and is the stationary x-periodic solution vector
in the case of (1.2). This allows us to obtain a more explicit characterization
of the occurrence of unidirectional transport, its direction and bulk veloc-
ity, for 1- and 2-state tilting ratchets, in the adiabatic and semiadiabatic
regimes, for the stochastic Stokes’ drift, and for generic low-diffusion-driven
1- and 2-state ratchets (1.1) and (1.2). We also prove the conjecture stated
by Blanchet, Dolbeault, and Kowalczyk in [5] (see also [32]) that the bulk
velocity of the stochastic Stokes’ drift is non-zero for every non-constant
potential.

The paper is organized as follows. In Section 2 we set the framework for our
research. In particular, we define the transport in terms of the asymptotic
average bulk velocity and relate it to the bi-periodic solution of an auxiliary
space-periodic problem.

In Section 3 we consider the adiabatic regime for tilting ratchets, i.e., we
suppose that the ratchet spends a long time in each of its states. In The-
orem 3.1 we justify the explicit formula (3.8) for the adiabatic transport
velocity. Developing this topic, we state an effective formula for the direc-
tion of transport (Proposition 3.8). Finally, Theorem 3.12 gives a qualitative
result showing that a major interval of monotonicity of the potential implies a
particular direction of transport. A highlight of Section 3 is Proposition 3.14
establishing a nontrivial functional inequality.

In Section 4 we study the so-called semiadiabatic regime for tilting ratch-
ets, when the overall period of tilting goes to infinity and one of the tilting
states dominates the other. We give an effective explicit formula (4.5) for
the semiadiabatic transport velocity and prove that non-constant potentials
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produce nonzero semiadiabatic transport in one and the same direction—
Theorem 4.4 and Corollaries 4.5 and 4.6. These results are partially based
on the functional inequality related with Proposition 4.1, which also implies
the conjecture of [5] (see also [32]) that the stochastic Stokes’ drift generates
unidirectional transport for every non-constant potential.

In Section 5 we consider generic Brownian ratchets with small diffusion
coefficient and show that there is a connection between the transport and a
certain ODE. We show (Theorem 5.1) that if this ODE does not have periodic
solutions or, equivalently, if its Poincaré rotation number in nonzero, there
appears directed transport of mass.

In Section 6 we extend our approach to multi-state models. The most in-
teresting results are obtained for the case of small diffusion: Theorem 6.3
classifies it with respect to the geometry of zeroes of the potential gradients
and establishes the direction of transport in different cases. Finally, The-
orem 6.6 treats the adiabatic and semiadiabatic regimes for the randomly
tilting ratchet.

2. Bulk velocity
2.1. Unidirectional transport. We model the dynamics of a ratchet by
the Fokker–Planck equation{

ρt − σρxx − (Ψxρ)x = 0, x ∈ R, t > 0,
ρ = ρ0(x), x ∈ R. (2.1)

Here Ψ(x, t) is a given potential, and ρ0 is a given initial condition. We
assume that Ψ(x, t) is T -periodic in t and its derivative Ψx(x, t) is 1-periodic
in x, and we also assume that ρ0(x) satisfies the requirements

ρ0(x) ≥ 0,

∫ ∞
−∞

ρ0(x) dx = 1,

∫ ∞
−∞
|x|ρ0(x) dx <∞. (2.2)

We are interested in nonnegative solutions of (2.1). Such solutions may be
viewed as non-stationary distributions of a unit mass on R whose movement
is governed by a potential force and by diffusion.

The most interesting cases arise when Ψ is ‘unbiased’ in the sense that∫ T

0

∫ 1

0

Ψx(x, t) dx dt = 0, (2.3)
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i.e., the time and space average of the potential gradient vanishes. However,
for the sake of generality, in the sequel we do not assume (2.3) unless explicitly
specified.

It can be proved by classical methods (see e.g. [31]) that if Ψ is continuous
in (x, t) and C2,α-regular in x, where α ∈ (0, 1) is independent of t, then
(2.1) is uniquely solvable for any continuous initial data ρ0 satisfying (2.2);
moreover, the solution ρ(x, t) is positive for any t > 0, and

lim
x→±∞

|x|(|ρ(x, t)|+ |ρx(x, t)|) = 0. (2.4)

A consequence of (2.4) is the conservation of mass∫ ∞
−∞

ρ dx = 1 (2.5)

and the finiteness of the centre of mass

x̄(t) =

∫ ∞
−∞

xρ(x, t) dx (2.6)

for any t. We study the asymptotic behaviour of solutions of (2.1) as t→∞.
Properties (2.4), (2.5), and (2.6) are crucial for our approach.

To catch the unidirectional transport effect, we consider the velocity of the
centre of mass x̄(t), which is called the drift (or bulk, or ballistic) velocity.
Specifically, we consider the average drift velocity on the interval [t, t + T ],
and if it has a nonzero limit as t → +∞, we say we have unidirectional
transport.

Due to the periodic nature of the problem at issue, the drift velocity is
conveniently characterized by means of the following problem on the circle
S1 = R/Z:

gt − σgxx + (Fg)x = 0, (x, t) ∈ S1 × (0,∞), (2.7)

g(x, 0) = g0(x), x ∈ S1; g0(x) ≥ 0,

∫
S1

g0(x) dx = 1. (2.8)

Here F (x, t) is defined on S1 × (0,∞); generally we assume that it is T -
periodic in t.

To start with, observe that if ρ is a nonnegative solution of (2.1), then, by
linearity, the nonnegative function

g(x, t) =
∞∑

k=−∞

ρ(x+ k, t) (2.9)
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solves (2.7) with F = −Ψx.
Consider the average velocity of the centre of mass as t varies from t0 to

t0 + T :

v[t0,t0+T ] :=
x̄(t0 + T )− x̄(t0)

T

=
1

T

(∫ ∞
−∞

xρ(x, t0 + T ) dx−
∫ ∞
−∞

xρ(x, t0) dx

)
=

1

T

∫ ∞
−∞

x

∫ t0+T

t0

ρt(x, t) dt dx

=
1

T

∫ t0+T

t0

∫ ∞
−∞

x(σρxx + (Ψxρ)x) dx dt

=
1

T

∫ t0+T

t0

(
−σ
∫ ∞
−∞

ρx dx−
∫ ∞
−∞

Ψxρ dx

)
dt

= − 1

T

∫ t0+T

t0

∞∑
k=−∞

∫ 1

0

Ψx(x+ k, t)ρ(x+ k, t) dx dt

= − 1

T

∫ t0+T

t0

∫ 1

0

Ψx(x, t)g(x, t) dx dt

(here we have used (2.4) and the periodicity of Ψx). Thus we have the
following formula for the average drift velocity:

v[t0,t0+T ] = − 1

T

∫ t0+T

t0

∫ 1

0

Ψx(x, t)g(x, t) dx dt. (2.10)

Remark 2.1. We point out that the conservation of mass holds for (2.7)–(2.8),
i.e., ∫

S1

g(x, t) dx = 1 (2.11)

for any solution thereof.

2.2. Bi-periodic solution. The notion of relative entropy and related in-
equalities are a useful tool for the study of the Fokker–Planck equation (2.7).

Given g, h ∈ L1
+(S1) such that∫

S1

g dx = 1 =

∫
S1

h dx,



VELOCITY OF RATCHETS 7

define the relative entropy of g with respect to h by

e[g|h] =

∫
S1

g ln
g

h
dx.

Observe that e[g|h] ≥ 0 (the possibility e[g|h] =∞ is not excluded). Indeed,
letting r = g/h ≥ 0 we have

e[g|h] =

∫
S1

g ln r dx =

∫
S1

(g ln r − g + h) dx

=

∫
S1

h(r ln r − r + 1) dx ≥ 0

as r ln r − r + 1 =
∫ r

1 ln ξ dξ ≥ 0. Moreover, e[g|h] = 0 if and only if
g = h almost everywhere. This follows from the definition and from the fact
that the relative entropy controls L1 distance. Specifically, for probability
densities g, h ∈ L1

+(S1) we have the known Csiszár–Kullback inequality [11]:

‖g − h‖2
L1(S1) ≤ 2 e[f |g], (2.12)

which holds for any probability densities g, h ∈ L1
+(S1).

Another important tool is the Log-Sobolev inequality [17], which we need
in the following form: given h ∈ L1(S1) such that∫

S1

h dx = 1, 0 < C1 ≤ h(x) ≤ C2 for a. a. x ∈ S1,

there exists b = b(C1, C2) > 0 such that∫
S1

g ln
g

h
dx ≤ b

∫
S1

g
∣∣∣(ln

g

h

)
x

∣∣∣2 dx (2.13)

for any probability density g ∈ L1
+(S1) such that the derivative on the

right-hand side exists almost everywhere. Observe that both sides in (2.13)
are nonnegative (possibly infinite) whenever the derivative of the logarithm
makes sense.

The integral

I[g|h] =

∫
S1

g
∣∣∣(ln

g

h

)
x

∣∣∣2 dx
on the right-hand side of (2.13) is called the entropy production term of g
and h. Thus (2.13) can be equivalently expressed as

e[g|h] ≤ b I[g|h]. (2.14)
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The following theorem sets the framework for our investigation of transport.
It establishes the existence of a unique time-periodic solution of (2.7), which
attracts other solutions and thus is our natural object of study (cf. [13, 6, 3]).

Theorem 2.2. Suppose that F : S1×R+ is T -periodic in the second argument
and there exists a partition 0 = t0 < t1 < · · · < tn = T of the segment [0, T ]
such that F is C3 on every segment [ti−1, ti]. Then there exists a unique
positive T -periodic in t solution g∞ of (2.7) satisfying (2.11). Moreover, if
g solves (2.7)–(2.8) with the initial condition satisfying

∫
S1
g0 ln g0 dx < ∞,

then g∞ attracts g in the sense of the entropy

e[g(·, t)|g∞(·, t)] ≤ e[g(·, 0)|g∞(·, 0)]e−γt, t ≥ 0, (2.15)

where γ = σ/b and b = b(min g∞,max g∞) is the uniform Log-Sobolev con-
stant for g∞.

Remark 2.3. If F has discontinuities at the points ti, we do not require
that (2.7) should hold at these points. In this case we construct solutions
piecewise: given the initial data at t = t0, by parabolic regularity the solution
is well defined at t = t1, then g(·, t1) is considered as the initial condition for
the segment [t1, t2], and so on.

Proof of Theorem 2.2 : First suppose that F is C3 on S1 × [0, T ]. Let

X = {g ∈ L1
+(S1) |

∫
S1

g(x) dx = 1}.

Consider the operator T : X → X that takes g0 ∈ X to g(·, T ), where g
solves (2.7)–(2.8). The operator is well defined due to the conservation of
mass and the maximum principle. As X is convex and bounded in L1(S1),
its image T (X) is precompact in X by parabolic regularity. Hence, by the
Schauder theorem, T has a fixed point, which clearly is the initial condition
for a T -periodic in time solution g∞ of (2.7). We have yet to prove that it
is the only periodic solution. By parabolic regularity, g∞ is continuous on
S1 × [0, T ] and hence bounded, and by the strong maximum principle it is
positive and thus bounded away from 0.

Now suppose g solves (2.7) with the initial condition g0(x) ≥ 0 such that∫
S1 g0(x) ln g0(x) dx <∞. We claim that the relative entropy e[g(·, t)|g∞(·, t)]
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decreases. Indeed, letting r = g/g∞ we have

d e[g|g∞]

dt
=

d

dt

∫
S1

g ln
g

g∞
dx

=

∫
S1

gt ln
g

g∞
dx+

∫
S1

gt dx−
∫
S1

g(g∞)t
g∞

dx

=

∫
S1

(σgxx − (Fg)x) ln r dx−
∫
S1

(g∞)tr dx

=

∫
S1

g

r
(σrxx + Frx) dx− σ

∫
S1

g
r2
x

r2
dx−

∫
S1

(g∞)tr dx

=

∫
S1

g∞(σrxx + Frx) dx− σ
∫
S1

g
r2
x

r2
dx−

∫
S1

(g∞)tr dx

=

∫
S1

(σ(g∞)xx − (Fg∞)x − (g∞)t)r dx− σ
∫
S1

g
r2
x

r2
dx

= −σ
∫
S1

(
ln

g

g∞

)2

x

g dx = −σ I[g|g∞]. (2.16)

As g∞ is bounded away from 0, as well as from above for (x, t) ∈ S1× [0, T ],
we have the uniform in t Log-Sobolev inequality

e[g|g∞] ≤ b I[g|g∞].

Hence

d e[g|g∞]

dt
≤ −σ

b
e[g|g∞] (2.17)

and (2.15) follows. Moreover, the attraction (2.15) implies the uniqueness of
the periodic solution.

In the general case of piecewise continuous F , the proof works with slight
modifications. We have T = Tn ◦ · · · ◦ T1, where Ti is the resolving operator
for the segment [ti−1, ti], which is compact, so we still can apply the Schauder
theorem and obtain a fixed point and a periodic solution. The relative en-
tropy e[g|g∞] is continuous and the computation (2.16) holds in each open
interval (ti−1, ti), so e[g|g∞] decreases. Inequality (2.17) also holds in each
open interval (ti−1, ti), whence (2.15) follows. Indeed, for t1 we have

e[g|g∞]|t=t1 ≤ e[g|g∞]|t=t0e−γt1,



10 S. KONDRATYEV, J.M. URBANO AND D. VOROTNIKOV

so for any t ∈ (t1, t2) we have

e ≤ e |t=t1e−γ(t−t1) ≤ e |t=0e
−γt1e−γ(t−t1) = e |t=0e

−γt,

and so on for the subsequent intervals.

Corollary 2.4. Under the hypothesis of Theorem 2.2, g∞ also exponentially
attracts g in the sense of L1:∫

S1

|g(x, t)− g∞(x, t)| dx ≤ Ce−γt/2, t ≥ 0 (2.18)

where C depends on g and g∞.

Proof : It suffices to combine (2.15) with the Csiszár–Kullback inequal-
ity (2.12).

Returning to problem (2.1), put

v∞ = − 1

T

∫ T

0

∫ 1

0

Ψx(x, t)g∞(x, t) dx dt, (2.19)

where g∞ is the periodic solution of (2.7) with F = −Ψx satisfying (2.11).
Combining (2.10) and (2.18), we easily obtain the next result.

Corollary 2.5. Suppose that Ψ(x, t) is C4-smooth in x, and F = −Ψx sat-
isfies the hypothesis of Theorem 2.2. Then for any solution ρ of (2.1) with
the initial condition ρ0 satisfying (2.2) we have

|v[t0,t0+T ] − v∞| ≤ Ce−γt0/2, (2.20)

where γ > 0 is the same as in Theorem 2.2 and depends only on g∞, and C
depends on ρ and g∞.

We conclude that under the hypothesis of Corollary 2.5 the limiting average
drift velocity is the same for all solutions of (2.1) and is determined by the
periodic equation (2.7). For this reason in what follows we mostly concentrate
on equation (2.7).

2.3. Tilting and tilted ratchets. An important class of unbiased poten-
tials are the tilting potentials, which have the form

Ψ(x, t) = ψ(x) +H(t)x, (2.21)
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where the base potential ψ(x) is 1-periodic in x, and H(t) is T -periodic in t
and characterized by the property∫ T

0

H(t) dt = 0. (2.22)

Given the periodicity of ψ, equation (2.22) is equivalent to (2.3).
We obtain a typical tilting potential by letting

H(t) = h(t)ω, (2.23)

where ω ∈ R characterizes the swing of the tilt, and

h(t) =

{
1 if kT < t ≤ (k + 1/2)T,

−1 if (k + 1/2)T < t ≤ (k + 1)T,
(k = 0, 1, . . . ). (2.24)

The tilting potential corresponding to (2.24) periodically switches between
the tilted potentials ψ(x)± ωx. Thus the tilted potential

ψ(x) + ωx (2.25)

is a useful example of an obviously ‘biased’ potential (here ψ satisfies the
same conditions as above and ω is a number).

Remark 2.6. Observe that if Ψ is a tilting ratchet potential (2.21), then

v[t0,t0+T ] = − 1

T

∫ t0+T

t0

∫ 1

0

ψx(x)g(x, t) dx dt. (2.26)

To prove this, substitute (2.21) in (2.10) and use the conservation of mass
(2.11) and the zero mean condition (2.22). Consequently,

v∞ = − 1

T

∫ T

0

∫ 1

0

ψx(x, t)g∞(x, t) dx dt. (2.27)

It is useful to consider the stationary periodic equation

σgxx + ((ψx + ω)g)x = 0, (t, x) ∈ (0,∞)× S1, (2.28)
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where ψx is the derivative of a C4 1-periodic function ψ. This equation can
be treated by elementary methods. Put

α = α(ω) = eω − 1;

β+ = β+(ω, ψ) =

∫ 1

0

eωx+ψ(x) dx;

β− = β−(ω, ψ) =

∫ 1

0

e−ωx−ψ(x) dx;

β = β(ω, ψ) =

∫ 1

0

∫ x

0

eωy+ψ(y)−ωx−ψ(x) dy dx,

and define

A(ω, ψ) =
α

αβ + β+β−
, B(ω, ψ) =

β+

αβ + β+β−
. (2.29)

Remark 2.7. Observe that A(ω, ψ) > 0 for ω > 0 and A(0, ψ) = 0. A simple
reflection argument (ψ(x) 7→ ψ(1 − x), ω 7→ −ω) shows that A(ω, ψ) < 0
for ω < 0. In particular, A(ω, ψ) exists for any ω and continuous ψ (i.e., the
denominator does not vanish). Consequently, B(ω, ψ) also exists.

Proposition 2.8. Suppose ψ : R → R is continuously differentiable and 1-
periodic; then (2.28) has a unique solution g∗ such that

g∗(x) ≥ 0,

∫ 1

0

g∗(x) dx = 1.

Moreover, g is given by

g∗ = e−(ωx+ψ(x))/σ

(
B

(
ω

σ
,
ψ

σ

)
+ A

(
ω

σ
,
ψ

σ

)∫ x

0

e(ωy+ψ(y))/σ

)
. (2.30)

Proof : The proof is straightforward, cf. [5].

Observe that g∗ is the normalized time-periodic solution of (2.7) with F =
−(ψx + ω). Applying Theorem 2.2, we immediately obtain the following
corollary.

Corollary 2.9. If g solves{
gt − σgxx − ((ψx + ω)g)x = 0, x ∈ S1, t > 0,
g(x, 0) = g0(x), x ∈ S1,

,
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where g0 ∈ L1(S1) is as in (2.8), and g0 ln g0 ∈ L1, then

e[g(·, t)|g∗] ≤ e[g(·, 0)|g∗]e−γt, t ≥ 0, (2.31)

where γ only depends on the lower and upper bounds of g∗ and on σ.

Remark 2.10. The normalized periodic solution g∗ of (2.28) satisfies

σg∗x + (ψx + ω)g∗ = σA

with A = A(ω/σ, ψ/σ). Integrating, we get

σA =

∫ 1

0

(ψx + ω)g∗ dx. (2.32)

Incidentally, we see that

v∞ = −
∫ 1

0

(ψx + ω)g∗ dx = −σA, (2.33)

where v∞ is the asymptotic drift velocity for the tilted potential ψ+ωx (with
arbitrary T > 0).

3. Adiabatic limit for tilting ratchets
3.1. Asymptotic speed. In this section we consider the tilting ratchet
given by {

ρt − ρxx − ((ψx + h(t)ω)ρ)x = 0, x ∈ R, t > 0,
ρ = ρ0(x), x ∈ R; ρ0(x) ≥ 0,

∫∞
−∞ ρ0(x) dx = 1,

(3.1)

where h is defined by (2.24) and for convenience σ = 1. We focus on the
adiabatic limit of (3.1), i.e., on its behaviour when T , the period of the
tilting, is large. In this case we allow the diffusion to fully take its effect.
Thus the transport in the adiabatic limit can be said to be driven by diffusion.
Generally, the two tilted potentials ψ(x)±ωx corresponding to problem (3.1)
are not symmetric and produce drift velocities of different absolute values.
For this reason the limiting average drift velocity of the tilting ratchet is
nonzero.

The following theorem gives an effective formula for the adiabatic drift
velocity. Before we state it, we introduce some notations. Consider the
corresponding periodic problem

gt − gxx − ((ψx + h(t)ω)g)x = 0 x ∈ S1, t > 0;

∫
S1

g dx = 1. (3.2)
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It switches between the modes

gt − gxx − ((ψx + ω)g)x = 0 x ∈ S1;

∫
S1

g dx = 1 (3.3)

and

gt − gxx − ((ψx − ω)g)x = 0 x ∈ S1;

∫
S1

g dx = 1, (3.4)

spending a long time in each of them.
Let g+ and g− be the stationary solutions of (3.3) and (3.4) respectively.

By γ+ and γ− denote the inverses of the Log-Sobolev constants (see (2.14))
for the relative entropies

Σ+[g] = e[g|g+], Σ−[g] = e[g|g−],

so by Corollary 2.9 for solutions of (3.3) we have the entropy decay

Σ+[g(·, t)] ≤ Σ+[g(·, t0)]e−γ+(t−t0) (t ≥ t0), (3.5)

and similarly for solutions of (3.4) we have

Σ−[g(·, t)] ≤ Σ−[g(·, t0)]e−γ−(t−t0) (t ≥ t0). (3.6)

Let g∞ be the time-periodic solution of (3.2) with period T and let A(ω) =
A(ω, ψ) and A(−ω) = A(−ω, ψ) be defined according to (2.29). As g∞ is
time-periodic, the asymptotic drift velocity of (3.1) can be expressed as

v∞(T ) = − 1

T

∫ T

0

∫ 1

0

ψx(x)g∞(x, t) dx dt (3.7)

(see (2.27)). Finally, put

v∞∞ = −A(ω) + A(−ω)

2
= −1

2

∫ 1

0

ψx(x)(g+(x) + g−(x)) dx, (3.8)

where the last equality is due to (2.32).

Theorem 3.1. Suppose ψ ∈ C4(R) is 1-periodic; then

|v∞(T )−v∞∞| ≤
23/2

T
max |ψx(x)|

(√
Σ+[g−]

γ+
+

√
Σ−[g+]

γ−

)
+o

(
1

T

)
. (3.9)

In particular, if v∞∞ 6= 0, for large T there is nonzero unidirectional trans-
port.
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Before we prove Theorem 3.1 we must obtain some auxiliary results. Put

M+ = max

∣∣∣∣ln g−g+

∣∣∣∣√2, M− = max

∣∣∣∣ln g+

g−

∣∣∣∣√2.

and consider the functions

φ+(R) = R +M+

√
R, φ−(R) = R +M−

√
R.

Observe that φ+ and φ− are continuous and increasing on R+.

Lemma 3.2. For any probability density g ∈ L1(S1) such that g ln g ∈
L1(S1), we have

|Σ+[g]− Σ+[g−]| ≤ φ+(Σ−[g]), (3.10)

|Σ−[g]− Σ−[g+]| ≤ φ−(Σ+[g]). (3.11)

Proof : A straightforward computation yields

Σ+[g]− Σ+[g−] =

∫
S1

g ln
g

g+
dx−

∫
S1

g− ln
g−
g+

dx

=

∫
S1

(
g ln

g

g−
+ (g − g−) ln

g−
g+

)
dx,

whence

|Σ+[g]− Σ+[g−]| ≤ Σ−[g] +
M+√

2
‖g − g−‖L1(S1).

Now it remains to apply the Csiszár–Kullback inequality (2.12) and ob-
tain (3.10).

Inequality (3.11) is proved by swapping g+ and g−.

Note that the periodic solution g∞ of (3.2) implicitly depends on T , which
is a parameter of tilting.

Lemma 3.3. We have

lim
T→∞

Σ+[g∞(·, 0)] = Σ+[g−]; lim
T→∞

Σ−[g∞(·, T/2)] = Σ−[g+]. (3.12)

Proof : We only prove the first limit in (3.12), as the proof of the second one
is completely analogous.

Take an arbitrary R > 0 and for any ε > 0 choose Tε > 0 in such a way
that

(Σ+[g−] + ε)e−γ+Tε/2 ≤ R,

(Σ−[g+] + φ−(R))e−γ−Tε/2 ≤ φ−1
+ (ε).
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Now take T > Tε and let T be the resolving operator for (3.2) taking g(·, 0)
to g(·, T ). We claim that T maps the set

X = {g0 ∈ W 1
2 (S1) ∩ {probability densities} | |Σ+[g0]− Σ+[g−]| ≤ ε}

into itself. To prove this, consider a solution g of (3.2) with the initial
condition g(·, 0) = g0 ∈ X. Thanks to the conservation of mass, it only
remains to prove that

|Σ+[g(·, T )]− Σ+[g−]| ≤ ε. (3.13)

Indeed, making use of (3.10), (3.11), and the attraction (3.5) and (3.6) we
consequently obtain

Σ+[g(·, 0)] = Σ+[g0] ≤ Σ+[g−] + ε;

Σ+[g(·, T/2)] ≤ Σ+[g0]e
−γ+T/2 ≤ (Σ+[g−] + ε)e−γ+T/2 ≤ R;

Σ−[g(·, T/2)] ≤ Σ−[g+] + φ−(Σ+[g(·, T/2)]) ≤ Σ−[g+] + φ−(R);

Σ−[g(·, T )] ≤ Σ[g(·, T/2)]e−γ−T/2 ≤ (Σ−[g+] + φ−(R))e−γ−T/2 ≤ φ−1
+ (ε);

|Σ+[g(·, T )]− Σ+[g−]| ≤ φ+(Σ−[g(·, T )]) ≤ φ+(φ−1
+ (ε)) = ε,

so (3.13) holds, and X is invariant under T . Moreover, X is closed in W 1
2 (S1),

convex, bounded in L1(S1), and by parabolic regularity T : X → X is con-
tinuous and T (X) is precompact in W 1

2 (S1). By the Schauder fixed point
theorem T has a fixed point in X, which is the initial data for a time-periodic
solution of (3.2). Due to uniqueness of such a periodic solution, this fixed
point coincides with g∞(·, 0). This implies that |Σ+[g∞(·, 0)] − Σ+[g−]| ≤ ε
whenever T ≥ Tε, and the first limit in (3.12) is proved.

Proof of Theorem 3.1: Using (3.7) and (3.8), we estimate the difference on
the left-hand side of (3.9) as follows:

|v∞(T )− v∞∞|

=

∣∣∣∣− 1

T

∫ T

0

∫ 1

0

ψxg∞ dx dt+
1

2

∫ 1

0

ψx(g+ + g−) dx

∣∣∣∣
=

∣∣∣∣∣− 1

T

∫ T/2

0

∫ 1

0

ψxg∞ dx dt−
1

T

∫ T

T/2

∫ 1

0

ψxg∞ dx dt

+
1

T

∫ T/2

0

∫ 1

0

ψxg+ dx dt+
1

T

∫ T

T/2

∫ 1

0

ψxg− dx dt

∣∣∣∣∣
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≤ 1

T

∫ T/2

0

∫ 1

0

|ψx(g∞ − g+)| dx dt+
1

T

∫ T

T/2

∫ 1

0

|ψx(g∞ − g−)| dx dt

≤ 1

T
max
x∈[0,1]

|ψx(x)|

(∫ T/2

0

‖g∞ − g+‖L1(S1) dt+

∫ T

T/2

‖g∞ − g−‖L1(S1) dt

)
.

Applying the Csiszár–Kullback inequality, we obtain

|v∞(T )− v∞∞|

≤
√

2

T
max
x∈[0,1]

|ψx(x)|

(∫ T/2

0

√
Σ+[g∞] dt+

∫ T

T/2

√
Σ−[g∞] dt

)
.

As g∞(x, t) solves (3.3) for t ∈ [0, T/2) and (3.4) for t ∈ [T/2, T ), we can
apply the entropy attraction (3.5) and (3.6) and obtain

|v∞(T )− v∞∞|

≤
√

2

T
max
x∈[0,1]

|ψx(x)|
(√

Σ+[g∞(·, 0)]

∫ T/2

0

e−γ+t/2 dt

+
√

Σ−[g∞(·, T/2)]

∫ T

T/2

e−γ−(t−T/2)/2 dt

)
≤ 23/2

T
max
x∈[0,1]

|ψx(x)|
(

1

γ+

√
Σ+[g∞(·, 0)] +

1

γ−

√
Σ−[g∞(·, T/2)]

)
.

The last estimate and the limits (3.12) yield (3.9).

Remark 3.4. The proof of Lemma 3.3 gives opportunity to estimate the term
o(1/T ) on the right-hand side of (3.9).

Remark 3.5. If ψ is fixed, v∞∞ = −(A(ω)+A(−ω))/2 is an analytic function
of ω. Consequently, it either identically equals 0 or has at most countably
many zeroes without accumulation points.

Remark 3.6. Having in mind (2.33), we see that the adiabatic drift velocity
v∞∞ equals the arithmetic mean of the limiting drift velocities for the tilted
potentials ψ(x)± ωx.

Remark 3.7. Observe that given ψ and ω, it is trivial to compute A(ω) nu-
merically. In this sense Theorem 3.1 is effective.
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3.2. Bulk transport direction. There is another formula that allows one
to determine the direction of the adiabatic transport. Put

J = J(ψ, ω) =

2

∫ 1

0

∫ x

0

sinh(ψ(x)− ψ(y)) sinh[ω(x− y − 1/2)] dy dx

sinh(ω/2)
.

(3.14)

Proposition 3.8. If ω 6= 0, the sign of v∞∞ coincides with the sign of J .
Consequently, if J > 0 (J < 0), then the adiabatic transport goes in the
positive (respectively, negative) direction.

Proof : Using the definition of A (2.29), write

1

A(ω)
=

1

eω − 1

(
(eω − 1)

∫ 1

0

∫ x

0

eψ(y)−ψ(x)+ω(y−x) dy dx

+

∫ 1

0

∫ 1

0

eψ(y)−ψ(x)+ω(y−x) dy dx

)

=
1

eω − 1

(
eω
∫ 1

0

∫ x

0

eψ(y)−ψ(x)+ω(y−x) dy dx

+

∫ 1

0

∫ 1

x

eψ(y)−ψ(x)+ω(y−x) dy dx

)

=
eω/2

eω − 1

∫ 1

0

∫ x

0

(
eψ(y)−ψ(x)+ω(y−x+1/2)

+ e−(ψ(y)−ψ(x)+ω(y−x+1/2)) dy dx
)

=
1

sinh(ω/2)

∫ 1

0

∫ x

0

cosh(ψ(y)− ψ(x) + ω(y − x+ 1/2)) dy dx.

Substituting −ω for ω, we obtain

1

A(−ω)
= −

∫ 1

0

∫ x
0 cosh(ψ(y)− ψ(x)− ω(y − x+ 1/2)) dy dx

sinh(ω/2)
.
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Summing and converting the difference of hyperbolic cosines into product,
we get

1

A(ω)
+

1

A(−ω)
= J.

Now it suffices to observe that as A(ω) and A(−ω) have opposite signs, so
do the sums A(ω) + A(−ω) = −2v∞∞ and 1/A(ω) + 1/A(−ω) = J .

Example 3.9. Symmetric potentials satisfying ψ(x) = ψ(1−x) do not produce
adiabatic transport. This follows e.g. from Proposition 3.8. Indeed, if ψ is
symmetric, by changing the variables x′ = 1 − y, y′ = 1 − x in (3.14) we
get J(ψ, ω) = −J(ψ, ω), whence J = 0. Note however, that symmetric
potentials can produce transport if the tilting regime is asymmetric in time
unlike (2.24), see below.

Example 3.10. Supersymmetric potentials (see [32]) satisfying −ψ(x) = ψ(x+
1/2) do not produce adiabatic transport either. This, too, can be derived
from Proposition 3.8. Indeed, utilizing in (3.14) the change of variables
x′ = y + 1/2, y′ = x− 1/2 on the set

Q =

{
(x, y) :

1

2
≤ x ≤ 1, 0 ≤ y ≤ 1

2

}
,

and the change of variables x′′ = x + 1/2, y′′ = y + 1/2 on the rest of the
triangle

{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} \Q,
we deduce that J = 0.

Example 3.11. Simple examples of asymmetric potentials such as ψ(x) =
cos(2πxm) suggest that if ψ increases (decreases) on a major interval, then
the direction of adiabatic transport is positive (resp. negative). The following
theorem justifies this claim.

Theorem 3.12. Suppose that ψ ∈ C4(S1) strictly increases along an oriented

arc
−−−→
[α, β]. Let h : S1 × [0, 1]→ S1 be a homotopy such that

(1) h(·, 0) is the identity mapping on S1;
(2) for any λ ∈ [0, 1) the mapping h(·, λ) : S1 → S1 is C4;

(3) h(·, 1) preserves the orientation on the oriented arc
−−−→
[α, β];

(4) h(·, 1) maps the oriented arc
−−−→
[β, α] onto a single point.
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Let v∞∞(λ) be the asymptotic velocity corresponding to ψλ := ψ(h(·, λ)),
where 0 ≤ λ < 1. Then v∞∞(λ) > 0 if λ is sufficiently close to 1.

Proof : Without loss of generality, ω > 0 and α = 0 = h(α, λ) for λ ∈ [0, 1].
We use Proposition 3.8. Since for any x ∈ S1 we have ψλ(x) → ψ1(x) as
λ→ 1, by the Lebesgue dominated convergence theorem we obtain

J(ω, ψλ)→ J(ω, ψ1)

=
2

sinh(ω/2)

∫ 1

0

∫ x

0

sinh(ψ1(x)− ψ1(y)) sinhω(x− y − 1/2) dy dx. (3.15)

The homotopy h maps the interior of the arc
−−−→
[α, β] onto S1\{0} and preserves

the orientation, so ψ1 increases on the interval (0, 1). Now the right-hand
side of (3.15) is positive by Proposition 3.14 (see below). Consequently, if λ
is sufficiently close to 1, J(ω, ψλ) is also positive and so is v∞∞(λ).

Remark 3.13. In the notations of Theorem 3.12 the exact formula for the
limiting velocity is

lim
λ→1

v∞∞(λ) = −A(ω, ψ1) + A(−ω, ψ1)

2
. (3.16)

It does not depend on the values of the initial potential ψ on the arc
−−−→
[β, α]

that collapses to a point.

It remains to prove the following functional inequality.

Proposition 3.14. Let f : [0, 1]→ R be any increasing continuous function,
ϕ : [0,+∞)→ R be a convex C1-smooth function, and Φ : R→ R be an odd
continuous function such that x > 0 implies Φ(x) > 0. Then

1∫
0

x∫
0

ϕ (f(x)− f(y)) Φ (x− y − 1/2) dy dx ≥ 0. (3.17)

Moreover, if f is strictly increasing and ϕ is strictly convex (in the sense that
ϕ′ is strictly increasing), then inequality (3.17) is strict.

We first prove two auxiliary statements.
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Lemma 3.15. Let ϕ be as above, and x1, . . . , x2m, m ∈ N, be a collection of
non-negative numbers. Then

m∑
i=1

ϕ

(
m+1∑
j=1

xi+j−1

)
≥

m+1∑
i=1

ϕ

(
m∑
j=1

xi+j−1

)
. (3.18)

If ϕ is strictly convex and the numbers x1, . . . , x2m are positive, then this
inequality is strict.

Proof : It suffices to observe that all the partial derivatives of the function

F (x1, . . . , x2m) =
m∑
i=1

ϕ

(
m+1∑
j=1

xi+j−1

)
−

m+1∑
i=1

ϕ

(
m∑
j=1

xi+j−1

)
are non-negative

(and even positive provided ϕ is strictly convex and x1, . . . , x2m are positive),
and F (0, . . . , 0) = 0.

Lemma 3.16. Let ϕ and f be as above, and a < b be two positive numbers.
Then

a∫
0

ϕ (f(x+ b)− f(x)) dx ≥
b∫

0

ϕ (f(x+ a)− f(x)) dx. (3.19)

If f is strictly increasing, ϕ is strictly convex, and a/b is a rational number,
then inequality (3.19) is strict.

Proof : Assume first that the ratio a/b is equal to m/m+1 with some natural
number m. After rescaling, without loss of generality we may suppose that
a = m. In this case, inequality (3.19) may be rewritten as

m∑
i=1

1∫
0

ϕ (f(x+ i+m)− f(x+ i− 1)) dx

≥
m+1∑
i=1

1∫
0

ϕ (f(x+ i+m− 1)− f(x+ i− 1)) dx, (3.20)
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or

m∑
i=1

1∫
0

ϕ

(
m+1∑
j=1

f(x+ i+ j − 1)− f(x+ i+ j − 2)

)
dx

≥
m+1∑
i=1

1∫
0

ϕ

(
m∑
j=1

f(x+ i+ j − 1)− f(x+ i+ j − 2)

)
dx, (3.21)

and thus the statement of the lemma follows from Lemma 3.15.
If a/b is a rational number m

n , with m,n ∈ N, m < n, then it can be

decomposed as m
m+1 ·

m+1
m+2 · · · · ·

n−1
n , and the statement of the lemma follows

from the previous case. By continuity, the non-strict inequality (3.19) holds
for all irrational a/b.

Proof of Proposition 3.14: We make a change of variables in the double inte-
gral (3.17), and conclude that it is equal to

1/2∫
−1/2

1/2−ξ∫
0

ϕ (f(y + ξ + 1/2)− f(y)) Φ(ξ) dy dξ

=

1/2∫
0

( 1/2−ξ∫
0

ϕ (f(y + ξ + 1/2)− f(y)) dy

−
1/2+ξ∫
0

ϕ (f(y − ξ + 1/2)− f(y)) dy
)

Φ(ξ) dξ ≥ 0 (3.22)

by Lemma 3.16. When f is strictly increasing and ϕ is strictly convex, this
integral is strictly positive since the set

{
ξ ∈

(
0,

1

2

) ∣∣∣ 1/2−ξ∫
0

ϕ (f(y + ξ + 1/2)− f(y)) dy

>

1/2+ξ∫
0

ϕ (f(y − ξ + 1/2)− f(y)) dy
}

(3.23)
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is open and non-empty (since it contains the rational numbers), and therefore
has non-zero Lebesgue measure.

4. Semiadiabatic limit and the stochastic Stokes’ drift
Consider the tilting ratchet with the potential

Ψ(x, t) = ψ(x) +H(t)x, (4.1)

where

H(t) =

{
Ω, 0 < t < τ,

ω, τ < t < T,
(4.2)

and as usual ψ(x) is 1-periodic in x and H(t) is T -periodic in T . We assume
that the non-bias condition (2.22) is satisfied, i.e.,

Ωτ + ω(T − τ) = 0. (4.3)

We regard T , τ , and ω as the independent parameters of the tilting ratchet;
Ω can be expressed via the independent parameters by means of (4.3).

We study the regime (4.1) in the so-called semiadiabatic limit supposing
that T is large, τ/T is small, and ω is constant. It follows from (4.3) that in
the semiadiabatic limit |Ω| is large.

As before, let v∞ = v∞(ω, T, τ) denote the eventual drift velocity given
by (2.19). Further, let g∗ be the 1-periodic solution of the problem

gxx + ((ψx + ω)g)x = 0,

∫ 1

0

g(x) dx = 1, (4.4)

which also satisfies

g∗x + (ψx + ω)g∗ = A(ω)

with A(ω) defined by (2.29) (see Remark 2.10). Put

v∞∞(ω) = −
∫ 1

0

ψxg
∗ dx ≡ ω − A(ω). (4.5)

Our main result concerning the semiadiabatic tilting is that v∞∞(ω) is the
asymptotic average drift velocity as T → ∞ and τ/T → 0, and its sign
coincides with the sign of ω provided that ψ is nontrivial. For definitiveness
we assume that ω > 0.

First we address the positivity of v∞∞. It will follow from the next propo-
sition.
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Proposition 4.1. Given ω > 0, the functional

Vω(F ) = α(ω)

1∫
0

x∫
0

F (y)

F (x)
dy dx+

1∫
0

1∫
0

F (y)

F (x)
dy dx, (4.6)

where F ∈ C[0, 1], F (x) > 0 for all x ∈ [0, 1], attains its global minimum
α(ω)/ω when and only when F (x) = Ceωx.

Proof : Since the functional is homogeneous of degree zero, it suffices to prove
that under the additional restriction

1∫
0

F (y) dy = 1, (4.7)

the only minimizer is F (x) = ω
α(ω)e

ωx.

Let G(x) = 1 + α(ω)
x∫
0

F (y) dy. Then G(0) = 1, G(1) = eω, G′(·) > 0, and

our functional becomes

Ṽω(G) = α(ω)

1∫
0

G(x)

G′(x)
dx. (4.8)

Let now H(x) = lnG(x). Then H(0) = 0, H(1) = ω, H ′(·) > 0, and

˜̃Vω(H) = α(ω)

1∫
0

1

H ′(x)
dx. (4.9)

The Cauchy–Bunyakovskii–Schwarz inequality implies that

1∫
0

1

H ′(x)
dx ≥ 1

1∫
0

H ′(x) dx

=
1

ω
, (4.10)

and the equality holds only if H ′(x) ≡ ω. This means that the minimum of
Vω is achieved merely if H(x) = ωx, G(x) = eωx and F (x) = ω

α(ω)e
ωx.

Remark 4.2. It is interesting to observe that the functionals (4.6) and (4.8)
neither are convex nor fit into the framework of general L1-lower semiconti-
nuity criteria which go back to [35] (see e.g. [16] for a review).
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Proposition 4.3. Given a 1-periodic ψ ∈ C4(R) and ω > 0, v∞∞ satisfies

0 ≤ v∞∞ ≡ ω − A(ω) < ω. (4.11)

Moreover, v∞∞ = 0 if and only if ψ is constant.

Proof : Elementary properties of A (see Remark 2.7) yield the upper bound
in (4.11). The lower bound is a corollary of Proposition 4.1. Indeed, put
F (x) = eψ(x)+ωx and write

A =
α(ω)

Vω(F )
,

where Vω is given by (4.6). According to Proposition 4.1, we have

A ≤ α(ω)

α(ω)/ω
= ω,

and the lower bound in (4.11) is proved. Moreover, the bound is attained
if and only if F (x) = Ceωx, with some constant C > 0, i.e., if and only if
ψ(x) ≡ lnC is constant.

Write the Log-Sobolev inequality associated with g∗ in the form∫
S1

g ln
g

g∗
dx ≤ 1

γ

∫
S1

g

∣∣∣∣(ln
g

g∗

)
x

∣∣∣∣2 dx. (4.12)

Put

M0 = max
x∈[0,1]

|ψx(x)|, M1 = max
x∈[0,1]

∣∣∣∣g∗x(x)

g∗(x)

∣∣∣∣ . (4.13)

The following statements characterize the semiadiabatic limit of the tilting
ratchets.

Theorem 4.4. Suppose that ψ ∈ C4(R) is 1-periodic and ω > 0, 0 < τ < T ;
then the average drift velocity v∞(ω, T, τ) satisfies

|v∞(ω, T, τ)− v∞∞(ω)| ≤ (M0 + v∞∞(ω))
τ

T

+
23/2M0M

1/2
1

γ
ω1/2 1

T 1/2

(
1 +

1

eγT (1−τ/T ) − 1

)1/2

. (4.14)

The proof will be given later in this section.
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Corollary 4.5. Under the hypothesis of Theorem 4.4, for any ω > 0, we
have

lim
T→∞
τ/T→0

v∞(ω, T, τ) = v∞∞(ω), (4.15)

the limit is uniform in ω ∈ (0, ω0] for any ω0 > 0, and the rate of convergence
is O(T−1/2 + τ/T ).

Proof : It suffices to observe that by Proposition 4.3 we have v∞∞(ω) ≤ ω
and that

1 +
1

eγT (1−τ/T ) − 1
(4.16)

remains bounded as T →∞ and τ/T → 0.

Combining Corollary 4.5 and Proposition 4.3, we get the following corollary.

Corollary 4.6. For any non-constant 1-periodic ψ ∈ C4 and any ω > 0, we
have v∞∞(ω) > 0, if T is sufficiently large and τ/T is sufficiently small.

In other words, Corollary 4.6 means that the semiadiabatic transport goes
in the positive/negative direction according to the sign of ω.

Before proving Theorem 4.4, we introduce some notations and prove a
lemma. Denote by

Σ[g] = e[g|g∗]
the relative entropy with respect to g∗, and let

I[g] =

∫
S1

g

∣∣∣∣(ln
g

g∗

)
x

∣∣∣∣2 dx
be the corresponding entropy production term, then the Log-Sobolev inequal-
ity (4.12) can be written as

Σ[g] ≤ 1

γ
I[g]. (4.17)

In the case of semiadiabatic tilting, equation (2.7) splits into

gt − gxx − ((ψx + Ω)g)x = 0, (t, x) ∈ (0, τ)× S1; (4.18)

gt − gxx − ((ψx + ω)g)x = 0, (t, x) ∈ (τ, T )× S1. (4.19)

We consider (4.18)–(4.19) in the class

g ≥ 0;

∫
S1

g(x, t) dx = 1. (4.20)



VELOCITY OF RATCHETS 27

As usual, g∞ denotes the unique T -periodic in t solution of (4.18)–(4.20),
existing due to Theorem 2.2. Note that the function g∞ itself implicitly
depends on the parameters of tilting T , τ , and ω.

Lemma 4.7. We have

Σ[g∞(·, τ)] ≤M1ωT

(
1 +

1

eγT (1−τ/T ) − 1

)
. (4.21)

Proof : We start with an a priori estimate for a solution g of (4.18)–(4.20).
First we estimate the entropy for t ∈ [0, τ ]. Put r = g/g∗, then rt = gt/g

∗,
and (ln r)t = gt/g. We have:

d

dt
Σ[g] =

d

dt

∫
S1

g ln r dx =

∫
S1

gt ln r dx+

∫
S1

gt dx.

Plugging in (4.18), using the conservation of mass (4.20) and integrating by
parts, we proceed as follows:

d

dt
Σ[g] =

∫
S1

(gxx + ((ψx + Ω)g)x) ln r dx

= −
∫
S1

g
r2
x

r2
dx+

∫
S1

g

r
(rxx − (ψx + Ω)rx) dx

= − I[g] +

∫
S1

g∗(rxx − (ψx + Ω)rx) dx

≤
∫
S1

r(g∗xx + ((ψx + Ω)g∗)x) dx.

As g∗ solves (4.4), we obviously have

g∗xx + ((ψx + Ω)g∗)x = (Ω− ω)g∗x,

whence
d

dt
Σ[g] ≤ (Ω− ω)

∫
S1

rg∗x dx = (Ω− ω)

∫
S1

g
g∗x
g∗
dx,

and using the conservation of mass once again, we obtain

d

dt
Σ[g] ≤M1|Ω− ω|.

This yields

Σ[g(·, τ)] ≤M1τ |Ω− ω|+ Σ[g(·, 0)]
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whenever Σ[g(·, 0)] exists. Using (4.3), we can write the last inequality in
the form

Σ[g(·, τ)] ≤M1ωT + Σ[g(·, 0)]. (4.22)

Now for t ∈ [τ, T ] the function g solves equation (4.19) and g∗ is the
stationary solution of the same equation, so by Corollary 2.9

Σ[g] ≤ Σ[g(·, τ)]e−γ(t−τ).

From this inequality and (4.22) we get

Σ[g(·, T )] ≤ (M1ωT + Σ[g(·, 0)])e−γ(T−τ). (4.23)

Denote by T the operator taking a probability density u ∈ L1(S1) to g(·, T ),
where g solves (4.18)–(4.19) with the initial condition g|t=0 = u, and put

R =
M1ωT

eγ(T−τ) − 1
. (4.24)

It follows from (4.23) that T maps the set

X = {u ∈ W 1
2 (S1) ∩ {probability densities} | Σ[u] ≤ R}

into itself. Moreover, X is a convex closed subset of W 1
2 (S1) and by parabolic

regularity T : X → X is continuous and T (X) is precompact in W 1
2 (S1).

Hence by the Schauder fixed point theorem T has a fixed point in X, which
is the initial data for a time-periodic solution of (4.18)–(4.19). However,
such periodic solution is unique, so the fixed point found above coincides
with g∞(·, 0). Therefore, Σ[g∞(·, 0)] ≤ R and (4.21) follows from (4.22).

Proof of Theorem 4.4. We have:

|v∞(ω, T, τ)− v∞∞(ω)|

=

∣∣∣∣− 1

T

∫ T

0

∫
S1

ψxg∞ dx dt+

∫
S1

ψxg
∗ dx

∣∣∣∣
≤ 1

T

∣∣∣∣∫ τ

0

∫
S1

ψxg∞ dx dt

∣∣∣∣
+

1

T

∣∣∣∣∫ T

τ

∫
S1

ψx(g∞ − g∗) dx dt
∣∣∣∣+

τ

T

∣∣∣∣∫
S1

ψxg
∗ dx

∣∣∣∣
≤ τ

T
(M0 + v∞∞(ω)) +

M0

T

∫ T

τ

‖g∞ − g∗‖L1(S1) dt (4.25)
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(here we have used the conservation of mass for g∞). We now estimate the
last term. Using the Csiszár–Kullback inequality and the attraction (2.31),
we have

M0

T

∫ T

τ

‖g∞ − g∗‖L1(S1) dt ≤
M0

T

∫ T

τ

√
2 Σ[g∞] dt

≤ M0

T

√
2 Σ[g∞(·, τ)]

∫ T

τ

e−γ(t−τ)/2 dt ≤ 1

T

2M0

γ

√
2 Σ[g∞(·, τ)].

Estimating the entropy Σ[g∞(·, τ)] by means of (4.21), we have

M0

T

∫ T

τ

‖g∞ − g∗‖L1(S1) dt ≤
1

T

23/2M0

γ

(
M1ωT

(
1 +

1

eγT (1−τ/T ) − 1

)) 1
2

.

Combining this inequality with (4.25), we obtain (4.14).

We finish this section by considering the travelling potential

Ψ(x, t) = ψ(x− ωt), (4.26)

where ψ is 1-periodic and ω is a constant. The corresponding ratchet model
[5, 6] coincides with the one for the stochastic Stokes’ drift [4, 21]. In [5]
it was conjectured that the average drift velocity of this ratchet is positive
for positive ω (cf. also [32, Section 4.4.1]). It is straightforward to check
(cf. [6]) that the corresponding periodic solution of (2.7) with F = −Ψx

satisfying (2.11) is

g∞ = g∗(x− ωt),

where g∗ is defined above in this section. Then the corresponding bulk ve-
locity is

v∞ = − 1

T

∫ T

0

∫ 1

0

ψx(x− ωt)g∗(x− ωt) dx dt

= −
∫ 1

0

ψx(x)g∗(x) dx ≡ ω − A(ω). (4.27)

The conjecture of [5] (for any non-constant ψ) thus follows from our Propo-
sition 4.3.
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5. Small diffusion coefficient
We are now interested in applying the bulk velocity representation (2.19)

for finding sufficient conditions of transport in the case of small σ.
The result concerns generic piecewise smooth potentials Ψ(x, t) which are

T -periodic in t and whose x-derivatives are 1-periodic in x.

Theorem 5.1. Assume that the ODE

y′(t) = F (y(t), t) (5.1)

(where F = −Ψx is as in Theorem 2.2) has no T -periodic solutions. Then
v∞ 6= 0 for sufficiently small σ. Moreover,

sign v∞ = sign(y(T )− y(0)) (5.2)

for every solution y to (5.1).

Proof : Given a sequence σn → 0, consider the corresponding T -periodic so-
lutions g∞n to (2.7) satisfying (2.11), and the bulk velocities v∞n defined
by (2.19). If the theorem is not true, {σn} can be chosen in such a way that
every v∞n violates (5.2). Consider the following auxiliary equation

ζt + (Fζ)x = 0, (t, x) ∈ (0,∞)× R. (5.3)

It is easy to see that the solution ζ of (5.3) can be expressed in the form
ζ(x, t) = [z(s(x, t))]x, where zx(x) = ζ(x, 0), and s solves the problem{

st + Fsx = 0,
s(x, 0) = x, x ∈ R. (5.4)

The sequence of corresponding positive periodic solutions {g∞n} to (2.7),
(2.11) is bounded in L∞(0, T ;L1(S1)), and {∂g∞n

∂t } is bounded in

L∞(0, T ;W−2
1 (S1)), so, by the Aubin–Lions–Simon lemma, without loss of

generality, g∞n converges strongly in C([0, T ];H−1(S1)) to some ζ∞. Due to
(2.19), for large n, the sign of v∞n coincides with the sign of

v∞0 =
1

T

∫ T

0

〈ζ∞(·, t), F (·, t)〉H−1(S1)×H1(S1) dx dt, (5.5)

provided v∞0 6= 0.
Let z∞ ∈ L2

loc(R) be such that (z∞)x(x) = ζ∞(x, 0) (obviously, ζ∞(·, 0) can
be considered as a distribution on R). Since 〈g∞n(·, 0), 1〉 = 1, in the limit
we have 〈ζ∞(·, 0), 1〉 = 1, so z∞

∣∣
[0,1]

is a non-constant function. The functions
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g∞n are positive by Theorem 2.2, so ζ∞(·, 0) ≥ 0 in the sense of distributions
on S1, whence z∞ is essentially a non-decreasing function.

Passing to the limit, we see that ζ∞ solves (5.3) in the sense of distributions.
Hence,

ζ∞(x, t) = [z∞(s(x, t))]x, (5.6)

and

[z∞(s(x, t))]t + F (x, t)ζ∞(x, t)

= [z∞(s(x, t))]t + F (x, t)[z∞(s(x, t))]x = 0 (5.7)

in the sense of distributions. The second equality is obvious if z∞ is smooth,
and the general case follows from the dominated convergence theorem.

But (5.5) and (5.7) yield

v∞0 = − 1

T

∫ T

0

∫ 1

0

[z∞(s(x, t))]t dx dt

=

∫ 1

0 (z∞(x)− z∞(s(x, T )) dx

T
. (5.8)

Solving (5.4) by the method of characteristics we infer that x = y(T ), where
y(t) is the solution of (5.1) with the initial condition y(0) = s(x, T ). Since
S1 is compact and (5.1) has no T -periodic solutions, the difference

d(y) = y(T )− y(0)

is separated from zero, and its sign does not change for all solutions of (5.1).
Consequently, v∞0 6= 0 (otherwise z∞

∣∣
[0,1]

would be a constant). We con-

clude that v∞0 and v∞n (for large n) have the same sign as d(y), reaching a
contradiction.

Remark 5.2. Observe that (5.1) has no T -periodic solutions if and only if
there exists an unbounded trajectory or, in other words, if and only if the
corresponding Poincaré’s rotation number [10] is nonzero. Hence, the sign of
the rotation number coincides with the sign of v∞0. A related observation
was made in [34] for diffusion-free tilting ratchets. Our conjecture is that
limσ→0 v∞ = r/T , where r is the rotation number (cf. [34]).

Remark 5.3. Existence of periodic orbits is unstable with respect to per-
turbations of F , thus, in a general position, v∞ is non-zero for small σ.



32 S. KONDRATYEV, J.M. URBANO AND D. VOROTNIKOV

Unfortunately, as R. Ortega and F. Zanolin pointed out in a personal com-
munication, there are no criteria of the form that ‘some set of assumptions
on F implies non-existence of T -periodic solutions to (5.1)’. In [25], the non-
existence of periodic solutions to (5.1) with a tilting potential of the form
Fsin(y, t) = H(t)− sin y, where H is T -periodic and satisfies (2.22), was dis-
covered. There, it was observed that this phenomenon contrasts with the
behaviour of the equation

y′′(t) = Fsin(y(t), t), (5.9)

which always admits T -periodic solutions. However, for this particular class
of tilting potentials there is some hope to get a criterion using a trick from
[26], transforming (5.1) into a Ricatti equation. The discrete analogue of the
problem produces Arnold tongues.

6. Multi-state models
We now consider another class of ratchet models, where the particles can

be in several states, and the total amount of particles is fixed. Particles in
different states are sensitive to different time-independent potentials. The
particles can randomly change their states with rates νij(x) ≥ 0 (from j-th
state to i-th state; i, j = 1, . . . , N ; i 6= j), calling forth the bulk transport.
This leads to the following general Cauchy problem for a system of Fokker–
Planck-type equations: (ρi)t − σ(ρi)xx − ((Ψi)xρi)x +

∑
j, j 6=i

νjiρi =
∑
j, j 6=i

νijρj,

ρi(x, 0) = ρi0(x),
(6.1)

which we again consider for all x ∈ R and t > 0.
Here Ψi(x) are given C4-regular potentials, ρi0 are given initial mass dis-

tributions, and σ is the diffusion coefficient (for definiteness, we set it to be
the same for all states). We assume that (Ψi)x(x) and νij(x) are 1-periodic
and that ρi0(x) satisfy the requirements

ρi0(x) ≥ 0,
N∑
i=1

∞∫
−∞

ρi0(x) dx = 1,

∞∫
−∞

|x|ρi0(x) dx <∞. (6.2)

Standard arguments show that (6.1) has a unique solution for any contin-
uous vector function ρ0(x) = (ρi0) satisfying (6.2); moreover, for any t > 0,
the components ρi(x, t) of the solution vector ρ(x, t) are positive. Moreover,
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the classical estimates [14] for the fundamental matrix of solutions to (6.1)
imply

lim
x→±∞

|x|(|ρ(x, t)|+ |ρx(x, t)|) = 0. (6.3)

Let

ρ̃(x, t) =
N∑
i=1

ρi(x, t) (6.4)

be the total density function. Adding the equations of (6.1) gives

ρ̃t − σρ̃xx −
N∑
i=1

((Ψi)xρi)x = 0. (6.5)

As in Section 2, (6.3) and (6.5) yield conservation of the total mass∫ ∞
−∞

ρ̃(x, t) dx = 1, (6.6)

and finiteness of the centre of mass

x̄(t) =

∫ ∞
−∞

xρ̃(x, t) dx (6.7)

for any t. Similarly to Section 2, we are interested in the properties of the
velocity of the centre of mass x̄(t).

We consider the following auxiliary problem on S1 × (0,∞):
(gi)t − σ(gi)xx − ((Ψi)xgi)x +

∑
j, j 6=i

νjigi =
∑
j, j 6=i

νijgj,

gi(x) > 0,
N∑
i=1

∫
S1 gi(x) dx = 1.

(6.8)

Observe that if a vector ρ with positive components solves (6.1), then

g(x, t) =
∞∑

k=−∞

ρ(x+ k, t) (6.9)

solves (6.8). The convergence of this series follows from the properties of the
fundamental matrix of solutions to (6.1).
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Then the velocity of the centre of mass is

ṽ(t) :=
∂x̄

∂t
(t) =

∫ ∞
−∞

xρ̃t(x, t) dx

=

∫ ∞
−∞

x

(
σρ̃xx +

N∑
i=1

((Ψi)xρi)x

)
dx

= −
∫ ∞
−∞

(
σρ̃x +

N∑
i=1

(Ψi)xρi

)
dx

= −
N∑
i=1

∫ 1

0

(Ψi)xgi dx. (6.10)

We need the following result on existence of a unique attractor for (6.8).

Proposition 6.1. There exists a unique regular stationary solution vector
g∞(x) = (gi∞) to (6.8). Moreover, there exists γ > 0 such that, for any
smooth solution g to (6.8), there exists a positive constant C = C(g) such
that

|g(x, t)− g∞(x)| ≤ Ce−γt, (x, t) ∈ S1 × (0,∞). (6.11)

Proof : The existence and uniqueness can be proved similarly to [9, Theo-
rem 4.1], and the stability follows in the same way as in [20, Theorem 4.1].

We can now put

ṽ∞ := −
N∑
i=1

∫ 1

0

(Ψi)x(x)gi∞(x) dx, (6.12)

arriving at the following bound.

Corollary 6.2. For any solution of (6.1), we have

|ṽ(t)− ṽ∞| ≤ Ce−γt, (6.13)

where C depends only on ρ0.

Thus, the sign of the asymptotic velocity ṽ∞ determines the direction of
transport. We now examine several situations when ṽ∞ can be proved to be
non-zero. For simplicity, we restrict ourselves to the two-state models. We
begin with the small diffusion case.
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Theorem 6.3. Let N = 2. Suppose that the functions F1 = −(Ψ1)x and
F2 = −(Ψ2)x merely have a finite number of zeros on S1, and do not admit
common zeros. Let σ be sufficiently small, ν12(x) > 0, ν21(x) > 0.

i) Assume that both F1 and F2 have zeros, and for every x∗ such that
F1(x∗)F2(x∗) = 0, let i∗ = 1 if F2(x∗) = 0, and i∗ = 2 if F1(x∗) = 0. Then

sign ṽ∞ = signFi∗(x∗), (6.14)

provided the sign in the right-hand side of (6.14) is independent of x∗.
ii) Assume that only one of the functions F1 and F2 possesses zeros. Let

Fi∗ be the potential gradient which does not have zeros. Then

sign ṽ∞ = signFi∗. (6.15)

iii) Assume that none of the functions F1 and F2 vanishes. Then

sign ṽ∞ = sign(F1F2) sign

1∫
0

(
ν12(x)

F2(x)
+
ν21(x)

F1(x)

)
dx, (6.16)

provided the integral in the right-hand side is non-zero.

Remark 6.4. In the case when F1 and F2 have common zeros or the sign in
the right-hand side of (6.14) varies, the transport still can be present, but
more subtle methods are required to establish that ṽ∞ 6= 0.

Remark 6.5. In case i), if the sign in (6.14) is positive, it is simple to see that
max(F1, F2) > 0, and there is an interval where min(F1, F2) > 0. Hence, the
occurrence of unidirectional transport in the Neumann problem setting on
a bounded segment follows from [29, Theorem 1] or [20, Theorem 3.1]. The
cases ii) and iii) are not covered by the results of [8, 20, 29].

Proof of Theorem 6.3: Assume there is a sequence σn → 0 such that the
corresponding velocities ṽ∞n violate (6.14), or (6.15), or (6.16), respectively.

The sequence of stationary solutions {g∞n} is bounded in [L1(S1)]2, so,
without loss of generality, g∞n converges weakly-∗ in [C∗(S1)]2 to some ζ.
For large n, the sign of ṽ∞n coincides with the sign of

ṽ∞0 = 〈ζ1, F1〉C∗×C + 〈ζ2, F2〉C∗×C , (6.17)

provided ṽ∞0 6= 0. Observe that ζ solves the system (F1ζ1)x = ν12ζ2 − ν21ζ1,
(F2ζ2)x = ν21ζ1 − ν12ζ2,
ζi ≥ 0, 〈ζ1 + ζ2, 1〉 = 1

(6.18)
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in the sense of distributions on S1. Adding these two equations, we see that
F1ζ1 + F2ζ2 is essentially a constant, and, due to (6.17),

F1ζ1 + F2ζ2 = ṽ∞0. (6.19)

in the sense of distributions.
Consider first cases i) and ii). The measures ζ1 and ζ2 cannot be concen-

trated only at the zeros of F1F2. Indeed, if that is so, then (6.19) implies

F1ζ1 = F2ζ2 = 0 (6.20)

in the sense of distributions, so the supports of ζ1 and ζ2 are disjoint. But
(6.18) gives ν12ζ2 = ν21ζ1, so the supports should coincide, and we get a
contradiction.

Hence, there are two adjacent zeros x1 and x2 of F1F2 such that the support
of ζ1 or ζ2 intersects with the interval (x1, x2) (in the case when F1F2 has only
one zero, we can change the variable x for x̃ = x/2 in (6.1), which doubles
the number of zeros on S1, but does not affect the transport direction).

Suppose that ṽ∞0 = 0. Then the solution of the system (6.18), (6.19) on
(x1, x2) may be written explicitly, with an unknown multiplicative constant
M 6= 0,  ζ1(x) = Mexp

(∫ x̄
x
ν12(y)
F2(y) + ν21(y)

F1(y) dy
)
/F1(x),

ζ2(x) = −Mexp
(∫ x̄

x
ν12(y)
F2(y) + ν21(y)

F1(y) dy
)
/F2(x),

(6.21)

where x̄ = x1+x2
2 . This gives that F1F2 is negative on (x1, x2). Consequently,

x1 and x2 are zeros of the same potential — in case ii) this is trivial — and, for

definiteness, let it be F1. Observe that one of the integrals
∫ x̄
x1

ν12(y)
F2(y) + ν21(y)

F1(y) dy

and
∫ x̄
x2

ν12(y)
F2(y) + ν21(y)

F1(y) dy is positive. Since F1 is C1-smooth,
∫ x2
x1

1
F1(y) dy = ±∞.

Hence,
∫ x2
x1
ζ1|(x1,x2)(y) dy = ∞. But (6.18) implies

∫ x2
x1
ζ1|(x1,x2)(y) dy ≤ 1,

and we arrive at a contradiction.
Assume now that F1 > 0 on (x1, x2). We then have to show that ṽ∞0 < 0.

One can check that, under the assumptions that we have made, the only
solution of (6.18), (6.19) with finite integral on (x1, x2) is ζ1(x) = ṽ∞0

F1(x)

∫ x
x1

exp
(∫ s

x
ν12(y)
F2(y) + ν21(y)

F1(y) dy
)
ν12(s)
F2(s) ds,

ζ2(x) = ṽ∞0

F2(x)

[
1−

∫ x
x1

exp
(∫ s

x
ν12(y)
F2(y) + ν21(y)

F1(y) dy
)
ν12(s)
F2(s) ds

]
.

(6.22)

So ζ1 ≥ 0 and F2|(x1,x2) < 0 imply ṽ∞0 < 0. The case F1 < 0 is treated
similarly.
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In case iii), the solution ζ is smooth on the whole circle S1, so it may be
identified with a 1-periodic function on R. Moreover, it has the form

ζ1(x) =
M

F1(x)
exp

(∫ 0

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
+

ṽ∞0

F1(x)

∫ x

0

exp

(∫ s

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
ν12(s)

F2(s)
ds, (6.23)

ζ2(x) = − M

F2(x)
exp

(∫ 0

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
+

ṽ∞0

F2(x)

[
1−

∫ x

0

exp

(∫ s

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
ν12(s)

F2(s)
ds

]
. (6.24)

Due to periodicity,

M

[
exp

(∫ 0

1

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
− 1

]
+ ṽ∞0

∫ 1

0

exp

(∫ s

x

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
ν12(s)

F2(s)
ds = 0. (6.25)

Hence, ṽ∞0 6= 0, for the contrary would imply M = 0, and ζ ≡ 0, which
contradicts (6.18).

Assume that the right-hand side of (6.16) is positive, and ṽ∞0 is negative
(the opposite situation is completely analogous). Then at least one of the
potentials, say F1, is positive. Due to the positivity of the right-hand side
of (6.16),

sign

(
exp

(∫ 0

1

ν12(y)

F2(y)
+
ν21(y)

F1(y)
dy

)
− 1

)
= − signF2, (6.26)

and (6.25) yields

signM = sign ṽ∞0. (6.27)

It follows from (6.23) and (6.27) that ζ1(0) < 0, which contradicts the posi-
tivity of the solution.
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We now address the transport properties of the randomly tilting ratchet,
i.e., the model of the form (ρ1)t − (ρ1)xx − ([ψx + ω]ρ1)x + ν21ρ1 = ν12ρ2,

(ρ2)t − (ρ2)xx − ([ψx + Ω]ρ2)x + ν12ρ2 = ν21ρ1,
ρ(x, 0) = ρ0(x),

(6.28)

where ψ(x) is a C4-smooth 1-periodic potential, the diffusion coefficient σ
is taken to be 1; ω,Ω, ν12 > 0, ν21 > 0 are scalars (independent of x, for
simplicity), and ρ0 satisfies (6.2). We assume the following non-bias condition
(cf. (4.3)):

Ων21 + ων12 = 0. (6.29)

Denote by ṽ∞(ω, ν) the corresponding bulk velocity defined by (6.12).
The following theorem shows that the adiabatic and semi-adiabatic bulk ve-

locities of the randomly tilting ratchet are the same as for the tilting ratchet.
Thus, the results of the previous sections may be applied to determine the
transport direction. In particular, the direction of the semiadiabatic trans-
port is determined by the sign of ω for every non-constant ψ.

Theorem 6.6. Let ω be fixed. Then

lim
ν12=ν21→0

ṽ∞(ω, ν) = −A(ω) + A(−ω)

2
; (6.30)

lim
ν21→0

ν21/ν12→0

ṽ∞(ω, ν) = ω − A(ω). (6.31)

The proof is left as an exercise for the reader.
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