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ABSTRACT: Following the results obtained in Preord and in Cat, we characterize
the effective étale-descent morphisms in M-Ord, the category of M-ordered sets for
a given monoid M. Furthermore we show that in M-Ord every effective descent
morphism is effective for étale-descent (while the converse is false), and we generalize
it to a more general context of relational algebras.

1. Introduction

In [10] G. Janelidze and M. Sobral gave a complete characterization of the
morphisms in the category Preord of preordered sets which are effective for
descent with respect to the class of étale morphisms, i.e., discrete fibrations.
In [14] M. Sobral characterized the effective descent morphisms in the cate-
gory Cat of small categories with respect to the class of discrete fibrations.
These two works suggested the study of descent theory for the class of étale
morphisms in M-Ord, the category of M-ordered sets for a given monoid
M.

In this paper we give a complete characterization of the effective étale-
descent morphisms in M-Ord. This characterization allows us to state that
an effective descent morphism in M-Ord is effective for étale-descent. The
converse is false and we give an appropriate counter-example in the surjec-
tive case. Being M-Ord presented as a category of relational algebras, we
conclude investigating the relation between effective descent and effective
étale-descent morphisms in RelAlg(T), the category of relational algebras
for a suitable monad T.
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2. Basic notions and results

Given a monoid (M, o, ey;), consider the monad

M = (M x (=), p;n)

on Set, with ux : M x M x X — M x X defined by (m,n,z) +— (momn,x)
and nx : X = M x X by z = (e, x), for each set X. The Barr extension
[1] M : Rel — Rel is an extension of the monad M, and it is given by

(m,z)(Mr)(n,y) <= m=n and z(r)y,

where 7 : X — Y is a relation, x € X, y € Y, and m,n € M. The category
Alg(M, 2) of reflexive and transitive (M, 2)-algebras is the category M-Ord
of M-ordered sets and equivariant maps. For a relation a : M x X — X one
writes # = y instead of (m,x)(a)y, that is z is related to y with weight m.
As remarked in [2, Section V.1.4], this arrow notation for the structure of
an (M, 2)-category (X, a) emphasizes that X is actually the object set of a
small category, denoted again by X, with hom-sets

X(z,y) ={(z,my)[meM and z =y}

for x,y € X; moreover this small category comes equipped with a faithful
functor

p: X > M, (xr,m,y)—m,

with M considered as a one-object category. In this direction identity mor-
phisms and composition in an M-ordered set X are given by

™My and (z5y & yo =12 2),
while a morphism f : X — Y must satisfy
z =y = f(z) = f(y)

for all z,y € X and m € M. Defining a norm to be a functor from the
small category X to the monoid M, [2, Proposition 1.4.2] actually reveals
that M-ordered sets can be identified as those small categories over M whose
norm is faithful.

Now let E be the class of étale morphisms in M-Ord. As introduced in [5],
the étale morphisms in the context of relational algebras are defined as the
pullback stable discrete fibrations. For a cartesian monad, as M is, discrete
fibrations are pullback stable, hence étale morphisms and discrete fibrations
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coincide. Using the arrow notation, an equivariant map f : X — Y in
M-Ord is then an étale morphism if and only if:

Vig € X, Yy €Y, Vme M :y1 5 flag) = oy € f ) s 21 > 0.

The problem concerning the characterization of effective étale-descent mor-
phisms in M-Ord can be stated as follows: given an equivariant map p : £ —
B of M-ordered sets, denote by E(B) the slice category of étale morphisms
over B and by p* : E(B) — E(F) the pullback functor along p. We have
then a commutative (up to isomorphism) diagram

Desg(p)

E(B) A
N
E(E)

where Desg(p) is the category of E-descent data for p, and U? and K? are
the forgetful and the comparison functor, respectively. By definition, the
equivariant map p : E — B is an (effective) étale-descent morphism if the
comparison functor K7 is full and faithful (an equivalence of categories). For
a more accurate understanding of descent theory we refer the reader to the
papers [11] and [12]. Following the results given in [9] and [10] for Preord
and in [14] for Cat, we are going to give a complete characterization of
effective étale-descent morphisms in M-Ord.

3. The equivalence of (indexed) categories

The first step to reach such a characterization is to generalize to M-Ord
the standard equivalence of categories E(B) ~ Set””| given in [8, Chapter
13, Proposition 30], for E the class of discrete fibrations in Graph, Cat or
Grpd.

Proposition 3.1. Let E be the class of étale morphisms in M-Ord, and let
B be an M-ordered set. Then the categories E(B) and Set?” are equivalent.

Proof. We start by defining a functor F : E(B) — Set””. Given an étale
morphism f : A — B, the functor F(f) : B> — Set is described as follows:
each element b € B is mapped to

F(f)(b) = f(b) ={a€ A f(a) = b}
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m

and, given an element a € F(f)(b), if ¥ — b in B then, by definition of
étale morphism, there exists a unique a’ € f~(b') such that o’ = a. Hence
the assignment a — o defines the function from the set F'(f)(b) to the set
F(f)(t'). Remark that we may have F'(f)(b) = () for some b € B, in which
case every b 25 b is represented by the empty function § — F(f)(b). If
g : C — B is another étale morphism over A with corresponding functor
F(g), and if h : A — C is an equivariant map such that g o h = f, then h
induces functions hy : F'(f)(b) — F(g)(b); the family {h; }sep defines actually
a natural transformation F'(f) = F(g).
Conversely, we define now a functor G : Set”” — E(B). Given a : B%® —
Set, define an étale morphism over B in the following way: the objects of
the domain B, are the pairs (b,v), where b € B and v in an element of the
set a(b), while there is a morphism from (b,v) to (¢/,v'), say (m,a(m)), if
b5 b in B for m € M and a(m) : a(¥) = «(b) maps v’ — v. The domain
Ea comes equipped with an M-valued norm, i.e., a functor Ea — M, defined
via

(b, v) T G Y s (e T e,
This functor is faithful making B, an M-ordered set. Then the morphism
G(a) : By — B defined via

(m,a(m)) o NN

(byv) —= (b,v") — (b = b)
gives rise to an étale morphism. If o/ : B°® — Set is another functor and
B : a = ¢ is a natural transformation between them, given by functions
{By : a(b) — &'(b)}ren, we get an equivariant map G(5) : B, — Bu by
mapping

(ma(m)) oy (ma'(m)) 0y /
(b,v) ———= (U, v") — (b, Bp(v)) ———= (', By (V")).

This G(8) defines a morphism in E(B), giving then the claimed functor
G : Set?” — E(B).
It is straightforward to verify that I’ o G is naturally isomorphic to 1g,ser
and that G o F' is naturally isomorphic to 1gp,.

In [12] the general framework of descent theory given in Section 2 is genera-
lized to a context of C-indexed categories, i.e., pseudo-functors A : C? —
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CAT, for a given category C with pullbacks. Given then a C-indexed cate-
gory A : C°? — CAT described by

X|—>AX
f] lf*
Y — AY,

let p: E — B be a morphism in C and let Fq(p) be the internal category in
C induced by the kernel pair of p

23 2

13 e
ExgpE xpE —FExgpFE~<~—0F,

_— e

12 T

with e =< 1p, 1 >. The factorization of p through Fq(p)

5 Eq(p)
/ \
E B,

p

where ¢ and P are internal functors given respectively by dg = 1z and 6; = e,
Do = p and p; = pm = pme, gives rise to a commutative (up to natural
isomorphism) diagram in CAT

Desy

()
;5/ szﬁ*
AF p AP

where
Desy (p) := AF1P)

is the category of A-descent data relative to p. By definition p is called an
(effective) A-descent morphism if the comparison functor K? = p* is full and
faithful (an equivalence of categories).

The equivalence stated in Proposition 3.1 turns out to be an equivalence of
M-Ord-indexed categories, which is crucial for our purpose. In fact we prove
now a general result which can be applied in our case.

Theorem 3.2. Let C be a category with pullbacks and let A and B be two
C-indexed categories. If A and B are equivalent as C-indexed categories,
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then a morphism p : E — B in C 1is (effective) for A-descent if and only if
it is (effective) for B-descent.

Before proving the theorem we just recall that by an equivalence of C-
indexed categories we mean an indexed functor F': A — B, in the sense of
[13, Section 3], in which each functor Fx : AX — B, for X € Ob(C), is an
equivalence of categories.

Proof. Let A,B : C — CAT be two C-indexed categories described

respectively by

X'—>AX X'_>IBX
fT lf& fT lfﬁf

with corresponding natural isomorphisms
i Idyx — (1x)y  dp o Idgx — (1x)h

il frgn = (9f)s A7 fags — (9%,

and let F' be an equivalence of C-indexed categories from A to B given by
the following data:

(a) for each object X in C, an equivalence of categories F : AX — B¥,
(b) for each morphism f :Y — X in C, a natural isomorphism

Ty fgo Fx = Fy o fy,
such that, for each pair of composable morphisms Z % Y i> X, the diagram

IBTf Tofa

9pfet’x — gpFv fa — Fz9, fa
i87 Fx l l Fzjf?
(f9)aFx Fy(f9);

commutes. We show how to construct an equivalence ® : Desy (p) — Desg(p)
between the categories of descent data of A and B. Given an object (A,¢)
in Desy(p), where A is an object in A¥ and £ : w5, — @}, is a morphism in
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AP*BE guch that the diagrams

epmy, A

epmy, A

(a4 (a4

* * =
Ty, M1, A —= Ty, 75, A

2 e

* * * *
T3, T2, A T, 1, A

I
I

7Tl3A7T2AA ? 7T13A7T1AA
135

commute respectively in AF and in AP*8EX8E e define ®(A, €) := (Fg(A),§),
where £ is defined by the following diagram

A

Fryi(m, (A)) <2 75, (Fu(A))
FEXBE(&)‘L lg
Fopi(, (A) —— 71, (Fu(A)).

7l

One can verify that £ is actually a descent data for F(A).
We define now ® on morphisms. Given h: (A4,¢&) — (A, &) in Desa(p), that
is a morphism h: A — A’ in A¥ such that the diagram

commutes in AP*B" define

®(h) := F(h) : F(A) — Fp(4).
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One can easily verify that the diagram

. w%‘BFE(h) . ,

e| |7

WTBFE(A) WTBFE(A/)

Ty Fe(h)

commutes in BE*5E,

The equivalence of categories ® makes the following diagram commutative
up to isomorphism

p

KA
AB — Desy(p)

W e

BY —~ Desp (),

B

allowing us to conclude that the morphism p : £ — B in the category C is
(effective) for A-descent if and only if it is (effective) for B-descent. O

This general result can be applied in our context of M-ordered sets as clai-
med. In fact, given A, B : M-Ord®® — CAT defined respectively by

X —E(X) X — Set*”
f] lf* f] lSethp
Yy —E(Y) Y — Set"”,

where [E is the class of étale morphisms in M-Ord, f* is the pullback functor
and Set’/” is the composition functor, using Proposition 3.1 one can verify
that there exists an equivalence of M-Ord-indexed categories from A to B.
Thanks to Theorem 3.2 we can then state that an equivariant mapp: £ — B
in M-Ord is an effective A-descent morphism, i.e., it is effective for étale-
descent, if and only if it is an effective B-descent morphism.

4. The characterization of effective étale-descent morphisms

The category Desg(p) can be described as the category of pairs (X, ) where
X : E® — Set is a functor and & = (&.¢)eecrxyr 15 a family of functions
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Eeo t X(€') = X (e) defined for e, ¢’ € E with p(e) = p(¢’) such that

ge,e — 1X(e) fe’,e” o ge,e’ — ge,e”a
for each e, €', ¢’ € F with p(e) = p(¢’) = p(€”), and each diagram

/ 560’66
X(ep) — X(eo)
X (e} i)eo)l lX(elihao)
X(e}) — X(e)

commutes for all €] = e} and e; > ¢y in E with m € M, p(ey) = p(e}) and
p(e1) = p(e}). The comparison functor

K% : Set?™ — Desg(p)

is given by
G— (Gop™, 1),
where 1 is the family of identity morphisms 1. : G(p(e)) — G(p(¢€')).
The internal category Eq(p) in M-Ord can be presented as a double category
in the following way:
(1) objects are elements of F;
vertical arrows are morphisms of E, that is ey — e1;

(2)
(3) horizontal arrows are elements of F X p E;
(4) squares of 2-cells are morphisms of F x g F/, that is squares of the form

ey) — €

o

€1 — e

for eg, ef, e1,€; in E with p(eg) = plep), pler) = p(e}) and eg = e1,
ey ¢} in E for m € M.
This allows us to present an object (X, ) of the category Desg(p) as a double

functor from the double category Eq(p) to the double category S(Set) of
commutative squares in Set. The functor

S : CAT — DoubleCAT,
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which sends each category C to the double category of commutative squares
of C, has a left adjoint Z described in [10, section 1] as a quotient of a
pushout. The category Z(Eq(p)) can be then contructed as follows. Consider

e Fq(p)o to be the discrete category with objects as in Eq(p);

e Fq(p), and Eq(p), to be categories with the same objects and the
morphisms to be, respectively, the horizontal and the vertical arrows
of Eq(p);

e Fq(p)s the pushout in Cat of the embeddings Eq(p)o — Fq(p), and
Eq(p)o — Eq(p)s;

then, for every square of 2-cell in Eq(p)

e1 — e}
the pairs
eo) —= € el
| |
e} €1 —= ¢}

become morphisms in Fq(p), from e to €}, and we construct Z(Eq(p)) as

the quotient category Eq(p);/ ~ under the smallest equivalence relation ~
for which

e) —= e}, €o
lm ~ [m
/ /
61 61—>€1,

for all such pairs. Observe that a morphism in Z(Fq(p)) from a point ey to a
point €/, can be then given by an equivalent class of a morphism in Eq(p).,
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say an n-zigzag z

eo — €
lml
€1 — ¢}
ez — ¢€h
|
- —
|
|
N
——— >
/
en—>€n
. mi4+1 . .
where p(e;) = p(e;) fori =0,--- ,n,and ¢, — ¢;;1in Ffori =0, --- ,n—1.

The notation for such an n-zigzag as above will be z = [e,,, €/ |m,, - - - m1[eg, €p).
The equivariant map p : E — B can be then factorized in Cat through the

category Z(Eq(p))

Z(Eq(p))

where 1 is defined as the identity on objects and ¥(ey —» e1) = [eg — €;] on
morphisms, while ¢ on objects acts as p and the image of an equivalent class
of an n-zigzag z = [e,, €, |m,, - - - mq|eo, €] via @ is

My O---0Mm1 (G;L)

¢([2]) = pleo) = pley) == -+ = p(e,) = pleo)
Thanks to the adjoint situation

Z

CAT “L_DoubleCAT
S
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an object (X, &) of Desg(p), i.e., a double functor from Eq(p) to S(Set), is
the same as a functor from Z(Eq(p)) to Set, and the diagram

KP
Set?” - Desg(p)

Set’k ;/Ufé?

Set””

can be identified, up to equivalence, to the diagram

Set?” Set” SetZ(Ea(p)®
Setp.\* o @
Set™ .

This allows us to state that a morphism p : £ — B in M-Ord is effective
for étale-descent if and only the functor Set?” : Set?” — Set?(FiP)™ ig
an equivalence of categories. The general argument given in [14, Theorem 2]
can be applied in our situation.

Theorem 4.1. An equivariant map p : E — B is an effective étale-descent
morphism in M-Ord if and only if ¢ : Z(Eq(p)) — B is a full and faithful
lax epimorphism in Cat.

Corollary 4.2. An equivariant map p : E — B is an effective étale-descent
morphism in M-Ord if and only if

(a) for each p(e) LA p(e') in B with k € M there exists a zigzag z =
len, eLlmy, - - myleg, ep] in Z(Eq(p)) with k = my, o---omq, and such
a zigzag 1s unique up to equivalence;

(b) every point b € B is in relation to a point of the image via a right-
invertible element of the monoid, 1.e., for each b € B there existe € F,
n,m € M such that p(e) = b and b ™ p(e) with nom = ey;.

Remarks 4.3.

(1) The uniqueness (up to equivalence) for zigzags in the condition (a)
of Corollary 4.2 comes from the faithfulness of the morphism ¢ :
Z(FEq(p)) — B in Theorem 4.1. This condition can be expressed
by the fact that Z(Fq(p)) is an M-ordered set: consider the following
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(commutative) diagram

Z(Eq(p)) . B
M
where g : B — M is the faithful M-valued norm of the M-ordered set
B. The morphism ¢ is faithful if and only if the M-valued norm qo ¢
for Z(FEq(p)) is faithful.

(2) The characterization of the effective étale-descent morphisms leads to
the characterization of the morphisms which are effective for descent
with respect to the class of discrete op-fibrations F. In fact the dual of
Proposition 3.1 states that the slice category F(B) is equivalent to the
category Set?, for a given M-ordered set B. Being also an equivalence
of M-Ord-indexed categories, we conclude that the effective descent
morphisms in M-Ord with respect to the classe of discrete fibrations,
i.e., étale maps, and discrete op-fibrations are the same by the fact
that ¢ is a full and faithful lax epimorphism if and only if the same
holds for ¢°P.

(3) Of course we get also a characterization of the étale-descent morphisms,
that is the morphisms for which the functor Set?” is full and faithful.
They are precisely the morphisms for which condition (b) of Corollary
4.2 is satisfied [14, Theorem 1, Corollary 3].

(4) As remarked in [2, Remarks 1.4.3, (2)], in the trivial case M = 1
everything collapses to Preord, also identified as the full subcate-
gory of Cat given by small categories X for which X — 1 is faith-
ful. Because of that, the characterization of (effective) étale-descent
morphisms in M-Ord generalizes the characterization of (effective)
étale-descent morphisms in Preord given in [10].

5. Effective descent and effective étale-descent morphisms
in M-Ord

A morphism p : F — B in a category C with pullbacks is called an
effective descent morphism if the pullback functor p* : C | B —- C | F
is monadic. A complete characterization of the effective descent morphisms
in M-Ord is given in [6, Theorem 1.8]. They are the equivariant maps
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p : E — B satisfying the following condition: for each by, b;,by € B such
that by — b, — by, for m,n € M, there exist ep,e;,e3 € F such that

p(e()) = b07p(€1) — blap(eQ) == b2 and
€0 ﬁ) €1 g €9.

Lemma 5.1. If p : E — B is an effective descent morphism, then every
2-zigzag in Z(Eq(p)) is equivalent to a 1-zigzag.
t

Proof. Let [t,€e'[n]z, y]mle, x] be a 2-zigzag in Z(FEq(p)). Take by = p(e) =
p(x), b1 = p(y) = p(2) and by = p(t) = p(e'); then

bo = by = bs.

Since p is effective descent, by definition there exist ey, e1,es € E such that
p(e()) = b07p(€1) — blap(eQ) = b2 and

m n
ey — €1,e1 — €9.
After that we have

[t, ¢'Inlz, ylmle,x] ~ [t,€[nles, 2]y, e1]m[e, x]
~ [t,€][ea, t](n o m)|[x, eg)[e, 7]

~ ez, €[(nom)[e, eg]
as claimed. ]
Lemma 5.2. The morphism p : Z(Eq(p)) — B is faithful on 1-zigzags.

Proof. Let [y, €'|m[e, x] and [v, €'|n[e, u] be two 1-zigzags in Z(FEq(p)) such
that m = n. Then by construction of the category Z(FEq(p)) they are equi-
valent; in fact

[y, 'lmle, z] ~ [v, €[y, v]mle, x] ~ [v, € m|x, u]le, z] ~ [v, €'lm]e, u]

as desired. ]

The following theorem is an immediate consequence of Lemma 5.1, Lemma
5.2 and of fact that an n-zigzag in Z(Eq(p)) is a composition of n 1-zigzags.

Theorem 5.3. Fvery effective descent morphism in M-Ord is effective for
étale-descent.
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Effective descent morphisms are necessarly surjective, while there are non-
surjective effective étale-descent morphisms in M-Ord. Hence the converse
of Theorem 5.3 is false. For surjective maps the problem is more interesting,
although thr answer is the same. An appropriate counter-example in the
surjective case of Theorem 5.3 can be given as follows. Let p : E — B be
the following equivariant map:

€0 bo
€11 €12 LN by
€2 b2

where p(eg) = by, p(e11) = p(e12) = by and p(es) = by. By Corollary 4.2, an
easy inspection reveals that p is effective for étale-descent but it is not an
effective descent morphism.

6. Effective descent and effective étale-descent morphisms
in categories of relational algebras

Theorem 5.3 can be generalized to a larger context of relational algebras,
including also the known results given in [11] for Top = RelAlg(U), where
U is the ultrafilter monad, and in [10] for Preord = RelAlg(I), where I is
the identity monad.

Recall that a functor T : Set — Set has the Beck-Chevalley (BC) property
(in the sense of [4]), if T preserves (BC)-squares, where a (BC)-square is a
diagram

W x
h lf

Z—9>Y

such that f°o g = ko h°, with f° and h° the opposite relations of f and A,
respectively.

Theorem 6.1. [3, Theorem 2.4] Let T = (T, u,n) be a monad on Set and
T its Barr extension. Assume that every naturality square of n with respect
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to relations with finite fibres is a (BC)-square. Then the following conditions
are equivalent, for a morphism f : (X,a) — (Y,b) in RelAlg(T):

(i) f is final;
(ii) f is a pullback stable reqular epimorphism in RelAlg(T);
(iii) f is a descent morphism in RelAlg(T).

Theorem 6.2. [6, Proposition 5.2] Let T = (T, j1,1) be a monad on Set and
T its Barr extension. Given a pullback diagram in RelAlg(T)

X xy 7227
7T1l lg
X Y,

with f a final morphism:
(a) If m is a discrete (co)fibration, then g is a discrete (co)fibration.

(b) If w1 has closed image, then g has closed image.
(¢c) If w1 has separated fibres, then g has separated fibres.

Theorem 6.3. Let T = (T, 11, m) be a monad on Set and T its Barr exten-
sion. Let RelAlg(T) the category of relational T-algebras (or lax algebras,
or (T, 2)-categories, see [4] and [7]). If T satisfies the following conditions:
(1) T has the (BC) property,
(2) n has (BC) for relations with finite fibres,

an effective descent morphism p : E — B in RelAlg(T) is effective for
étale-descent.

Proof. Let p: E — B be an effective descent morphism in RelAlg(T). We
use [11, Proposition 2.6] to show that p is also effective with respect to the

class of étale morphisms, i.e., pullback stable discrete fibrations. Consider
then a pullback diagram in RelAlg(T)

EXBA&A
7T1l lg
E——— B,

where m; is an étale morphism. The relational structure on

ExpA={(e,a) e Ex Alp(e) =ala)}
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is defined by
w—(e,a) <= Tm(w) > e and Tm(w)— a,

for any w € T(E xp A) and (e,a) € E xg A. We want to prove that g is an
étale morphism as well.

By Theorem 6.1 and Theorem 6.2(a), ¢ is a discrete fibration. To prove that
every pullback of g is a discrete fibration we consider the following diagram

2

EXBA A
pr2
U XXBA g
pri
Ve
el
XXBE ; X

where the three faces are pullbacks. We want to prove that pry is a discrete
fibration. First of all observe that since effective descent morphisms are
pullback stable 7} is an effective descent morphism. Building the pullback
on the left-side, i.e., the pullback of m along 73, by universality we get a
cube such that all faces are pullbacks.

2

EXBA A

pry
m pro

(XXBE)XE(EXB )—>X><BA g

pry F

2 LT

X xpFE X

U1

Now, since 7 is an étale morphism, prj is a discrete fibration and, using
the same argument that we used to prove that g is a discrete fibration, we
conclude that pry is a discrete fibration as well. [l
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