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ON THE OPTIMAL ORDER OF WORST CASE
COMPLEXITY OF DIRECT SEARCH

M. DODANGEH, L. N. VICENTE AND Z. ZHANG

Abstract: It was recently analyzed the worst case complexity of direct-search
methods based on positive spanning sets and sufficient decrease for acceptance of
new iterates. Assuming that the objective function is smooth, it is now known that
such methods require at most O(n2ε−2) function evaluations to compute a gradient
of norm below ε ∈ (0, 1), where n is the dimension of the problem. Such a maximal
effort is reduced to O(n2ε−1) if the function is convex. The factor n2 has been
derived using the positive spanning set formed by the coordinate vectors and their
negatives at all iterations.

In this paper, we prove that such a factor of n2 is optimal in these worst case
complexity bounds, in the sense that no other positive spanning set will yield a
better order of n. The proof is based on an observation that reveals the connection
between cosine measure in positive spanning and sphere covering.
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1. Introduction
In this paper, we focus on direct-search methods of directional type applied

to an unconstrained minimization problem

min
x∈Rn

f(x).

At each iteration of such a method, one typically evaluates the objective
function using a finite number of directions (the polling directions) multiplied
by a certain step size. No derivatives or approximations thereof are required.
If a point of lower objective function value is found, it becomes the new
iterate (the iteration is declared successful). Otherwise, the method stays at
the current point and the step size is decreased.

Date: November 14, 2014.
Support for this research was provided by FCT under grants PTDC/MAT/116736/2010 and

PEst-C/MAT/UI0324/2011. Support for the first author was provided by FCT under the schol-
arship SFRH/BD/51168/2010. The third author works now within the framework of the project
FILAOS funded by RTRA STAE.

1



2 M. DODANGEH, L. N. VICENTE AND Z. ZHANG

There are essentially two ways of ensuring convergence to stationary points
for direct-search methods of directional type: (i) by exploring integer lattices,
insisting on generating points in grids or meshes (which refine only with the
decrease of the step size), or (ii) by imposing a sufficient decrease condition
(specified by a forcing function of the step size) to the acceptance of a new
iterate. To our knowledge, only the latter approach has led to analyses of
worst case complexity (WCC).

In fact, Vicente [19] analyzed, for smooth functions, the WCC of direct-
search methods for which the polling directions are formed by positive span-
ning sets and new iterates are accepted based on a sufficient decrease con-
dition. A positive spanning set (PSS) is a set of non-zero directions that
spans Rn with non-negative coefficients. The WCC bounds given there de-
pend on the choice of the positive spanning set used at each iteration and
on the forcing function specifying the sufficient decrease. When the forcing
function is the square of the step size, it was proved in [19] that direct search
drives the norm of the gradient of f below ε ∈ (0, 1) within at most O(n2ε−2)
function evaluations. In the convex case, Dodangeh and Vicente [9] improved
the bound in [19] to O(n2ε−1). Konečný and Richtárik [16] rederived these
bounds, in a simpler way, but for a restricted version of direct search where
step size increases are not allowed.

A closer look at these WCC bounds reveals that they are of the form
O(mκ−2ε−a), with a = 1, 2, where m is an upper bound on the cardinal of
the PSSs and κ is a lower bound for their cosine measure. The factor n2

results from using the PSS D⊕ = [I −I] formed by the coordinate vectors
and their negatives at all iterations. In fact, D⊕ has 2n directions and a
cosine measure of 1/

√
n, see [15].

In this paper, we will show that there exists a universal constant c > 0
such that mκ−2 ≥ c n, and consequently that the optimal order for these
two WCC bounds in terms of n is indeed n2. Our analysis is based on the
following observation connecting cosine measure in positive spanning and
the topic of sphere covering in Discrete Geometry (see Section 4 for more
details): Given a PSS with normalized vectors, the unit sphere is covered by
a union of spherical caps centered at such vectors and of angle equal to the
one defined by the cosine measure of the PSS.

The structure of the paper is as follows. In Section 2, we introduce the
algorithmic details of direct search. Section 3 summarizes the WCC bounds
established in [19, 9]. Our main result is given in Section 4, where we prove
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the optimality of the factor involving n in the boundsO(n2ε−a), with a = 1, 2.
The paper is concluded with some remarks in Section 5.

2. A class of direct-search methods
First we describe the direct-search method under analysis. Algorithm 2.1

below follows the lines of the presentation in [7, Chapter 7].

Algorithm 2.1 (Directional direct-search method).
Initialization

Choose x0 with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . . do

(1) Search step: Try to compute a point with f(x) < f(xk)−ρ(αk)
by evaluating the function f at a finite number of points. If such
a point is found, then set xk+1 = x, declare the iteration and the
search step successful, and skip the poll step.

(2) Poll step: Choose a positive spanning set Dk. Order the set of
poll points Pk = {xk + αkd : d ∈ Dk}. Evaluate f at the poll
points following the chosen order. If a poll point xk + αkdk is
found such that f(xk + αkdk) < f(xk)− ρ(αk), then stop polling,
set xk+1 = xk + αkdk, and declare the iteration and the poll step
successful. Otherwise, declare the iteration (and the poll step)
unsuccessful and set xk+1 = xk.

(3) Mesh parameter update: If the iteration was successful, then
maintain or increase the step size parameter: αk+1 ∈ [αk, γαk].
Otherwise, decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].

End

In the poll step, the objective function is evaluated at points of the form
xk + αkd for directions d belonging to a PSS Dk. The poll step is successful
if the value of the objective function can be sufficiently decreased relatively
to the step size αk, in the sense that there exists a dk ∈ Dk such that
f(xk+αkdk) < f(xk)−ρ(αk), where ρ(·) is a forcing function [15], meaning a
non-decreasing (typically continuous) function ρ : (0,∞)→ (0,∞) satisfying
limα↓0 ρ(α)/α = 0. Typical examples of forcing functions are ρ(α) = Cαp
(C > 0 and p > 1). Polling can be complete (where the point with the lowest
function value is then chosen) or opportunistic (moving to the first point
satisfying the sufficient decrease condition).
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The purpose of the search step is solely to improve the practical perfor-
mance of the overall algorithm. It is left unspecified since it does not interfere
in the analyses of convergence or complexity of the algorithm. It is the poll
step that determines these properties and gives a directional character to the
algorithm. The step size is possibly increased in successful iterations and de-
creased at unsuccessful iterations by a factor uniformly bounded away from 0
and 1.

3.Worst case complexity of direct search
To analyze the WCC of direct search, one needs to make some assumptions

on the objective function f , the forcing function ρ, and the positive spanning
sets {Dk}. For convenience, we use L(x0) to denote the level set {x ∈ Rn :

f(x) ≤ f(x0)}, Xf
∗ to denote the set of all the minimizers of f (possibly

empty), and | · | to denote the cardinal of a set. The assumptions on f and ρ
are as follows.

Assumption 3.1. f is bounded from below by finf > −∞ and continuously
differentiable in Rn, and ∇f is Lipschitz continuous in Rn with a Lipschitz
constant ν.

Assumption 3.2. ρ(α) = Cαp for some constants C > 0 and p > 1.

To state the assumptions on {Dk}, one must look at a key feature of a
PSS, its cosine measure [15]. Given a PSS D, its cosine measure is defined
by

cm(D) = min
0 6=v∈Rn

max
d∈D

v>d

‖v‖‖d‖
. (1)

Since any PSS has a positive cosine measure, there is at least one direction
in D making an acute angle with any considered non-zero vector. Such a
property is at the heart of the fact that the norm of the gradient is of the
order of the step size when an unsuccessful iteration occurs [10, 15] (see
also [7, Theorem 2.4 and inequality (7.14)]), which is critical for analyzing
global convergence and WCC of direct search. The assumption on {Dk} can
be presented as follows.

Assumption 3.3. There exist positive constants κ, m, µ1, and µ2 such that

cm(Dk) ≥ κ, |Dk| ≤ m, and µ1 ≤ ‖d‖ ≤ µ2

for each k ≥ 0 and each d ∈ Dk.
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Notice that a poll step takes at most m function evaluations. We suppose
that the number of function evaluations per search step is at most a multiple
of m, which is not restrictive because this step is optional.

Suppose that ε ∈ (0, 1). Let

kε = min{k ∈ N : ‖∇f(xk)‖ ≤ ε}.
Then the worst case complexity bounds obtained by Vicente [19] and Do-
dangeh and Vicente [9] can be stated as follows.

Theorem 3.1 ([19, Theorems 2 and 3], [9, Theorem 4.2]). Under Assump-
tions 3.1, 3.3, and 3.2, there exists a constant c1 such that

kε ≤ c1κ
−p̂ε−p̂, (2)

where p̂ = p/min{1, p− 1}.
If we assume additionally that f is convex, Xf

∗ is nonempty, and
supy∈L(x0) dist(y,Xf

∗ ) <∞, then there exists a constant c2 such that

kε ≤ c2κ
−p̂ε1−p̂. (3)

The constants c1 and c2 are fully determined by f(x0), finf , ν, α0, β1, β2,

γ, C, p, µ1, µ2, and, in the case of c2, by supy∈L(x0) dist(y,Xf
∗ ). For the

definitions of c1 and c2, we refer to [19, 9].
It is noticeable that κ appears in the bounds (2) and (3). The reason is that,

in the worst case, the smallest angle between −∇f(xk) and the directions in
Dk is arccos(κ). In other words, κ can be interpreted as the price to pay for
the absence of gradient information. When p = 2, the factor in κ is of the
form κ−2 which is then equal to n if we use the PSS D⊕.

A similar phenomenon happens in the WCC of stochastic coordinate de-
scent methods (see, for instance, [12, 17]). In Nesterov [17], the randomized
coordinate descent method (RCDM) has an O(nbk

−1) global decaying rate
for the expectation of f(xk)− f∗ (see (2.14) of [17], where nb is the number
of blocks in [17]). This is because, on average, the angle between −∇f(xk)
and Sk is arccos(1/nb), where Sk denotes the subspace corresponding to the
coordinate block chosen at the k-th iteration. Thus, nb can be seen here as
the price to pay for the absence of the full gradient. Although the methods
are different, the factor κ−p̂ in (2) and (3) (which is equal to n when we
use p = 2 and D⊕ at each iteration) and the factor nb in the global rate
of RCDM appear for similar reasons. It is possible to reduce such a price
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(by putting more directions into Dk for direct search; by using less blocks
in RCDM), which will potentially lead to lower complexity of iterations, but
meanwhile increase the expense of each iteration. An important question is
how to maintain such a balance in order to have the algorithms exhibiting
optimal overall measures of performance? We will answer this question for
direct search in Section 4. To do this, we consider the WCC in terms of
the number of function evaluations, which is a reasonable indicator for the
overall performance of direct search.

Let kfε be the number of function evaluations within kε iterations. Then it
is easy to derive bounds for kfε from Theorem 3.1.

Corollary 3.1. Under Assumptions 3.1, 3.3, and 3.2, there exists a constant
c3 such that

kfε ≤ c3mκ
−p̂ε−p̂. (4)

If we assume additionally that f is convex, Xf
∗ is nonempty, and

supy∈L(x0) dist(y,Xf
∗ ) <∞, then there exists a constant c4 such that

kfε ≤ c4mκ
−p̂ε1−p̂. (5)

As pointed out in [19] it is obvious that the optimal choice for p in (4) is
2, which leads to p̂ = 2 (and the same happens in (5)). Thus let us fix p = 2
henceforth.

It was also suggested in [19] to set Dk = D⊕ for all k ≥ 0. Since |D⊕| =
2n and cm(D⊕) = 1/

√
n, inequality (4) then becomes kfε = O(n2ε−2). In

Section 4 (see Theorem 4.2), we will show that O(n2ε−2) is the optimal order
for the bound (4) and a similar conclusion holds for (5), whose optimal order
is O(n2ε−1).

4. The optimal order of the worst case complexity
In this section, we will discuss how to choose {Dk} so that the right-

hand sides of (4) and (5) are minimized. As mentioned in Section 3, one
can increase κ by using more polling directions (see definition (1)), which is
favorable in terms of number of iterations (see Theorem 3.1). However, such
a strategy will increase the number of function evaluations at each iteration
(in the worst-case scenario). Hence there is a trade-off in the number of
directions to use in the PSSs when we consider the bounds for the number
of function evaluations.
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Let us illustrate this trade-off with a few examples. We know that a min-
imal positive basis with uniform angles in Rn has n + 1 directions and a
cosine measure of 1/n [7, Corollary 2.6 and Exercise 2.7.7]. If we apply this
PSS to Algorithm 2.1 (with ρ(α) = Cα2), then the bound in (4) will become
O(n3ε−2). But if we use D⊕, the bound is O(n2ε−2). In this case, increasing
the number of directions improves the WCC bound. This is not always true.
For example, if we use a PSS with n4 directions, then the bound will become
at least O(n4ε−2).

According to the definitions of κ and m, in order to minimize the right-hand
sides of (4) and (5) (notice that p̂ = 2), we need to solve

min
D∈D

|D|
cm(D)2

, (6)

where D is the set of all PSSs in Rn. In two dimensions, problem (6) is
not difficult, and one can easily prove that the PSSs with five directions and
uniform 2π/5 adjacent angles are optimal. When we go to higher dimensions,
determining the optimal PSSs for problem (6) is not that easy. It is not clear
what are the solutions to this problem when n ≥ 3. But we are able to show
that D⊕ is “almost optimal” for problem (6) in the sense of that

min
D∈D

|D|
cm(D)2

≥ c5
|D⊕|

cm(D⊕)2
, (7)

for some constant c5 > 0 not depending on n or on any specific PSS. In fact,
we will prove the following result.

Theorem 4.1. There exists a universal constant c > 0 such that

|D|
cm(D)2

≥ c n2 (8)

for each n ≥ 1 and each PSS D in Rn.

Inequality (7) will then follow directly from (8) with c5 = c/2. We illustrate
inequality (8) in Figure 1 for the particular case where n = 2 and the vectors
of the PSSs make uniform adjacent angles (a case where it is known that one
can pick c = 1).

To prove Theorem 4.1, we first observe in Lemma 4.1 a connection between
cosine measure in positive spanning and sphere covering. For that purpose,
let us define

C(x, φ) =
{
y ∈ Sn−1 : d(y, x) ≤ φ

}
,
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4 = n2

8 = |D⊕|
cm(D⊕)2

m = |D|

Figure 1. Illustration of inequality (8) in R2 for PSSs mak-
ing uniform adjacent angles. The plot depicts the values of
|D|/ cm(D)2 for |D| = 3, 4, . . . , 10.

where Sn−1 is the unit sphere in Rn, x is a fixed point on Sn−1, φ is a constant
in [0, π], and d(·, ·) is the geodesic distance on Sn−1. We will call C(x, φ) a
spherical cap centered at x with geodesic radius φ (see Figure 2). The result
says essentially that for any PSS (with normalized vectors) one can cover the
unit sphere by the union of the spherical caps centered at its vectors and of
geodesic radius equal its cosine measure (see also Figure 2).

Lemma 4.1. Suppose that D = [d1 · · · dm] is a PSS in Rn consisting of unit
vectors. If cm(D) = κ, then

Sn−1 ⊆
m⋃
i=1

C(di, arccos(κ)).

In other words, Sn−1 is covered by the spherical caps centered at di (i =
1, 2, . . . ,m) with geodesic radius arccos(κ).

Proof : According to definition (1), for any v ∈ Sn−1, there exists an i ∈
{1, 2, . . . ,m} such that

v>di ≥ cm(D) = κ. (9)

Since the radius of the sphere is 1, the geodesic distance between v and di is
equal to the angle between them. Hence inequality (9) implies that

d(v, di) ≤ arccos(κ),

which is equivalent to
v ∈ C(di, arccos(κ)).

This is sufficient to conclude the proof as v is arbitrary.
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φ
x

Spherical cap C(x, φ)

d1d3

d2

d4

π
4

S1 ⊆
⋃4
i=1 C(di, π/4)

Figure 2. The thick arc of the left picture represents a spherical
cap in R2. The right picture depicts the covering of the unit
sphere given in Lemma 4.1 for D⊕ when n = 2.

We remark that Lemma 4.1 holds even when D is not a PSS. In such a case,
cm(D) is not positive and thus arccos(cm(D)) not acute, but the covering
is still a valid one. We also notice that cm(D) is actually the largest κ that
satisfies (13). In other words,

cm(D) = max

{
κ : Sn−1 ⊆

m⋃
i=1

C(di, arccos(κ))

}
,

which can be seen as an equivalent definition of cosine measure using the
language of sphere covering.

To prove Theorem 4.1 we need to establish an appropriate upper bound
for the cosine measure cm(D) in terms of the dimension n and the number
of directions in D. In light of Lemma 4.1, that is equivalent to find a lower
bound for φ (or an upper bound for cos(φ)) in terms of n and m when Sn−1

is covered by m equal spherical caps with geodesic radius φ. Such a bound
is fortunately already established in the research community of Discrete Ge-
ometry. The conclusion of the following lemma is proved by Tikhomirov [18]
for n + 1 ≤ m ≤ 2n. The case m ≥ 2n was established much earlier (for
more details see [1], [2, Chapter 6], [4], [5, Corollary 9.5], [6], [13] and [18])1.

Lemma 4.2 ([18]). Any covering of Sn−1 by m ≥ n + 1 spherical caps of
geodesic radius φ satisfies

cos(φ) ≤ ζ
√
n−1 log(n−1m)

for some universal constant ζ > 0.

1We are grateful to Professor Károly Böröczky, Jr. for drawing our attention to these references.
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With the help of Lemmas 4.1 and 4.2, we obtain the desired upper bound
for the cosine measure.

Lemma 4.3. Any PSS D in Rn satisfies

cm(D) ≤ ζ
√
n−1 log(n−1|D|) (10)

for the same constant ζ as in Lemma 4.2.

Proof : Without loss of generality, we assume that all the directions in D
are normalized. Then inequality (10) follows immediately from Lemmas 4.1
and 4.2.

Theorem 4.1 is a straightforward consequence of Lemma 4.3, since√
n−1 log(n−1|D|) ≤

√
n−1(n−1|D| − 1) ≤ n−1|D|

1
2 .

Summarizing, in terms of the orders of n and ε, the right-hand sides of (4)
and (5) are optimal when setting p = 2 (a fact already known) and when
Dk = D⊕ for all k ≥ 0 (a fact directly resulting from Theorem 4.1).

Theorem 4.2. With the same constant c > 0 as in Theorem 4.1, we have

mκ−p̂ε−p̂ ≥ c n−2ε−2,

where m and κ are defined in Assumption 3.3, and p̂ = p/min{1, p − 1}
(p > 1).

5. Final remarks
In Section 4, we established a lower bound for the optimal value of prob-

lem (6), but this problem itself is still open. A closely related problem is

max
D∈D(m)

cm(D), (11)

where D(m) is the set of all the PSSs consisting of m directions in Rn (m ≥
n+ 1). This problem is also widely open. In the language of sphere covering,
problem (11) is to find the most “economical” covering of the sphere by
m equal spherical caps. In the special case of m = 2n, it is intuitive to
conjecture that D⊕ is the solution to problem (11). This is clear when n = 2,
but it becomes non-trivial when n ≥ 3. The optimality of D⊕ for the case
m = 2n is already proved when n = 3 (see [11, Theorem 5.4.1]) and n = 4
(see [8, Theorem 6.7.1]), but it is open when n ≥ 5 according to [3] (see also
[2, Page 194] and [4, Conjecture 1.3]).
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Instead of PSSs, Gratton et al. [14] propose to use random polling direc-
tions in Algorithm 2.1. When minimizing a smooth (possibly non-convex)
objective function, the resulting algorithm enjoys an O(mnε−2) WCC bound
for the number of function evaluations (with overwhelmingly high probabil-
ity), where m is the number of random directions used in each poll step.
Such a bound, when m is much smaller than n, is better than the optimal
situation that we already proved for the bound (4). The advantage was also
observed in the numerical results of [14]. This comparison, more rigorously
made given the contribution of our paper, suggests that randomization has
the potential to improve the efficiency of some classical algorithms.
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