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Abstract: Let B be a category and let A be a subcategory of B; given an object B
of B, we may ask whether there is an embedding B ↪→ A with A ∈A. In some cases
the answer is well known. For instance, an abelian semigroup may be embedded
in an abelian group if and only if it is cancellative. And every Lie algebra over
a field K is embeddable in an associative K-algebra with identity. Many other
examples are known. This text concentrates in the localness of the embeddability.
That is, it studies conditions under which the following statement holds: B ∈ B is
embeddable in an object of A whenever every finitely generated subobject of B is
so.
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1.Introduction
The following problem has been investigated in Algebra: Let B be a

category of algebras and let A be a subcategory of B; given an object B of
B, determine if there is an embedding B ↪→ A with A ∈ A. The following
two results on this subject are well-known:

(a) An abelian semigroup may be embedded in an abelian group if and
only if it is cancellative.

(b) Poincaré-Birkhoff-Witt Theorem: Every Lie algebra over a field K is
embeddable in an associative K-algebra with identity.

There are many other examples on the embeddability of algebras in the
literature. J. MacDonald studied the subject from a categorical point of
view [7, 8, 9]; in particular, he obtained a categorical generalization of the
Poincaré-Birkhoff-Witt Theorem. In [6] P. Johnstone gave a new approach
to the characterization of the semigroups which can be embedded in a
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group, unifying previous existing results. More generally, he obtained a
characterization of the categories which can be embedded in a groupoid.

However these studies have very different aspects, and a general cate-
gorical treatment of this problem that could encompass a larger number
of known results of the above type seems to be very difficult. This text
devotes just to its localness facet. That is, the aim of this note is to study
conditions under which, for a subcategory A of a category B, and an object
B of B, the following statement holds:

(E) B ∈ B is embeddable in an object of A

whenever every finitely generated subobject
of B is so.

This kind of result was already achieved by B. H. Neumann in [11], and
the present paper was inspired by his work. The main result, stated in
Theorem 3.2 of Section 3, is a categorical approach of the embedding the-
orem of Neumann.

Let Σ and Σ′ be finitary signatures with Σ′ ⊆ Σ, and let I be a set of
finitary implications with respect to Σ. For B = Alg(Σ′) the category of
Σ′-algebras and A = Alg(Σ, I) its subcategory of Σ-algebras which satisfy
the implications of I , it follows from Neumann’s result that the statement
(E) holds. This case is Leading Example of Section 2. The three definitions
and the three lemmas of this section capture properties of the example
which are going to have a rôle in the proof of the main result.

2.Leading Example
The above statement (E) is proved in Section 3, within an environment

which includes the following

Leading Example. Let B = Alg(Σ′) be the category of algebras for a given
finitary signature Σ′, and let A be a quasivariety of the form Alg(Σ, I),
where Σ is a finitary signature containing Σ′ and I is a set of finitary im-
plications with respect to Σ. Then, the inclusion functor of A into B fac-
torizes through the inclusion functor of A into the category C = Alg(Σ):

A
� � //
� o

  @@@@@@@@ B
U ′

!!CCCCCCCC

C
/�

??������� U // Set
F

oo

(1)
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In the diagram, U ′ and U denote the usual forgetful functors, and F de-
notes the left adjoint of U . Thus, the two upper triangles of the above
diagram commute.

In this section, we present some definitions and prove some lemmas that
guarantee that the above leading example is encompassed by the hypothe-
ses of the theorem of the next section, whose proof is of a categorical type.

General Assumptions. From now on, we assume that A, B and C are
arbitrary categories, with A a full subcategory of C and C a subcategory of
B, and U : C→ Set and U ′ : B→ Set are functors such that the triangle on
the right side of (1) is commutative. Moreover, we assume that:

• C is cocomplete, finitely complete, and has intersections;
• B has intersections;
• U : C→ Set and U ′ : B→ Set are faithful and preserve monomor-

phisms.

We recall that, ifU : C→ Set is a faithful functor and C is a category with
intersections, given an object C of C and a subset X of UC, with inclusion
map m : X → UC, we obtain the subobject of C generated by X by taking
the intersection of all subobjects nA : A→ C of C such that m : X → UC
factorizes through UnA. When a subobject of C is generated by a finite set
we say that it is finitely generated.

Description of special cointersections in Set. Given a non-empty set Z,
consider the following situation in Set:

Let F be the set of all a nonempty finite subsets of Z, and, for every
X ∈ F, let

PX
πX1 //

πX2

// X

be an equivalence relation, in such a way that, for every X,Y ∈ F, with
X ⊆ Y ,

PX = PY ∩ (X ×X).
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In particular, in the diagram

PX
_�

��

πX1 //

πX2

// X� _

��
PY

πY2 //

πY1

// Y

the inside and outside squares commute.
Denoting by mX : X ↪→ Z the inclusion maps, take the coequalizers cX =

coeq(mXπ
X
1 ,mXπ

X
2 ),

PX
πX1 //

πX2

// X � �
mX // Z

cX // CX ,

and the cointersection c : Z→ C of these coequalizers:

Z

cX &&MMMMMMMMMMMMM
c // C

CX

tX

OO

Then this cointersection has the following property:

For every X ∈ F and every u,v ∈ X, c(u) = c(v) iff cX(u) = cX(v). (2)

Definition 2.1. An epimorphism of Set of the form c : UT → C, with
T ∈ C, is said to beU -separated, if c is obtained as a special cointersection of
the type described above, with Z =UT , such that there is a family of maps
fX : X → UAX , X ∈ F, with AX ∈ C, fulfilling the following conditions, for
every finite X ∈ F:

(i) (πX1 , π
X
2 ) = ker( X

fX // UAX ).
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(ii) There exist a subobject of T in C, tX : TX ↪→ T , and a C-morphism
hX : TX→ AX that make the diagram

X � �
mX //

fX

��

� r

$$IIIIIIIIII UT

UTX
-  UtX

;;wwwwwwww

UhX{{vvvvvvvvv

UAX

(3)

commutative, where mX is the inclusion map.

Lemma 2.2. In the context of Leading Example, U creates U -separated epi-
morphisms, i.e., if c : UT → C is a U -separated epimorphism, then there is a
unique C-morphism c̄ : T → C̄ in C such that Uc̄ = c.

Proof : Let c : UT → C be a U -separated epimorphism. Let fX : X → UAX
be as in Definition 2.1, and put cX = coeq(mXπ

X
1 , mXπ

X
2 ). Then c is the

cointersection in Set of all cX and, as observed in (2) of Description 1, for
every finite set X ⊆UT , and for every u,v ∈ X,

c(u) = c(v) iff cX(u) = cX(v), i.e., iff fX(u) = fX(v).

We show that the equivalence relation in UT given by

u ∼ v iff c(u) = c(v)

is indeed a congruence. Let then be given elements x1, x2, . . . , xn, x′1, x
′
2, . . . , x

′
n

ofUT with xi ∼ x′i, and let θ ∈ Σn. We want to show that θT (x1, x2, . . . , xn) ∼
θT (x′1, x

′
2, . . . , x

′
n). Let X be a finite subset of UT containing x1, x2, . . . , xn,

x′1, x
′
2, . . . , x

′
n, θT (x1, x2, . . . , xn) and θT (x′1, x

′
2, . . . , x

′
n). Then, fX(xi) = fX(x′i)

for all i’s. Let the morphisms

AX TX
hxoo � �

tX // T

be as described in (ii) of Definition 2.1. Without loss of generality we may
consider tX as an inclusion in T of its subalgebra TX . Then we have:

fX(θT (x1, . . . , xn)) = hX(θT (x1, . . . , xn)), since hX restricted to X gives fX
= θA(hX(x1), . . . , hX(xn)), because hX is a homomorphism
= θA(fX(x1), . . . , fX(xn)), since hX restricted to X gives fX
= θA(fX(x′1), . . . , fX(x′n))
= fX(θT (x′1, . . .x

′
n)), by using the same arguments as before.
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Consequently, θT (x1, x2, . . . , xn) ∼ θT (x′1, x
′
2, . . . , x

′
n).

Remark 2.3. Observe that, in the leading example, C has coequalizers,
and the right adjoint U is faithful, preserves epimorphisms and reflects
isomorphisms. As a consequence, Lemma 2.2 gives, as a corollary, the
well-known fact that U creates coequalizers of kernel-pairs: given a C-
morphism h : T → T ′, let c : UT → C be the coequalizer of the kernel pair
of Uh. For every nonempty finite set X ⊆ UT , put fX = Uh ·mX , where
mX is the inclusion of X into UT , hX = h, and tX = idT ; then c : UT → C
is clearly under the conditions of Definition 2.1. Consequently, there is a
unique epimorphism c̄ : T → C̄ such that Uc̄ = c. Now it is easily seen that
c̄ is the coequalizer of the kernel pair of h in C.

Definition 2.4. We say that U locally detects C-morphisms if we have

( UB
g
// UC ) = U ( B

h // C ) , for some C-morphism h,

whenever g :UB→UC is a map fulfilling the following “local” condition:

For every finite setX ⊆UB, there exists a C-objectD and a monomorphism
d : X→UD such that:

(i) There is a C-morphism ḡ :D→ C making the diagram

X � p

d !!DDDDDDDD
� � // UB

g
// UC

UD
Uḡ

;;wwwwwwww

(4)

commutative.
(ii) For BX denoting the subobject of B generated by X, the family of

morphisms

{Uf | X � q

d ""EEEEEEEEE
� � // UBX

Um // UA

UD
Uf

;;wwwwwwwww

commutes, with m a C-monomorphism} (5)

separates every pair of points of UD separated by Uḡ (i.e., Uḡ(u) ,
Uḡ(v)⇒Uf (u) ,Uf (v), for some f ).

Lemma 2.5. (a) In the context of Leading Example,U locally detects C-morphisms
(and, analogously, U ′ locally detects B-morphisms).



ON THE LOCALNESS OF THE EMBEDDING OF ALGEBRAS 7

(b) For every faithful functor U : C→ Set, where C has intersections, if U
locally detects C-morphisms, then it reflects isomorphisms.

Proof : (a) Let g : UB → UC be a map with B,C ∈ C and under the con-
ditions of Definition 2.4. In order to simplify the writing, we assume,
without loss of generality, that d is an inclusion map. Let θ ∈ Σn, and let
b1, . . . , bn ∈ B. We want to show that g(θB(b1, . . . , bn)) = θC(g(b1), . . . , g(bn)).

Let X = {b1, . . . , bn, θB(b1, . . . , bn)} ⊆ B, and consider a diagram as in (4).
Then u = θB(b1, . . . , bn) and v = θD(b1, . . . , bn) belong to D. We show that
ḡ(u) = ḡ(v). For that, taking into account the hypothesis on the map ḡ,
it suffices to show that for every homomorphism f : D → A with Uf be-
longing to the family described in (5), f (u) = f (v). Indeed we have that
f (u) = f (θB(b1,b2, . . . , bn)) = m(θBX (b1,b2, . . . , bn)), because of the commuta-
tivity of (5), and, since θBX (b1,b2, . . . , bn) = θB(b1,b2, . . . , bn) and m : BX ↪→ A
is a homomorphism, we get f (u) = θA(m(b1),m(b2), . . . ,m(bn)). Using (5)
again and the fact of f :D→ A being a homomorphism, we conclude then
that

f (u) = θA(f (b1), f (b2), . . . , f (bn)) = f (θD(b1, b2, · · · , bn) = f (v).

Consequently, ḡ(u) = ḡ(v), and it follows that

g(θB(b1, . . . , bn)) = ḡ(θB(b1, . . . , bn))
= ḡ(θD(b1, . . . , bn))
= θC(ḡ(b1), . . . , ḡ(bn)) = θC(g(b1), . . . , g(bn)).

(b) Let f : C→ B be a C-morphism such that Uf is an isomorphism, and
let g : UB → UC be the inverse of Uf . For every finite set X ⊆ UB, let
jX : X→ UB be the inclusion map. Then, we obtain a triangle as in (4), by
putting D = C, d = gjX and ḡ = idC. Moreover, for every pair of elements u
and v of UC, with U idC(u) , U idC(v), we have Uf (u) , Uf (v); thus, the
following commutative triangle, where iX : BX → B is the subobject of B
generated by X,

X � � //

gjX ""DDDDDDDDD UBX
UiX // UB

UC
Uf

;;wwwwwwwww

assures that (ii) of Definition 2.4 is also satisfied.
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Consequently, as U locally detects C-morphisms, we have that g = Uh
for some h : B→ C. Since U is faithful, we conclude that f is an isomor-
phism with f −1 = h.

Definition 2.6. Let U : C→ Set be a faithful functor, and let A be a full
subcategory of C. An object C of C is said to have a local A-behaviour if, for
every nonempty finite set X ⊆UC, there is a C-morphism h :D→ C and a
C-monomorphism s : X→UD fulfilling the following conditions:

(i) The diagram
X � � //

� p

s !!DDDDDDDD UC

UD
Uh

;;wwwwwwww

(6)

is commutative.
(ii) For every finite setZ such that s factors throughZ into two monomor-

phisms,

X � � // Z � �
nZ // UD

there is some morphism f : D → A in C, with A ∈ A, such that
ker(Uf ·nZ) = ker(Uh ·nZ).

Lemma 2.7. For A and C as in Leading Example, every C ∈ C with a local
A-behaviour belongs to A.

Proof : Let C be an object of C with local A-behaviour. Consider an impli-
cation of I ,

(ui(x) = vi(x), i = 1, . . . , k)⇒ (u(x) = v(x)) (7)

where x = (x1, . . . ,xn), and ui(x), vi(x), u(x) and v(x) are terms on the vari-
ables x1, . . . ,xn. Given C ∈ C, let c1, . . . , cn ∈ C, and put c = (c1, . . . , cn). We
write

uC(c)

to denote the element of C obtained from u(x) by replacing every xi by ci,
and every operation symbol θ ∈ Σ by the operation θC.

Suppose that
uCi (c) = vCi (c), i = 1, . . . , k.

We want to prove that then uC(c) = vC(c). Put

X = {c1, . . . , cn} ∪ {uCi (c), i = 1, . . . , k} ∪ {uC(c), vC(c)}.
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By hypothesis we have a commutative diagram as in (6). Without loss of
generality, we may assume that all arrows denoted by ↪→ are inclusion
maps. Then,

h(uDi (c)) = uCi (h(c1), . . . , h(cn)) = uCi (c1, . . . , cn) = uCi (c),

and, analogously, h(vDi (c)) = vCi (c). Consequently, h(uDi (c)) = h(vDi (c)). Con-
sider the subset of UD given by

Z = X ∪ {uDi (c), i = 1, . . . , k} ∪ {vDi (c), i = 1, . . . , k} ∪ {uD(c), vD(c)},
and let f : D → A be as in (ii) of Definition 2.6. By hypothesis, ker(Uf ·
nZ) = ker(Uh ·nZ), then the equality h(uDi (c)) = h(vDi (c)) implies

f (uDi (c)) = f (vDi (c)).

And then, since f is a homomorphism,

uAi (f (c1), . . . , f (cn)) = vAi (f (c1), . . . , f (cn)), i = 1, . . . , k.

Hence, since A fulfils the given implication (7),

uA(f (c1), . . . , f (cn)) = vA(f (c1), . . . , f (cn)).

This is the same as f (uD(c)) = f (vD(c)). But, again by the hypothesis that
ker(Uf ·nZ) = ker(Uh ·nZ), this implies that

h(uD(c)) = h(vD(c)).

That is, taking into account (6),

uC(c) = vC(c).

3.Main result
Before stating and proving the main result, we need the following prop-

erties on right adjoints over Set. Part (a) of the lemma is showed in Manes
[10]:

Lemma 3.1. Let F a U : C→ Set be a non trivial adjunction with U faithful.
(By non trivial, we mean that there is some C ∈ C such that UC has at least
two elements.) Then:

(a) the unit η is pointwise injective and F preserves monomorphisms.

(b) If, moreover, U preserves directed colimits, then, given sets X and Z, with
X finite, and a monomorphism m : X → UFZ, there exists a finite subset E of
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Z and a monomorphism n : X → UFE such that UFd · n = m, where d is the
inclusion map of E into Z.

(c) If, in addition to the assumption of (b), F preserves intersections, then,
given sets X and Z as in (b), there is a smallest set under the conditions of the
set E.

Proof : (a) Given X ∈ Set, and two different elements x,y ∈ X, let C be
an object of C such that UC has at least two elements, a and b. Define
h : X → UC by h(x) = a and h(z) = b for all z , x. Now let h# be the
morphism in C such that h# · ηX = h. Since h(x) , h(y), then ηX(x) , ηX(y).

Let now m : X→ Y be an injective map. If X , ∅, then m is a split mono,
thus the same happens to Fm; if X = FX = ∅, Fm is clearly a monomor-
phism; if X = ∅, Y , ∅ and FX , ∅, consider the diagram

∅
η∅ //

m
��

F∅
Fm
��

Y

t
==

ηY
// FY

t#
OO

where t is any map from Y to F∅. Then we have t#Fmη∅ = t#ηYm = tm = η∅.
Thus t#Fm = idF∅, so Fm is a mono.

(b) Let Z be a set, and let Zi, i ∈ I , be the family of all finite subsets of Z.
Then we know that, by the hypothesis, for di : Zi → Z the corresponding
inclusions, the maps UFdi :UFZi→UFZ form a directed colimit (in fact,
a directed union). Hence, for m : X → UFZ with X finite, there is some
i ∈ I and a map n : X → UFZi such that UFdi · n = m. The morphism n is
clearly monomorphic.

(c) It is obvious.

Let F a U : C→ D be an adjunction between categories, with unit η. A
morphism f : X→ Y of D is said to be a trivial covering with respect to the
adjunction, if the diagram

X
ηX //

f
��

UFX
UFf
��

Y
ηY // UFY

is a pullback.
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A morphism f : X→ Y being a trivial covering just means that f is split
over the identity morphism idY : Y → Y in the sense of [5].

Theorem 3.2. Let the following diagram of functors be commutative and under
General Assumptions (see Section 2):

A
� � //
� o

  @@@@@@@@ B
U ′

!!CCCCCCCC

C
/�

??������� U // Set

Moreover, assume that:
(H0) U is non trivial, has a left adjoint F, U preserves directed colimits, F

preserves intersections, and monomorphisms are trivial covers with re-
spect to the adjunction F aU ;

(H1) U creates U -separated epimorphisms;
(H2) U ′ locally detects B-morphisms;
(H3) A is closed in C under objects with local A-behaviour.

Then, B ∈B is a subobject of some object of A whenever every finitely generated
subobject of B is so.

Proof : Let B ∈ B be such that every finitely generated subobject of B is a
subobject of some object of A. If U ′B = ∅, the fact that U ′ reflects iso-
morphisms, by (b) of Lemma 2.5, implies that B is its subobject generated
by the emptyset. Then B is trivially a subobject of an object of A. Let us
assume now that U ′B , ∅
1. An inverse limit of non-empty finite sets. Let

mX : X ↪→UFU ′B, X ∈ F,

denote all inclusions of a nonempty finite subset X into UFU ′B. This is
obviously a directed union in Set. For every X ∈ F, let EX be the smallest
(finite) subset ofU ′B such that the following diagram of monomorphisms,
with dX the corresponding inclusion map, is commutative:

X � �
nX //

u�

mX ((PPPPPPPPPPPPPPP UFEX� _

UFdX
��

UFU ′B

(1)

(The existence of this set EX is assured by the above lemma.)
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For each EX , there is a subobject BX of B generated by EX (recall that, by
Assumptions 0, B has intersections); let eX : EX → U ′BX be the inclusion
map. By hypothesis, there is some A ∈ A, with BX a subobject of A in B.
Let a : BX ↪→ A be the corresponding monomorphism, and let ā be the
unique morphism of C such that Uā · ηEX =U ′a · eX :

X� _

nX
��

φ

��

EX
� �

ηEX //
� q

eX ""FFFFFFFF
UFEX

Uā

��

U ′BX

U ′a &&NNNNNNNNNNN

U ′A =UA

(2)

Put φ =Uā ·nX , form the kernel pair of φ in Set, and take the coequalizer
cX of the composition of that kernel pair with mX :

Ker(φ) //
// X

mX //

φ
��

UFU ′B
cX // CX

A

Let now define a functor

Fop K // Set

from the dual of the directed category F, formed by all non-empty finite
subsets of U ′B and inclusions between them, to Set. For every X, KX is
the set of all kernel-pairs of maps of the form φ = Uā · nX , where A ∈ A,
and the morphisms nX : X ↪→ UFEX and ā : FEX → A are obtained as in
(2). Moreover, given an inclusion i : X ↪→ Y , Ki sends each kernel pair
of a morphism φ′ = Uã · nY : Y → UA, obtained by an anlogous way to
φ in (2), to the kernel pair of the morphism φ = φ′i : X → UA. (This last
morphism is of the formUā·nX , with ā = ã·Fu for u : EX→ EY the inclusion
map.) Since all X ∈ F are finite, the same holds to all KX. Consequently,
by the well-known result that states that the projective limit of non-empty
compact spaces is non-empty, we conclude that the limit of K is nonempty
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(being a finite set, KX is a compact discrete space). Let

(PX)X∈F

be an element of this limit. For every X ∈ F, let PX
πX2

//

πX1 //
X denote the

corresponding projections. In particular, every PX is the kernel pair of a
morphism

X
fX // UAX , with AX ∈A,

which is obtained as φ in (2). Put cX = coeq(mXπ
X
1 , mXπ

X
2 ), and let c :

UFU ′B→ C be the cointersection of all these cX .
We are going to show that the morphism

U ′B
ηU ′B // UFU ′B

c // C

is the underlying map of a monomorphism B→ C̄ in B with C̄ ∈ A, what
proves the theorem.
2. Applying (H1). The fact that (PX)X∈F ∈ LimK assures that for everyX,Y ∈
F, with X ⊆ Y , PX = PY ∩ (X ×X). Then the cointersection c : UFU ′B→ C
is of the special type described in Description 1, with Z = UFU ′B. By
definition, the family of maps

fX : X→UAX (X ∈ F)

fulfils condition (i) of Definition 2.1. Moreover, it fulfils also condition
(ii): in diagram (3), put T = FU ′B, TX = FEX , tX = FdX and hX = ā.

Therefore, by the hypothesis (H1), the regular epimorphism

c :UFU ′B→ C

which is the cointersection in Set of all coequalizers cX = coeq(mXπ
X
1 ,mXπ

X
2 )

is created by U . That is, there is a unique epimorphism c̄ : FU ′B→ C̄ in C

such that Uc̄ = c.
3. Applying (H2). We show now that the morphism

U ′B
ηU ′B// UFU ′B

Uc̄ // UC =U ′C

may be lifted to a morphism of B. SinceU ′ locally detects B-morphisms, it
suffices to show that the morphismUc̄ ·ηU ′B :U ′B→U ′C is under the con-
ditions of Definition 2.4. Let X be a finite subset of U ′B, with n : X ↪→U ′B
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the inclusion map. Then, we have the following commutative triangle:

X � � n //� t

ηX &&NNNNNNNNNNNNN U ′B � �
ηU ′B // UFU ′B

Uc̄ // UC̄ =U ′C̄

UFX =U ′FX
U ′(c̄·Fn)

33ggggggggggggggggggggggg

This diagram plays, for U ′, the role of (4) of Definition 2.4. We show
that it has the property illustrated with (5). Indeed, let u and v be two
elements of UFX, and assume that, for every morphism f : FX → A and
every monomorphism m : BX→ A in B, making the diagram

X � q

ηX ""FFFFFFFFF
� � // U ′BX

U ′m // U ′A

U ′FX
U ′f

::uuuuuuuuu

(3)

commutative, U ′f (u) = U ′f (v). We want to prove that then U (c̄Fn)(u) =
U (c̄Fn)(v).

Let Z be the set obtained from X by adding the elements u and v; more
precisely, let Z = ηX[X]∪{u, v}. In order to simplify the notation we look at
Z as a subsete ofUFU ′B. We observe that, under the present assumptions,
EZ = X. Indeed, since EZ is the smallest subset of U ′B such that there is
nZ with mZ ·UFdZ = nZ (see (1)), EX is contained in X; let i : EX → X be
the inclusion map. By hypothesis (H0), the square of the commutative
diagram

X � v

((RRRRRRRRRRRRRRRR

idX

��0
000000000000000

t

  A
A

A
A

EZ
� �

ηEZ
//

� _

i
��

UFEZ� _

UFi
��

X � �

ηX
// UFX

is a pullback. Hence, there is a map t : X→ EZ with it = idX . Since i is an
inclusion, we conclude that X = EX . Consequently, the diagram (2), for fZ
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in the place of φ, takes the following form, where ā = f :

X � o

��>>>>>>>>
� � // U ′BX

� � U ′a // UAZ =U ′AZ

Z
fZ

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee� t

''NNNNNNNNNNNN

UFX =U ′FX

Uf =U ′f

88rrrrrrrrrrrrrrrrrrrrrrrrrrr

(4)

Since the outside triangle of this diagram is of the type of (3), we are as-
suming that U ′f (u) = U ′f (v). In particular, fZ(u) = fZ(v). This implies
that cZ(UFn(u)) = cZ(UFn(v)), and, thus, U ′(c̄ ·Fn)(u) =U ′(c̄ ·Fn)(v).

Therefore, since U ′ locally detects B-morphisms, the morphism Uc̄ ·
ηU ′B :U ′B→U ′C̄ is of the form

Uc̄ · ηU ′B =U ′ĉ for some ĉ : B→ C̄.

4. We prove that U ′ĉ is a monomorphism. Since U ′ is faithful, it follows
that ĉ is also a monomorphism. Let u, v ∈ U ′B, and put X = {u,v}. The
finite set X is, up to isomorphism, a subset of UFU ′B, via the universal
map ηU ′B. And the corresponding EX coincides with X because X ⊆ U ′B
(the argument being the same as the one in part 3 to show that EZ = X).
We know that c · ηU ′B(u) = c · ηU ′B(v) iff fX · ηU ′B(u) = fX · ηU ′B(v) . But,
since X = EX , we have that the morphism fX , obtained as φ in (2), is of
the form fX =UānX =UāηX =U ′aeX Thus, fX is indeed a monomorphism.
Consequently, c · ηU ′B(u) = c · ηU ′B(v) iff u = v.
5. Applying (H3). Finally, we prove that C̄ belongs to A, what finishes
the proof of the theorem. For that, taking into account hypothesis (H3), it
suffices to show that C̄ has a local A-behaviour. Given a nonempty finite
subset X of C = UC̄, form the pullback of the inclusion map k : X ↪→ C
and c :UFU ′B→ C =UC̄:

X̄
� � k̄ //

r
��

UFU ′B
c
��

X � � k // C
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Since we are in Set, c is a split epimorphism, and so is r. Hence, there is
some s : X→ X̄ such that rs = idX . Then the map

(mX : X→UFU ′B) = ( X � � s // X̄
� � k̄ // UFU ′B )

may be seen as the inclusion mX of X into UFU ′B. Moreover, k = krs =
ck̄s = cmX . Hence, for EX defined as in (1), we have the following commu-
tative diagram:

X � r

mX

$$HHHHHHHHHH

� � k //

l�

nX

��55555555555555555 C =UC̄

UFU ′B

Uc̄
88ppppppppppp

UFEX
?�
UFdX

OO
Uh

@@�������������������

with h = c̄FdX . The outside triangle plays the role of triangle (6). Let
now have a finite set Z such that nX factors as a composition of monomor-

phisms through Z, say X � � // Z � �
nZ // UFEX . Without loss of generality,

we may consider the first monomorphism as an inclusion ofX into Z ans Z
a subset of UFU ′B. Then, clearly, we have EZ = EX . Consequently, there is
a homomorphism ā : FEX = FEZ → AZ such that fZ =Uā·nZ . It follows that
Ker(Uā·nZ) = Ker(Uh·nZ). Indeed, Given u,v ∈ Z,Uā·nZ(u) =Uā·nZ(v) iff
fZ(u) = fZ(v), which is equivalent to have cZ(u) = cZ(v), and, then, equiv-
alent to Uc̄(u) = Uc̄(v). And, finally, since UFdX · nZ is the inclusion of Z
into B, the last equality is equivalent to (Uh ·nZ)(u) = (Uh ·nZ)(v).

Therefore, by hypothesis (H3), A ∈ C, and this finishes the proof.
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[1] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley &

Sons, New York 1990. Freely available at www.math.uni-bremen.de/acc/acc.pdf
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