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Abstract: Following the results obtained in Preord and in Cat, we characterize
the effective étale-descent morphisms inM -Ord, the category ofM -ordered sets for
a given monoid M . Furthermore we show that in M -Ord every effective descent
morphism is effective for étale-descent (while the converse is false), and we generalize
it to a more general context of relational algebras.

1. Introduction

In [10] G. Janelidze and M. Sobral gave a complete characterization of the
morphisms in the category Preord of preordered sets which are effective for
descent with respect to the class of étale morphisms, i.e., discrete fibrations.
In [14] M. Sobral characterized the effective descent morphisms in the cate-
gory Cat of small categories with respect to the class of discrete fibrations.
These two works suggested the study of descent theory for the class of étale
morphisms in M -Ord, the category of M -ordered sets for a given monoid
M .
In this paper we give a complete characterization of the effective étale-

descent morphisms in M -Ord. This characterization allows us to state that
an effective descent morphism in M -Ord is effective for étale-descent. The
converse is false and we give an appropriate counter-example in the surjec-
tive case. Being M -Ord presented as a category of relational algebras, we
conclude investigating the relation between effective descent and effective
étale-descent morphisms in RelAlg(T), the category of relational algebras
for a suitable monad T.
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2. Basic notions and results

Given a monoid (M, ◦, eM), consider the monad

M = (M × (−), µ, η)

on Set, with µX :M ×M ×X → M ×X defined by (m, n, x) 7→ (m ◦ n, x)
and ηX : X → M ×X by x 7→ (eM , x), for each set X. The Barr extension
[1] M : Rel → Rel is an extension of the monad M, and it is given by

(m, x)(Mr)(n, y) ⇐⇒ m = n and x(r)y,

where r : X → Y is a relation, x ∈ X, y ∈ Y , and m, n ∈ M . The category
Alg(M, 2) of reflexive and transitive (M, 2)-algebras is the category M -Ord
of M -ordered sets and equivariant maps. For a relation a :M ×X → X one
writes x

m
−→ y instead of (m, x)(a)y, that is x is related to y with weight m.

As remarked in [2, Section V.1.4], this arrow notation for the structure of
an (M, 2)-category (X, a) emphasizes that X is actually the object set of a
small category, denoted again by X, with hom-sets

X(x, y) = {(x,m, y) | m ∈M and x
m
−→ y}

for x, y ∈ X; moreover this small category comes equipped with a faithful
functor

p : X →M, (x,m, y) 7→ m,

with M considered as a one-object category. In this direction identity mor-
phisms and composition in an M -ordered set X are given by

x
eM−→ x and (x

m
−→ y & y

n
−→ z =⇒ x

n◦m
−−→ z),

while a morphism f : X → Y must satisfy

x
m
−→ y =⇒ f(x)

m
−→ f(y)

for all x, y ∈ X and m ∈ M . Defining a norm to be a functor from the
small category X to the monoid M , [2, Proposition 1.4.2] actually reveals
thatM -ordered sets can be identified as those small categories overM whose
norm is faithful.
Now let E be the class of étale morphisms inM -Ord. As introduced in [5],

the étale morphisms in the context of relational algebras are defined as the
pullback stable discrete fibrations. For a cartesian monad, as M is, discrete
fibrations are pullback stable, hence étale morphisms and discrete fibrations
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coincide. Using the arrow notation, an equivariant map f : X → Y in
M -Ord is then an étale morphism if and only if:

∀x0 ∈ X, ∀y1 ∈ Y, ∀m ∈M : y1
m
−→ f(x0) =⇒ ∃!x1 ∈ f−1(y1) : x1

m
−→ x0.

The problem concerning the characterization of effective étale-descent mor-
phisms inM -Ord can be stated as follows: given an equivariant map p : E →
B of M -ordered sets, denote by E(B) the slice category of étale morphisms
over B and by p∗ : E(B) → E(E) the pullback functor along p. We have
then a commutative (up to isomorphism) diagram

E(B)

p∗ ##HH
HH

HH
HH

H

Kp
// DesE(p)

Upyyttttttttt

E(E)

where DesE(p) is the category of E-descent data for p, and Up and Kp are
the forgetful and the comparison functor, respectively. By definition, the
equivariant map p : E → B is an (effective) étale-descent morphism if the
comparison functor Kp is full and faithful (an equivalence of categories). For
a more accurate understanding of descent theory we refer the reader to the
papers [11] and [12]. Following the results given in [9] and [10] for Preord
and in [14] for Cat, we are going to give a complete characterization of
effective étale-descent morphisms in M -Ord.

3. The equivalence of (indexed) categories

The first step to reach such a characterization is to generalize to M -Ord
the standard equivalence of categories E(B) ≃ SetB

op

, given in [8, Chapter
13, Proposition 30], for E the class of discrete fibrations in Graph, Cat or
Grpd.

Proposition 3.1. Let E be the class of étale morphisms in M-Ord, and let
B be an M-ordered set. Then the categories E(B) and SetB

op

are equivalent.

Proof. We start by defining a functor F : E(B) → SetB
op

. Given an étale
morphism f : A → B, the functor F (f) : Bop → Set is described as follows:
each element b ∈ B is mapped to

F (f)(b) = f−1(b) = {a ∈ A | f(a) = b}
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and, given an element a ∈ F (f)(b), if b′
m
−→ b in B then, by definition of

étale morphism, there exists a unique a′ ∈ f−1(b′) such that a′
m
−→ a. Hence

the assignment a 7→ a′ defines the function from the set F (f)(b) to the set
F (f)(b′). Remark that we may have F (f)(b) = ∅ for some b ∈ B, in which

case every b′
m
−→ b is represented by the empty function ∅ → F (f)(b′). If

g : C → B is another étale morphism over A with corresponding functor
F (g), and if h : A → C is an equivariant map such that g ◦ h = f , then h
induces functions hb : F (f)(b) → F (g)(b); the family {hb}b∈B defines actually
a natural transformation F (f) ⇒ F (g).
Conversely, we define now a functor G : SetB

op

→ E(B). Given α : Bop →
Set, define an étale morphism over B in the following way: the objects of
the domain B̃α are the pairs (b, v), where b ∈ B and v in an element of the
set α(b), while there is a morphism from (b, v) to (b′, v′), say (m,α(m)), if

b
m
−→ b′ in B for m ∈ M and α(m) : α(b′) → α(b) maps v′ 7→ v. The domain

B̃α comes equipped with anM -valued norm, i.e., a functor B̃α →M , defined
via

(b, v)
(m,α(m))
−−−−−→ (b′, v′) 7→ (•

m
−→ •).

This functor is faithful making B̃α an M -ordered set. Then the morphism
G(α) : B̃α → B defined via

(b, v)
(m,α(m))
−−−−−→ (b′, v′) 7→ (b

m
−→ b′)

gives rise to an étale morphism. If α′ : Bop → Set is another functor and
β : α ⇒ α′ is a natural transformation between them, given by functions
{βb : α(b) → α′(b)}b∈B, we get an equivariant map G(β) : B̃α → B̃α′ by
mapping

(b, v)
(m,α(m))
−−−−−→ (b′, v′) 7→ (b, βb(v))

(m,α′(m))
−−−−−→ (b′, βb′(v

′)).

This G(β) defines a morphism in E(B), giving then the claimed functor
G : SetB

op

→ E(B).
It is straightforward to verify that F ◦ G is naturally isomorphic to 1

Set
Bop

and that G ◦ F is naturally isomorphic to 1E(B). �

In [12] the general framework of descent theory given in Section 2 is genera-
lized to a context of C-indexed categories, i.e., pseudo-functors A : Cop →
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CAT, for a given category C with pullbacks. Given then a C-indexed cate-
gory A : Cop → CAT described by

X
� //

AX

f∗

��

Y

f

OO

� // AY ,

let p : E → B be a morphism in C and let Eq(p) be the internal category in
C induced by the kernel pair of p

E ×B E ×B E

π23 //
π13 //

π12
// E ×B E

π2 //

π1
// E,

eoo

with e =< 1E, 1E >. The factorization of p through Eq(p)

Eq(p)
p

""FF
FF

FF
FF

F

E

δ
<<yyyyyyyyy

p
// B,

where δ and p are internal functors given respectively by δ0 = 1E and δ1 = e,
p0 = p and p1 = pπ1 = pπ2, gives rise to a commutative (up to natural
isomorphism) diagram in CAT

DesA(p)
δ∗

zzvvvvvvvvv

AE A
B,

p∗
oo

Kp=p∗
ddIIIIIIIII

where

DesA(p) := A
Eq(p)

is the category of A-descent data relative to p. By definition p is called an
(effective) A-descent morphism if the comparison functor Kp = p∗ is full and
faithful (an equivalence of categories).
The equivalence stated in Proposition 3.1 turns out to be an equivalence of
M -Ord-indexed categories, which is crucial for our purpose. In fact we prove
now a general result which can be applied in our case.

Theorem 3.2. Let C be a category with pullbacks and let A and B be two
C-indexed categories. If A and B are equivalent as C-indexed categories,
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then a morphism p : E → B in C is (effective) for A-descent if and only if
it is (effective) for B-descent.

Before proving the theorem we just recall that by an equivalence of C-
indexed categories we mean an indexed functor F : A → B, in the sense of
[13, Section 3], in which each functor FX : AX → B

X , for X ∈ Ob(C), is an
equivalence of categories.
Proof. Let A,B : Cop → CAT be two C-indexed categories described
respectively by

X
� //

AX

f∗

A

��

X
� //

BX

f∗

B

��

Y

f

OO

� //
AY Y

f

OO

� //
BY

with corresponding natural isomorphisms

iXA : IdAX → (1X)
∗
A iXB : IdBX → (1X)

∗
B

jf,g
A

: f ∗
Ag

∗
A → (gf)∗A jf,g

B
: f ∗

Bg
∗
B → (gf)∗B,

and let F be an equivalence of C-indexed categories from A to B given by
the following data:

(a) for each object X in C, an equivalence of categories FX : AX → BX ,
(b) for each morphism f : Y → X in C, a natural isomorphism

τf : f
∗
B ◦ FX ⇒ FY ◦ f ∗

A,

such that, for each pair of composable morphisms Z
g
−→ Y

f
−→ X, the diagram

g∗
B
f ∗
B
FX

j
g,f
B
FX

��

g∗
B
τf

// g∗
B
FY f

∗
A

τgf
∗

A // FZg
∗
A
f ∗
A

FZj
g,f
A

��

(fg)∗
B
FX τfg

// FZ(fg)
∗
A

commutes. We show how to construct an equivalence Φ : DesA(p) → DesB(p)
between the categories of descent data of A and B. Given an object (A, ξ)
in DesA(p), where A is an object in AE and ξ : π∗2A → π∗1A is a morphism in
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AE×BE such that the diagrams

e∗
A
π∗2AA

∼= ##GGGG
GGGG

G

e∗
A
ξ

// e∗
A
π∗1AA

∼={{wwwwww
www

A

π∗23Aπ
∗
1AA

∼= // π∗12Aπ
∗
2AA

π∗

12A
ξ

&&MMMMMMMMMMM

π∗23Aπ
∗
2AA

∼= &&MMMMMMMMMMM

π∗

23A
ξ 88qqqqqqqqqqq

π∗12Aπ
∗
1AA

π∗13Aπ
∗
2A
A

π∗

13A
ξ
// π∗13Aπ

∗
1A
A

∼=

88qqqqqqqqqqq

commute respectively inA
E and in A

E×BE×BE, we define Φ(A, ξ) := (FE(A), ξ),
where ξ is defined by the following diagram

FE×BE(π
∗
2A(A))

FE×BE
(ξ)

��

π∗2B(FE(A))
τAπ2oo

ξ
��

FE×BE(π
∗
1A
(A)) π∗1B(FE(A)).

τAπ1

oo

One can verify that ξ is actually a descent data for FE(A).
We define now Φ on morphisms. Given h : (A, ξ) → (A′, ξ′) in DesA(p), that
is a morphism h : A→ A′ in AE such that the diagram

π∗2A(A)

ξ
��

π∗

2h // π∗2A(A
′)

ξ
��

π∗1A(A) π∗

1h
// π∗1A(A

′)

commutes in AE×BE , define

Φ(h) := FE(h) : FE(A) → FE(A
′).
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One can easily verify that the diagram

π∗2BFE(A)

ξ
��

π∗

2
B
FE(h)

// π∗2BFE(A
′)

ξ′
��

π∗1BFE(A) π∗

1B
FE(h)

// π∗1BFE(A
′)

commutes in BE×BE.
The equivalence of categories Φ makes the following diagram commutative
up to isomorphism

A
B

FB
��

K
p
A // DesA(p)

Φ
��

BB
K
p
B

// DesB(p),

allowing us to conclude that the morphism p : E → B in the category C is
(effective) for A-descent if and only if it is (effective) for B-descent. �

This general result can be applied in our context of M -ordered sets as clai-
med. In fact, given A,B :M -Ordop → CAT defined respectively by

X
� // E(X)

f∗

��

X
� // SetX

op

Set
fop

��

Y

f

OO

� // E(Y ) Y

f

OO

� // SetY
op

,

where E is the class of étale morphisms inM -Ord, f ∗ is the pullback functor
and Setf

op

is the composition functor, using Proposition 3.1 one can verify
that there exists an equivalence of M -Ord-indexed categories from A to B.
Thanks to Theorem 3.2 we can then state that an equivariant map p : E → B
in M -Ord is an effective A-descent morphism, i.e., it is effective for étale-
descent, if and only if it is an effective B-descent morphism.

4. The characterization of effective étale-descent morphisms

The category DesB(p) can be described as the category of pairs (X, ξ) where
X : Eop → Set is a functor and ξ = (ξe,e′)e,e′∈E×BE is a family of functions
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ξe,e′ : X(e′) → X(e) defined for e, e′ ∈ E with p(e) = p(e′) such that

ξe,e = 1X(e) ξe′,e′′ ◦ ξe,e′ = ξe,e′′,

for each e, e′, e′′ ∈ E with p(e) = p(e′) = p(e′′), and each diagram

X(e′0)

X(e′1
m−→e′0) ��

ξe0 ,e′0 // X(e0)

X(e1
m−→e0)

��

X(e′1) ξe1 ,e′1
// X(e1)

commutes for all e′1
m
−→ e′0 and e1

m
−→ e0 in E with m ∈ M , p(e0) = p(e′0) and

p(e1) = p(e′1). The comparison functor

Kp
B
: SetB

op

→ DesB(p)

is given by

G 7→ (G ◦ pop, 1),

where 1 is the family of identity morphisms 1e,e′ : G(p(e)) → G(p(e′)).
The internal category Eq(p) inM -Ord can be presented as a double category
in the following way:

(1) objects are elements of E;

(2) vertical arrows are morphisms of E, that is e0
m
−→ e1;

(3) horizontal arrows are elements of E ×B E;
(4) squares of 2-cells are morphisms of E×BE, that is squares of the form

e0

m

��

// e′0

m
��

e1 // e′1

for e0, e
′
0, e1, e

′
1 in E with p(e0) = p(e′0), p(e1) = p(e′1) and e0

m
−→ e1,

e′0
m
−→ e′1 in E for m ∈M .

This allows us to present an object (X, ξ) of the category DesB(p) as a double
functor from the double category Eq(p) to the double category S(Set) of
commutative squares in Set. The functor

S : CAT → DoubleCAT,
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which sends each category C to the double category of commutative squares
of C, has a left adjoint Z described in [10, section 1] as a quotient of a
pushout. The category Z(Eq(p)) can be then contructed as follows. Consider

• Eq(p)0 to be the discrete category with objects as in Eq(p);
• Eq(p)h and Eq(p)v to be categories with the same objects and the
morphisms to be, respectively, the horizontal and the vertical arrows
of Eq(p);

• Eq(p)+ the pushout in Cat of the embeddings Eq(p)0 → Eq(p)h and
Eq(p)0 → Eq(p)v;

then, for every square of 2-cell in Eq(p)

e0

m

��

// e′0

m
��

e1 // e′1

the pairs

e0 // e′0

m
��

e′0

m
��

e′1 e1 // e′1

become morphisms in Eq(p)+ from e0 to e′1, and we construct Z(Eq(p)) as
the quotient category Eq(p)+/ ∼ under the smallest equivalence relation ∼
for which

e0 // e′0

m
��

∼

e0

m

��
e′1 e1 // e′1,

for all such pairs. Observe that a morphism in Z(Eq(p)) from a point e0 to a
point e′n can be then given by an equivalent class of a morphism in Eq(p)+,
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say an n-zigzag z

e0 // e′0
m1

��
e1 // e′1

m2

��
e2 // e′2

m2

�� //____

���
�

�

//____

mn

��
en // e′n

where p(ei) = p(e′i) for i = 0, · · · , n, and e′i
mi+1

−−→ ei+1 in E for i = 0, · · · , n−1.
The notation for such an n-zigzag as above will be z = [en, e

′
n]mn · · ·m1[e0, e

′
0].

The equivariant map p : E → B can be then factorized in Cat through the
category Z(Eq(p))

E

ψ $$JJJJJJJJJJ

p
// B

Z(Eq(p))
ϕ

::tttttttttt

where ψ is defined as the identity on objects and ψ(e0
m
−→ e1) = [e0

m
−→ e1] on

morphisms, while ϕ on objects acts as p and the image of an equivalent class
of an n-zigzag z = [en, e

′
n]mn · · ·m1[e0, e

′
0] via ϕ is

ϕ([z]) = p(e0)
m1−→ p(e′1)

m2−→ · · ·
mn−→ p(e′n) = p(e0)

mn◦···◦m1−−−−−→ p(e′n).

Thanks to the adjoint situation

CAT ⊥

S
// DoubleCAT

Zoo
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an object (X, ξ) of DesB(p), i.e., a double functor from Eq(p) to S(Set), is
the same as a functor from Z(Eq(p)) to Set, and the diagram

SetB
op

Set
pop %%KKKKKKKKKK

K
p
B // DesB(p)

U
p
B

yyrrrrrrrrrr

SetE
op

can be identified, up to equivalence, to the diagram

SetB
op

Set
pop %%KKKKKKKKKK

Set
ϕop

// SetZ(Eq(p))
op

Set
ψopwwooooooooooo

SetE
op

.

This allows us to state that a morphism p : E → B in M -Ord is effective
for étale-descent if and only the functor Setϕ

op

: SetB
op

→ SetZ(Eq(p))
op

is
an equivalence of categories. The general argument given in [14, Theorem 2]
can be applied in our situation.

Theorem 4.1. An equivariant map p : E → B is an effective étale-descent
morphism in M-Ord if and only if ϕ : Z(Eq(p)) → B is a full and faithful
lax epimorphism in Cat.

Corollary 4.2. An equivariant map p : E → B is an effective étale-descent
morphism in M-Ord if and only if

(a) for each p(e)
k
−→ p(e′) in B with k ∈ M there exists a zigzag z =

[en, e
′
n]mn · · ·m1[e0, e

′
0] in Z(Eq(p)) with k = mn ◦ · · · ◦m1, and such

a zigzag is unique up to equivalence;
(b) every point b ∈ B is in relation to a point of the image via a right-

invertible element of the monoid, i.e., for each b ∈ B there exist e ∈ E,
n,m ∈M such that p(e)

n
−→ b and b

m
−→ p(e) with n ◦m = eM .

Remarks 4.3.

(1) The uniqueness (up to equivalence) for zigzags in the condition (a)
of Corollary 4.2 comes from the faithfulness of the morphism ϕ :
Z(Eq(p)) → B in Theorem 4.1. This condition can be expressed
by the fact that Z(Eq(p)) is an M -ordered set: consider the following
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(commutative) diagram

Z(Eq(p))

q◦ϕ
%%JJJJJJJJJJ

ϕ
// B

q��~~
~~

~~
~~

M

where q : B →M is the faithfulM -valued norm of the M -ordered set
B. The morphism ϕ is faithful if and only if the M -valued norm q ◦ϕ
for Z(Eq(p)) is faithful.

(2) The characterization of the effective étale-descent morphisms leads to
the characterization of the morphisms which are effective for descent
with respect to the class of discrete op-fibrations F. In fact the dual of
Proposition 3.1 states that the slice category F(B) is equivalent to the
category SetB, for a givenM -ordered set B. Being also an equivalence
of M -Ord-indexed categories, we conclude that the effective descent
morphisms in M -Ord with respect to the classe of discrete fibrations,
i.e., étale maps, and discrete op-fibrations are the same by the fact
that ϕ is a full and faithful lax epimorphism if and only if the same
holds for ϕop.

(3) Of course we get also a characterization of the étale-descent morphisms,
that is the morphisms for which the functor Setϕ

op

is full and faithful.
They are precisely the morphisms for which condition (b) of Corollary
4.2 is satisfied [14, Theorem 1, Corollary 3].

(4) As remarked in [2, Remarks 1.4.3, (2)], in the trivial case M = 1
everything collapses to Preord, also identified as the full subcate-
gory of Cat given by small categories X for which X → 1 is faith-
ful. Because of that, the characterization of (effective) étale-descent
morphisms in M -Ord generalizes the characterization of (effective)
étale-descent morphisms in Preord given in [10].

5. Effective descent and effective étale-descent morphisms
in M-Ord

A morphism p : E → B in a category C with pullbacks is called an
effective descent morphism if the pullback functor p∗ : C ↓ B → C ↓ E
is monadic. A complete characterization of the effective descent morphisms
in M -Ord is given in [6, Theorem 1.8]. They are the equivariant maps
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p : E → B satisfying the following condition: for each b0, b1, b2 ∈ B such
that b0

m
−→ b1

n
−→ b2, for m, n ∈ M , there exist e0, e1, e2 ∈ E such that

p(e0) = b0, p(e1) = b1, p(e2) = b2 and

e0
m
−→ e1

n
−→ e2.

Lemma 5.1. If p : E → B is an effective descent morphism, then every
2-zigzag in Z(Eq(p)) is equivalent to a 1-zigzag.

Proof. Let [t, e′]n[z, y]m[e, x] be a 2-zigzag in Z(Eq(p)). Take b0 = p(e) =
p(x), b1 = p(y) = p(z) and b2 = p(t) = p(e′); then

b0
m
−→ b1

n
−→ b2.

Since p is effective descent, by definition there exist e0, e1, e2 ∈ E such that
p(e0) = b0, p(e1) = b1, p(e2) = b2 and

e0
m
−→ e1, e1

n
−→ e2.

After that we have

[t, e′]n[z, y]m[e, x] ∼ [t, e′]n[e1, z][y, e1]m[e, x]

∼ [t, e′][e2, t](n ◦m)[x, e0][e, x]

∼ [e2, e
′](n ◦m)[e, e0]

as claimed. �

Lemma 5.2. The morphism ϕ : Z(Eq(p)) → B is faithful on 1-zigzags.

Proof. Let [y, e′]m[e, x] and [v, e′]n[e, u] be two 1-zigzags in Z(Eq(p)) such
that m = n. Then by construction of the category Z(Eq(p)) they are equi-
valent; in fact

[y, e′]m[e, x] ∼ [v, e′][y, v]m[e, x] ∼ [v, e′]m[x, u][e, x] ∼ [v, e′]m[e, u]

as desired. �

The following theorem is an immediate consequence of Lemma 5.1, Lemma
5.2 and of fact that an n-zigzag in Z(Eq(p)) is a composition of n 1-zigzags.

Theorem 5.3. Every effective descent morphism in M-Ord is effective for
étale-descent.
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Effective descent morphisms are necessarly surjective, while there are non-
surjective effective étale-descent morphisms in M -Ord. Hence the converse
of Theorem 5.3 is false. For surjective maps the problem is more interesting,
although thr answer is the same. An appropriate counter-example in the
surjective case of Theorem 5.3 can be given as follows. Let p : E → B be
the following equivariant map:

e0

m

��

b0

m
��

e11 e12

n

��

p
−→ b1

n
��

e2 b2

where p(e0) = b0, p(e11) = p(e12) = b1 and p(e2) = b2. By Corollary 4.2, an
easy inspection reveals that p is effective for étale-descent but it is not an
effective descent morphism.

6. Effective descent and effective étale-descent morphisms
in categories of relational algebras

Theorem 5.3 can be generalized to a larger context of relational algebras,
including also the known results given in [11] for Top ∼= RelAlg(U), where
U is the ultrafilter monad, and in [10] for Preord ∼= RelAlg(I), where I is
the identity monad.
Recall that a functor T : Set → Set has the Beck-Chevalley (BC) property
(in the sense of [4]), if T preserves (BC)-squares, where a (BC)-square is a
diagram

W

h
��

k // X

f
��

Z g
// Y

such that f ◦ ◦ g = k ◦ h◦, with f ◦ and h◦ the opposite relations of f and h,
respectively.

Theorem 6.1. [3, Theorem 2.4] Let T = (T, µ, η) be a monad on Set and
T its Barr extension. Assume that every naturality square of η with respect



16 PIER GIORGIO BASILE

to relations with finite fibres is a (BC)-square. Then the following conditions
are equivalent, for a morphism f : (X, a) → (Y, b) in RelAlg(T):

(i) f is final;
(ii) f is a pullback stable regular epimorphism in RelAlg(T);
(iii) f is a descent morphism in RelAlg(T).

Theorem 6.2. [6, Proposition 5.2] Let T = (T, µ, η) be a monad on Set and
T its Barr extension. Given a pullback diagram in RelAlg(T)

X ×Y Z

π1
��

π2 // Z

g
��

X
f

// Y,

with f a final morphism:

(a) If π1 is a discrete (co)fibration, then g is a discrete (co)fibration.
(b) If π1 has closed image, then g has closed image.
(c) If π1 has separated fibres, then g has separated fibres.

Theorem 6.3. Let T = (T, µ, η) be a monad on Set and T its Barr exten-
sion. Let RelAlg(T) the category of relational T-algebras (or lax algebras,
or (T,2)-categories, see [4] and [7]). If T satisfies the following conditions:

(1) T has the (BC) property,
(2) η has (BC) for relations with finite fibres,

an effective descent morphism p : E → B in RelAlg(T) is effective for
étale-descent.

Proof. Let p : E → B be an effective descent morphism in RelAlg(T). We
use [11, Proposition 2.6] to show that p is also effective with respect to the
class of étale morphisms, i.e., pullback stable discrete fibrations. Consider
then a pullback diagram in RelAlg(T)

E ×B A

π1
��

π2 // A

g
��

E p
// B,

where π1 is an étale morphism. The relational structure on

E ×B A = {(e, a) ∈ E × A | p(e) = α(a)}
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is defined by

ω → (e, a) ⇐⇒ Tπ1(ω) → e and Tπ2(ω) → a,

for any ω ∈ T (E ×B A) and (e, a) ∈ E ×B A. We want to prove that g is an
étale morphism as well.
By Theorem 6.1 and Theorem 6.2(a), g is a discrete fibration. To prove that
every pullback of g is a discrete fibration we consider the following diagram

E ×B A

π1

��

π2 // A

g

��

X ×B A

pr1

��

pr2

::vvvvvvvvvv

E p
// B

X ×B E

π′

2

88pppppppppppp

π′

1

// X
f

::uuuuuuuuuuu

where the three faces are pullbacks. We want to prove that pr1 is a discrete
fibration. First of all observe that since effective descent morphisms are
pullback stable π′1 is an effective descent morphism. Building the pullback
on the left-side, i.e., the pullback of π1 along π′2, by universality we get a
cube such that all faces are pullbacks.

E ×B A

π1

��

π2 // A

g

��

(X ×B E)×E (E ×B A) //

pr′1

��

pr′2
;;xxxxxxxx

X ×B A

pr1

��

pr2

;;xxxxxxxxxx

E p
// B

X ×B E

π′

2

;;wwwwwwwww

π′

1

// X
f

;;wwwwwwwwww

Now, since π1 is an étale morphism, pr′1 is a discrete fibration and, using
the same argument that we used to prove that g is a discrete fibration, we
conclude that pr1 is a discrete fibration as well. �
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