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Abstract: We study the convergence of weighted sums of associated random vari-
ables assuming only the existence of moments of order p < 2. We use a truncation
technique together with coupling with independent variables, which allows a relax-
ation of the assumptions on the weights. Moreover, this coupling allows not only for
the proof of almost sure results and but enables to identify convergence rates. The
assumptions on p, that now include the case p < 1, excluded from earlier results for
positively associated variables, depend on the asymptotic behaviour of the weights,
as usual. We give a direct comparison with the characterizations previously avail-
able, showing that the scope of applicability of our results does not overlap with
known conditions for the same asymptotic results.
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1. Introduction
Many linear statistics are written as weighted sums of random variables,

raising thus the interest in the characterization of the asymptotics of such
sums, conveniently normalized. Since Baum and Katz [2] proved an almost
sure result for constant weights with a normalization sequence n−1/p, where p
describes the moment condition on the variables, many authors studied this
problem. Chow [4] and Cuzick [5] obtained conditions for the convergence
for weighted sums with independent variables, later extended by Cheng [3],
Bai and Cheng [1], or Sung [12] relaxing the moment assumption. This
convergence has also been considered for dependent variables. Louhichi [9]
obtained sufficient conditions for the convergence with constant weights but
requiring only the existence of low, less than 2, order moments. These results
were, more recently, extended for weighted sums in Oliveira [10] and Çaǧın
and Oliveira [6], using an approach similar to Louhichi’s [9]. Here we follow
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(CMUC), funded by the European Regional Development Fund through the program COMPETE
and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia
under the project PEst-C/MAT/UI0324/2013.

1
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the method used in Oliveira [11] for the proof of exponential inequalities,
extending results that Ioannides and Roussas [8] proved in a more reduced
framework, to prove conditions for the almost sure convergence and, in some
cases, of its rate. These conditions depend on the covariances and link p
with the behaviour of the weighting coefficients. In Sect. 2 we describe the
framework and useful results, Sect. 4 presents the main results, and compares
with results in Çaǧın and Oliveira [6], while Sect. 3 states versions of these
results in a reduced setting, but proves the main steps for the final theorems.

2. Definitions and preliminary results
Let us assume that the Xn, n ≥ 1, are centered and associated random

variables and denote Sn = X1 + · · ·+Xn. Let an,i, i = 1, . . . , n, n ≥ 1, be non
negative real numbers and define, for some α > 1, Aα

n,α = n−1
∑n

i=1 |an,i|
α.

We will be interested in the convergence of Tn =
∑n

i= an,iXi assuming that

Aα = sup
n
An,α <∞. (1)

This is the only condition on the weights throughout this paper, thus relaxing
the assumption on the weights when compared to Oliveira [10] or Çaǧın
and Oliveira [6]. Remark that, due to the nonnegativity of the weights,
the variables Tn, n ≥ 1, are associated. Define the usual Cox-Grimmett
coefficients

u(n) = sup
k≥1

∑
j:|k−j|≥n

Cov(Xj, Xk). (2)

If the random variables are stationary, then u(n) = 2
∑∞

j=n+1 Cov(X1, Xj).
Consider pn a sequence of natural numbers such that pn <

n
2 , rn the largest

integer less or equal to n
2pn

, and define the variables

Yn,j =

jpn∑
i=(j−1)pn+1

an,iXi, j = 1, . . . , 2rn.

These random variables are associated, due to the nonnegativity of the
weights. Moreover, if the variables Xn are uniformly bounded by c > 0,
then it is obvious that |Yn,j| ≤ cAαn

1/αpn. Finally, put

Tn,od =

rn∑
j=1

Yn,2j−1 and Tn,ev =

rn∑
j=1

Yn,2j.

We prove first an easy but useful upper bound.
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Lemma 2.1. Assume the variables Xn, n ≥ 1, are associated, stationary,
bounded (by c > 0) and u(0) <∞. Then E(S2

n) ≤ 2c∗n, where c∗ = c2 +u(0).

Proof : Using the stationarity, it follows easily that E(S2
n) = nVar(X1) +

2
∑n−1

j=1 (n− j)Cov(X1, Xj+1) ≤ 2nc2 + 2nu(0).

The next result is an extension of Lemma 3.1 in Oliveira [11].

Lemma 2.2. Assume the variables Xn, n ≥ 1, are centered, associated,
stationary, bounded (by c > 0), u(0) <∞ and the nonnegative weights satisfy
(1). If dn ≥ 1 and 0 < λ < dn−1

dn
1

cAαn1/αpn
, then

rn∏
j=1

E
(
eλYn,2j−1

)
≤ exp

(
λ2c∗A2

αn
1+2/αdn

)
and

rn∏
j=1

E
(
eλYn,2j

)
≤ exp

(
λ2c∗A2

αn
1+2/αdn

)
.

Proof : As remarked above, as the variables Xn are bounded, we have that
|Yn,j| ≤ cAαn

1/αpn. So, using a Taylor expansion it follows that

E
(
eλYn,2j−1

)
≤ 1 + λ2E

(
Y 2
n,2j−1

) ∞∑
k=2

(cAαλn
1/αpn)

k−2.

Now, E
(
Y 2
n,2j−1

)
=
∑

`,`′ an,kan,`′Cov(X`, X`′) ≤ n2/αA2
αE(S2

pn
), due to the

stationarity and the nonnegativity of the weights and covariances. So, ap-
plying Lemma 2.1, it follows that

E
(
eλYn,2j−1

)
≤ 1 +

2λ2c∗A2
αn

2/αpn
1− cAαλn1/αpn

≤ exp
(

2λ2c∗A2
αn

2/αpndn

)
.

To conclude the proof multiply the upper bounds above and remember that
2rnpn ≤ n.

A basic tool for the analysis of convergence and rates is the following in-
equality due to Dewan and Prakasa Rao [7].

Theorem 2.3. Assume X1, . . . , Xn are centered, associated and uniformly
bounded (by c > 0). Then, for every λ > 0,∣∣∣∣∣Eeλ∑j Xj −

∏
j

EeλXj

∣∣∣∣∣ ≤ 1

2
λ2ecλn

∑
j 6=k

Cov(Xj, Xk). (3)
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3. The case of uniformly bounded variables
We assume first that there exists some c > 0 such that, with probability 1,
|Xn| ≤ c, for every n ≥ 1. This allows for a direct use of the results proved
above. We start by deriving an upper bound for the tail probabilities for the
summations defined above.

Lemma 3.1. Assume the variables Xn, n ≥ 1, are centered, associated,
stationary and bounded (by c > 0) and u(0) <∞. If the nonnegative weights
satisfy (1), dn ≥ 1 and 0 < λ < dn−1

dn
1

cAαn1/αpn
, then, for every ε > 0 and n

large enough,

P(Tn,od > n1/pε) ≤ 1

4
λ2n1+2/αA2

α exp
(

1
2cn

1+1/αAαλ− λn1/pε
)
u(pn)

+ exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
.

(4)

An analogous inequality for P(Tn,ev > n1/pε) also holds.

Proof : If we apply (3) to Tn,od we find∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣ ≤ 1

2
λ2 exp

(
cAαrnpnn

1/αλ
)∑
j 6=j′

Cov(Yn,j, Yn,j′). (5)

Now, it is obvious that each 0 ≤ an,i ≤ n1/αAn,α, thus

Cov(Yn,j, Yn,j′) ≤
∑
`,`′

an,`an,`′Cov(X`, X`′) ≤ n2/αA2
α

∑
`,`′

Cov(X`, X`′).

Put Y ∗n,j =
∑jpn

`=(j−1)pn+1X`, j = 1, . . . , rn. Then we have just verified that

Cov(Yn,j, Yn,j′) ≤ n2/αA2
αCov(Y ∗n,j, Y

∗
n,j′).

Using twice the stationarity of the random variables we obtain

∑
6̀=`′

Cov(Y ∗n,j, Y
∗
n,j′) = 2

rn−1∑
j=1

(rn − j)Cov(Y ∗n,1, Y
∗
n,2j−1)
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and

Cov(Y ∗n,1, Y
∗
n,2j−1)

≤
pn−1∑
`=0

(pn − `)Cov(X1, X2jpn+`+1) +

pn−1∑
`=1

(pn − `)Cov(X`, X2jpn+1)

≤ pn

(2j+1)pn∑
`=(2j−1)pn+2

Cov(X1, X`).

Inserting this inequality in (5) we find∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣
≤ 1

2
λ2n2/αA2

αrnpn exp
(

1
2cn

1+1/αAαλ
) 2rn−1∑
`=pn+2

Cov(X1, X`)

≤ 1

4
λ2n1+2/αA2

α exp
(

1
2cn

1+1/αAαλ
)
u(pn + 2).

We can now use this together with Markov’s inequality to find that, for every
ε > 0,

P(Tn,od > n1/pε) ≤ e−λn
1/pε

∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣+ e−λn
1/pε
∏
j

EeλYn,2j−1

≤ 1

4
λ2n1+2/αA2

α exp
(

1
2cn

1+1/αAαλ− λn1/pε
)
u(pn + 2)

+ exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
,

and remember that u(pn + 2) ≤ u(pn), due to the nonnegativity of the co-
variances.

3.1. Almost sure convergence. We prove two different versions of the
almost sure of n−1/pTn, depending on the Cox-Grimmett coefficients being
decreasing at polynomial or geometric rate.

Theorem 3.2. Assume the random variables Xn, n ≥ 1, are centered, as-
sociated, stationary and bounded (by c > 0). Assume that p < 1 and α > 1
are such that 1

p −
1
α ≥ 1 and u(n) ∼ n−a, for some a > 0. If the nonnegative

weights satisfy (1), then, with probability 1, n−1/pTn −→ 0.
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Proof : Consider the decomposition of Tn into the blocks Yn,j defined previ-
ously, taking pn ∼ nθ, for some θ ∈ (0, 1). It is obviously enough to prove
that both n−1/pTn,od and n−1/pTn,ev converge almost surely to 0. As these
terms are analogous we will concentrate on the former, starting from (4). A
minimization of the exponent on the second term of the upper bound in (4)
leads to the choice

λ =
ε

2c∗A2
α

n1/p−1−2/α

dn
, (6)

meaning that

exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
= exp

(
−ε

2n2/p−1−2/α

4c∗A2
αdn

)
.

Assume that, for some β > 1,

ε2n2/p−1−2/α

4c∗A2
αdn

= β log n ⇔ dn =
ε2

4c∗A2
αβ

n2/p−1−2/α

log n
. (7)

As 1
p −

1
α > 1, it follows that, for n large enough, we have dn > 1 as required

in Lemma 2.2. In order to use Lemma 2.2 we also need to verify that the
condition on λ is satisfied: λ < dn−1

dn
1

cAαn1/αpn
. Replacing the above choices

for λ and dn, this condition on λ is satisfied if

ε−1 ≤ 1

2cAαβ

n1/p−1/α

nθ log n
. (8)

As θ < 1 ≤ 1
p −

1
α this upper bound grows to infinity, so this inequality is

satisfied for n large enough.
We consider now the first term in (4), the term involving the Cox-Grimmett

coefficients. The exponent in this term is

cn1+1/αAαλ− λn1/pε =
cε

2c∗Aα

n1/p−1/α

dn
− ε2

2c∗A2
α

n2/p−1−2/α

dn
.

The second term above is, up to multiplication by 2, the exponent that was
found after the optimization with respect to λ of the exponent on the second
term of (4). So, to control the upper bound (4) we can factor this part of
the exponential, leaving to control, after substituting the expression for dn,

1

4
λ2n1+2/αA2

α exp

(
2cAαβ

ε
n1/α−1/p+1 log n

)
u(pn). (9)
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As the term that we factored defines a convergent series, it is enough to verify
that (9) is bounded. Further, the polynomial term in (9) is clearly dominated
by the exponential, thus we may drop it, verifying only that

exp

(
2cAαβ

ε
n1/α−1/p+1 log n

)
u(pn) ≤ c0, (10)

for some c0 > 0. Taking logarithms and taking into account the choice for
pn ∼ nθ, the above inequality is equivalent to 2cAαβ

ε n1/α−1/p+1 log n− aθ log n
having a finite upper bound. But then, this a consequence of the assumption
on p and α, as 1

p −
1
α ≥ 1 implies that the exponent on the first term is not

positive, so this term converges to 0.

We may relax somewhat the assumptions on p and α if the covariances
decrease faster.

Theorem 3.3. Assume the random variables Xn, n ≥ 1, are centered, asso-
ciated, strictly stationary and bounded (by c > 0). Assume that p < 2 and
α > 1 are such that 1

p −
1
α >

1
2 and u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the

nonnegative weights satisfy (1), then, with probability 1, n−1/pTn −→ 0.

Proof : Follow the proof of Theorem 3.2, choosing max(0, 1
p −

1
α + 1) < θ <

1
p −

1
α , until (10). Remark that the assumption on p and α ensures that such

a choice for θ is possible. Now the boundedness required in (10) is equivalent
to 2cAαβ

ε n1/α−1/p+1 log n−nθ log ρ being bounded above. But this follows from

θ > 1
p −

1
α + 1 and ρ ∈ (0, 1).

3.2. Convergence rates. A small modification of the previous arguments
allows, for the case of geometric decreasing Cox-Grimmett coefficients, the
identification of a convergence rate for the almost sure convergence just
proved.

Theorem 3.4. Assume the random variables Xn, n ≥ 1, are centered, asso-
ciated, strictly stationary and bounded (by c > 0). Assume that p < 2 and
α > 1 are such that 1

p −
1
α >

1
2 and u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the

nonnegative weights satisfy (1), then, with probability 1, n−1/pTn −→ 0 with
convergence rate log n

n1/p−1/α−1/2−δ
, for arbitrarily small δ > 0.
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Proof : We again start as in the proof of Theorem 3.2 choosing θ = 1
2 + δ,

with 0 < δ < 1
p −

1
α −

1
2 and pn ∼ nθ. Now, on (7), allow ε to depend on n:

ε2
n =

4βc∗A2
αdn log n

n2/p−1−2/α
.

The verification of the assumptions of Lemma 2.2, given above by (8), be-
comes now:

n1/p−1/2−1/α

2(βc∗)1/2Aαd
1/2
n (log n)1/2

≤ 1

2cβAα

n1/p−1/α

nθ log n
,

which is equivalent to dn ≥ c2β
c∗ n

2θ−1 log n ∼ n2δ log n. Thus, as we are

interested in a slow growing sequence, we choose dn ∼ n2δ log n. So, ε2
n ∼

n2δ−2/p+2/α+1(log n)2 −→ 0, given the choice for δ. To complete the proof, it
is enough to bound exp(cn1+1/αλ)u(pn). It is easily verified that n1+1/αλ ∼
n1/2−δ, so the term we need to bound is of order n1/2−δ + nθ log ρ = n

1
2−δ +

n1/2+δ log ρ. But, this is an immediate consequence of ρ ∈ (0, 1) and δ > 0,
so the proof is concluded.

Remark 3.5. The above argument does not hold if the decrease rate of the
Cox-Grimmett coefficients is only polynomial. Indeed, in this case we would
be driven to bound n1/2−δ + a(1

2 + δ) log n, which is always unbounded as
1
2 + δ > 0.

4. The general case
For general sequences of associated random variables we need an extension

of Lemma 3.1. For this purpose we will introduce a truncation on the random
variables, which can be analysed using the results in the previous section, and
control the remaining tails. Let cn, n ≥ 1, be a sequence of nonnegative real
numbers such that cn −→ +∞ and define, for each i, n ≥ 1,

X1,i,n = −cnI(−∞,−cn)(Xi) +XiI[−cn,cn](Xi) + cnI(cn,+∞)(Xi),

X2,i,n = (Xi − cn)I(cn,+∞)(Xi), X3,i,n = (Xi + cn)I(−∞,−cn)(Xi),
(11)

where IA represents the characteristic function of the set A. Notice that the
above transformations are monotonous, so these new families of variables
are still associated. Morevoer, it is obvious that, for each n ≥ 1 fixed, the
variables X1,1,n, . . . , X1,n,n are uniformly bounded. Consider, as before, a
sequence of natural numbers pn such that, for each n ≥ 1, pn <

n
2 and define
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rn as the largest integer less or equal to n
2pn

. For q = 1, 2, 3, and j = 1, . . . , 2rn,
define

Yq,j,n =

jpn∑
`=(j−1)pn+1

an,i

(
Xq,`,n − E(Xq,`,n)

)
, (12)

and

Tq,n,od =

rn∑
j=1

Yq,2j−1,n, Tq,n,ev =

rn∑
j=1

Yq,2j,n, (13)

For q = 2, 3, assuming the variables are identically distributed, we have the
following upper bound,

P

(∣∣∣∣∣
n∑
i=1

an,i

(
Xq,i,n − E(Xq,i,n)

)∣∣∣∣∣ > n1/pε

)

≤ nP

(
|Xq,1,n − E(Xq,1,n)| >

n1/p−1ε

Aα

)
≤ n3−2/pA2

α

ε2
Var(Xq,1,n) ≤

n3−2/pA2
α

ε2
E(X2

q,1,n).

The following result is an easy extension of Lemma 4.1 in [11].

Lemma 4.1. Let X1, X2, . . . be strictly stationary random variables such that
there exists δ > 0 satisfying sup|t|≤δ E(etX1) ≤ Mδ < +∞. Then, for t ∈
(0, δ],

P

(∣∣∣∣∣
n∑
i=1

an,i

(
Xq,i,n − E(Xq,i,n)

)∣∣∣∣∣ > n1/pε

)
≤ 2MδA

2
αn

3−2/pe−tcn

t2ε2
, q = 2, 3.

(14)

4.1. Almost sure convergence and rates. We may now prove the ex-
tensions of the results proved for uniformly bounded sequences of random
variables. The main argument in the proofs in Sect. 3 was the control of the
exponent in the exponential upper bounds found. The bound obtained in
(14) is, essentially, of the same form, depending on the choice of the trunca-
tion sequence. So, we will obtain the same characterizations for the almost
sure convergence and for its rate, as in the case of uniformly bounded se-
quences of random variables. Remark that, due to the association of the
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variables,

Cov(X1,1,n, X1,j,n)

=

∫ ∫
[−cn,cn]2

P(X1 > u,Xj > v)− P(X1 > u)P(Xj > v) dudv

≤
∫ ∫

R2

P(X1 > u,Xj > v)− P(X1 > u)P(Xj > v) dudv = Cov(X1, Xj).

Obviously, this inequality holds even if Cov(X1, Xj) is not finite.

Theorem 4.2. Assume the random variables Xn, n ≥ 1, are centered, asso-
ciated and strictly stationary. Assume that p < 1 and α > 1 are such that
1
p−

1
α > 1 and u(n) ∼ n−a, for some a > 0. If the nonnegative weights satisfy

(1), then, with probability 1, n−1/pTn −→ 0.

Proof : To control the tail terms, that is, Tq,n,od and Tq,n,ev, for q = 2, 3, choose
the truncation sequence cn = log n and t = β > 4 − 2

p . Thus according to
Lemma 4.1, the probabilities depending on these variables are bounded above
by a convergent series. Concerning the remaining term, follow the proof of
Theorem 3.2 but keep in mind that the constants c and c∗ now depend
on n. According to the comment immediately after Lemma 2.1, we have
c∗n = c2

n + u(0) ∼ (log n)2. Thus, instead of (6), we find the choice

λ =
n1/p−1−2/αε

2c∗nA
2
αdn

∼ n1/p−1−2/αε

(log n)2dn
,

and

n2/p−1−2/αε2

4c∗nA
2
αdn

= β log n ⇔ dn =
ε2

4c∗nβA
2
α

n2/p−1−2/α

log n
∼ n2/p−1−2/α

(log n)3
.

The condition on λ required by Lemma 2.2 translates now into

ε−1 ≤ n1/p−1/α

2cnβAαnθ log n
∼ n1/p−1/α−θ

(log n)2
.

Thus, up to a logarithmic factor, we find an upper bound with the same
behaviour as the one found in (8), so the argument used in course of proof
of Theorem 3.2 still applies. Remark also that the present choice for dn also
only changes with respect to the one made in the proof of Theorem 3.2 by
the introduction of a logarithmic factor in the denominator. Thus the fact
that dn becomes larger that 1, for n large enough, is not affected. The same
holds for the term corresponding to (10). Indeed, the exponent we need to



CONVERGENCE RATES FOR WEIGHTED SUMS OF ASSOCIATED VARIABLES 11

control takes now the form cnn
1+1/αλ ∼ n1−1/p+1/α(log n)2, that is, the same

we found before multiplied by a logarithmic factor that, as is easily verified,
does not affect the remaining argument of the proof.

For sake of completeness we state the results corresponding to Theorems 3.3
and 3.4. We do not include proofs as these are modifications of the corre-
sponding ones exactly as done for Theorem 4.2.

Theorem 4.3. Assume the random variables Xn, n ≥ 1, are centered, asso-
ciated and strictly stationary. Assume that p < 2 and α > 1 are such that
1
p −

1
α >

1
2 and u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the nonnegative weights

satisfy (1), then, with probability 1, n−1/pTn −→ 0.

Theorem 4.4. Assume the random variables Xn, n ≥ 1, are centered, as-
sociated and strictly stationary. Assume that p < 2 and α > 1 are such
that 1

p −
1
α > 1

2 and u(n) ∼ ρ−n, for some ρ ∈ (0, 1). If the nonnegative

weights satisfy (1), then, with probability 1, n−1/pTn −→ 0 with convergence
rate log n

n1/p−1/α−1/2−δ
, for arbitrarily small δ > 0.

The above statements include an assumption on the Cox-Grimmett coeffi-
cients of the original untruncated variables. In fact, this assumption, which
implies the existence of second order moments, may be relaxed, as we only
need the coefficients corresponding to the truncated variables defined as, as-
suming already the stationarity of the variables,

u∗(n) = 2
∞∑

j=n+1

Cov(X1,1,n, X1,j,n).

Taking into account the inequality between the covariances, it is obvious
that u∗(n) ≤ u(n). Of course, this choice for the statements would imply a
definition for the truncating sequence on the statement.

4.2. Comparing with previous results. Theorem 4.2 above extends
Corollary 3.5 in Çaǧın and Oliveira [6]. Indeed, in [6] it is assumed that
p > 1 due to the technicalities of the proof, while here we are assuming
p < 1. This later case would imply, with respect to the framework of [6],
the need to assume the existence of moments of order 2, which was what
was trying to be avoided in [6]. In the present case, as we are dealing with
bounded variables or using truncation, this is not a problem. In order to
be somewhat more precise on the relations of the present results and those
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in [6] we need some more notation, extending the truncation in (11). Given
v > 0 and i ≥ 1, define X1,i,v = −vI(−∞,−v)(Xi) +XiI[−v,v](Xi) + vI(v,+∞)(Xi)
and Gi(v) = Cov(X1,1,v, X1,i,v). Now the assumption on the Cox-Grimmett
coefficients in Theorem 4.2 rewrites as

u∗(n) = 2
∑
j=n+1

Gj(log n) ∼ n−a, a > 0.

A translation of this decay rate directly into the covariances is achieved if we
assume that Gj(v) ∼ e−(a+1)v, thus a geometric decay rate for the covariances.
Moreover, we may still verify that Corollary 3.5 in Çaǧın and Oliveira [6] does
not overlap with Theorem 4.2, considering the version with an assumption
on the truncated Cox-Grimmett coefficients u∗(n) instead. In fact, the result
in [6] assumes that

∞∑
n=1

∫
(n+1)(α−2p)/(αp)

v
α(p−1)
α−2p −2Gn(v) dv <∞.

If Gj(v) ∼ e−(a+1)v, this condition is equivalent to
∞∑
n=1

∫
(a+1)(n+1)(α−2p)/(αp)

t
α(p−1)
α−2p −2e−t dt <∞.

The convergence of the series above is equivalent to the finiteness of the
integral ∫ ∞

1

∫
(a+1)(n+1)(α−2p)/(αp)

t
α(p−1)
α−2p −2e−t dt dx,

which, after inverting the integration order is bounded above by∫ ∞
2(α−2p)/(αp)(a+1)

t(2αp−α)/(α−2p)−2e−t dt ≤ Γ
(

2αp−α
α−2p − 1

)
,

where Γ represents the Euler Gamma function, and this is finite if the ar-
gument is positive, that is, if αp > α − p or, equivalently, if 1

p −
1
α < 1, the

reverse inequality of what is assumed in Theorem 4.2.
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