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Abstract: We study the so-called “Smith is Huq” condition in the context of S-
protomodular categories: two S-equivalence relations centralise each other if and
only if their normalisations commute. We prove that this condition is satisfied by
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1. Introduction
In the paper [16] the authors introduced a class of split epimorphisms,

called Schreier split epimorphisms, in the context of monoids and, more gen-
erally, of monoids with operations (which generalise Porter’s groups with
operations [22]). This class was used to describe crossed modules of monoids
with operations in terms of internal categories, generalising some results ob-
tained by Patchkoria [20] for the category of monoids.

The Schreier split epimorphisms were then widely studied in the paper
[7] and in the monograph [6]. It turned out that this class of split epimor-
phisms possesses many properties which are typical of all split epimorphisms
of groups, rings and, more generally, of any protomodular category [2, 1].
Among these properties we mention the Split Short Five Lemma for Schreier
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split epimorphisms, and the fact that every internal Schreier reflexive rela-
tion (i.e. a reflexive relation such that the first projection and the reflex-
ivity morphism form a Schreier split epimorphism) is transitive. This lead
to the notion of S-protomodular category [6, 8]. Roughly speaking, a S-
protomodular category is a pointed category equipped with a class S of split
epimorphisms which satisfies suitable properties (see the next section for the
precise definition). When S is the class of all split epimorphisms, we recover
the notion of a protomodular category.

S-protomodular categories have many classical properties of protomodular
categories, restricted to the specified class S (see [8] for a detailed account
of these properties). However, the category of monoids, and more generally
every category of monoids with operations, have even stronger properties,
that are known to be true for groups with operations, but not for a gen-
eral protomodular category. In the papers [15, 18] it was shown that these
properties depend on the so-called “Smith is Huq” condition: any two equiv-
alence relations centralise each other in the Smith-Pedicchio sense [23, 21] if
and only if their normalisations commute in the Huq sense [11].

The aim of the present paper is to study the “Smith is Huq” condition in
the “relative” context of S-protomodular categories: any two S-equivalence
relations (i.e. equivalence relations where the projections and the reflexiv-
ity morphism form split epimorphisms belonging to the class S) centralise
each other if and only if their normalisations commute. We compare this
condition with others, concerning properties of internal reflexive graphs and
properties of the so-called kernel functor, which associates with any split
epimorphism its kernel. In the “absolute” context of pointed protomodu-
lar categories (where S is the class of all split epimorphisms), the conditions
mentioned above are all equivalent to the “Smith is Huq” condition, as proved
in [18, 9, 19]. This is no more true for S-protomodular categories, where it
is possible to prove only some implications.

We prove that every category of monoids with operations, equipped with
the class S of Schreier split epimorphisms, satisfies the “Smith is Huq” con-
dition. This fact explains why this context appeared to be “richer” than the
general one of S-protomodular category, of which any Jonsson-Tarski vari-
ety [14] constitutes an example, as we prove in Section 2. Moreover, some
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consequences of the “Smith is Huq” condition in terms of characterisation of
internal categories and groupoids are described.

2. S-protomodular categories
We recall now from [6] and [8] the notion of S-protomodular category.

Let C be a pointed finitely complete category. By a point in C we mean a
pair (f, s) of morphisms in C such that fs = 1; in other terms, f is a split
epimorphism with a fixed section s. Let S be a class of points in C which is
stable under pullbacks. Accordingly this class determines a subfibration ¶SC of
the fibration of points ¶C : Pt(C) → C. We recall that the fibration of points
is the functor that associates with every split epimorphism its codomain. Let
us denote by SPt(C) the full subcategory of the category Pt(C) of points of
C whose objects are those which are in S:

SPt(C) //
j

//

¶S
C $$J

JJ
JJ

JJ
J

Pt(C)

¶C{{ww
ww
ww
w

C.

Given a split epimorphism A
f

// B
soo in C, we say that it is a strongly

split epimorphism (see [4], and [17], where strongly split epimorphisms were
introduced under the name of regular points) if the pair (k, s), where k : X →
A is a kernel of f , is jointly strongly epimorphic. This means that A is the
supremum of the two subobjects X and B, i.e. X and B are not both
contained in a proper subobject of A.

Definition 2.1. The category C is said to be S-protomodular when:

(1) any object in SPt(C) is a strongly split epimorphism;
(2) SPt(C) is closed under finite limits in Pt(C) (in particular, it contains

the terminal object 0 � 0 of Pt(C)).

As shown in [8], Theorem 3.2, in a S-protomodular category every change-
of-base functor, w.r.t. the fibration ¶SC of points in the class S, is conservative.
This implies, in particular, that the Split Short Five Lemma holds, when the
split epimorphisms involved belong to S.

In [8] it is proved that every category of monoids with operations (in-
troduced in [16]) is S-protomodular, when S is the class of Schreier split



4 N. MARTINS-FERREIRA AND A. MONTOLI

epimorphisms [16]. The definition of monoids with operations, recalled here
below, is inspired by Porter’s definition of groups with operations [22].

Definition 2.2. Let Ω be a set of finitary operations such that the following
conditions hold: if Ωi is the set of i-ary operations in Ω, then:

(1) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(2) There is a binary operation + ∈ Ω2 (not necessarily commutative) and

a constant 0 ∈ Ω0 satisfying the usual axioms for monoids;
(3) Ω0 = {0};
(4) Let Ω′

2 = Ω2\{+}; if ∗ ∈ Ω′
2, then ∗◦, defined by x ∗◦ y = y ∗ x, is also

in Ω′
2;

(5) Any ∗ ∈ Ω′
2 is left distributive w.r.t. +, i.e.:

a ∗ (b+ c) = a ∗ b+ a ∗ c;

(6) For any ∗ ∈ Ω′
2 we have b ∗ 0 = 0;

(7) Any ω ∈ Ω1 satisfies the following conditions:
- ω(x+ y) = ω(x) + ω(y);
- for any ∗ ∈ Ω′

2, ω(a ∗ b) = ω(a) ∗ b.
Let moreover E be a set of axioms including the ones above. We will denote
by C the category of (Ω, E)-algebras. We call the objects of C monoids with
operations.

Examples of categories of monoids with operations are the categories of
monoids, commutative monoids, semirings (i.e. rings where the additive
structure is not necessarily a group, but just a commutative monoid), join-
semilattices with a bottom element, distributive lattices with a bottom ele-
ment (or a top one). The algebraic structures covered by Porter’s definition,
such as groups, rings, associative algebras, Lie algebras and many others, can
also be seen as examples of monoids with operations (although, in order to
include these examples, condition (7) above should be slightly modified, see
[16] for more details).

The definition of a Schreier split epimorphism was originally given only
for monoids with operations. However, it is actually meaningful in every
Jonsson-Tarski variety, so we now recall the definition in this more extended
context. We start by recalling what a Jonsson-Tarski variety is.
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Definition 2.3 ([14]). A variety in the sense of universal algebra is a Jonsson-
Tarski variety if the corresponding theory contains a unique constant 0 and
a binary operation + satisfying the equalities 0 + x = x+ 0 = x for any x.

It was proved in [1] that a variety, seen as a category, is a unital category
[3] (see the next section for a recall of the definition) if and only if it is a
Jonsson-Tarski variety.

Definition 2.4. A split epimorphism A
f

// B
soo in a Jonsson-Tarski variety

is said to be a Schreier split epimorphism when, for any a ∈ A, there exists
a unique α in the kernel Ker(f) of f such that a = α+ sf(a).

The definition above can be expressed in the following equivalent form:
a split epimorphism (f, s) as above is a Schreier split epimorphism if there
exists a unique map qf : A → Ker(f) (which is not a morphism, in general)
such that a = qf(a)+sf(a) for any a ∈ A. This map qf is called the Schreier
retraction of the split epimorphism (f, s).

We omit the proof of the following proposition, since it is completely anal-
ogous to the proof, given in [8], in the more restricted context of monoids
with operations.

Proposition 2.5. If C is a Jonsson-Tarski variety and S is the class of
Schreier split epimorphisms, then C is a S-protomodular category.

The reason why, at the beginning, the definition of Schreier split epimor-
phisms was considered only in the context of monoids with operations is
that some results, proved in [16] in this context, like the fact that crossed
modules are equivalent to Schreier internal categories, are not valid in every
Jonsson-Tarski variety. In the next sections we give an explanation for this
fact, showing that monoids with operations are not only S-protomodular,
but they satisfy a stronger assumption, which is a relative version of the
so-called “Smith is Huq” condition.

2.1. S-graphs, S-relations and S-special morphisms. We recall from
[8] some other notions that will be useful in the rest of the paper. Let C be
a S-protomodular category.
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Definition 2.6. A reflexive graph

C1
c

//
d //

C0eoo

is a S-reflexive graph if the point (d, e) belongs to S. In particular, a reflexive
relation

R
r2

//

r1 //
C0eoo

is a S-reflexive relation if the point (r1, e) belongs to S.

Definition 2.7. A morphism f : X → Y in C is called S-special when its
kernel equivalence relation R[f ] is a S-equivalence relation. An object X is
called S-special when the terminal morphism τX : X → 1 is S-special (or, in
other terms, when the undiscrete relation on X is a S-equivalence relation).

3. Commutativity in the sense of Huq and of Smith
In this section we recall the notions of commutativity of subobjects in the

sense of Huq [11] and of S-reflexive relations in a S-protomodular category.
We start by recalling from [3] the following.

Definition 3.1. Let C be a pointed finitely complete category. It is a unital
category if, for every pair X,Y of objects of C, the morphisms ⟨1, 0⟩ and
⟨0, 1⟩ in the following diagram are jointly strongly epimorphic:

X
⟨1,0⟩

// X × Y
πXoo

πY // Y.
⟨0,1⟩
oo

Again, this means that the product X × Y is the supremum of the two
subobjects X and Y , i.e. X and Y are not both contained in a proper sub-
object of X × Y .

In this context it is possible to define the commutativity of two morphisms
(and, in particular, of two subobjects) in the sense of Huq:

Definition 3.2. Let C be a unital category. Two morphisms f : X → Z and
g : Y → Z, with the same codomain, are said to cooperate, or to commute, if
there exists a (necessarily unique) morphism φ : X × Y → Z making the two
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triangles in the following diagram commute:

X
⟨1,0⟩

//

f $$H
HH

HH
HH

HH
H X × Y

φ
��

Y
⟨0,1⟩
oo

g{{vv
vv
vv
vv
vv

Z.

The morphism φ is called the cooperator of f and g.

When X and Y are subobjects of an object Z, we denote by [X, Y ] = 0
the fact that they commute.

The notion of centralisation of equivalence relations was introduced by
Smith [23] for Mal’tsev varieties and then extended to the categorical context
of Mal’tsev categories by Pedicchio [21]. We recall that a finitely complete
category is a Mal’tsev category [10] if every internal reflexive relation is an
equivalence relation. As shown in [3], a finitely complete category is Mal’tsev
if and only if every fibre PtX(C) of the fibration of points ¶C : Pt(C) → C is
unital. In a Mal’tsev category, the equivalence relations R on an object X,
coinciding with the reflexive relations on X, are just the subobjects of the
object (π1,∆X) : X ×X � X in the fibre PtX(C):

R //
(r1,r2) //

r1
##H

HH
HH

HH
HH

HH
X ×X

π1
��

X.

e
ccHHHHHHHHHHH

∆X

OO

Two equivalence relations R and W on X centralise each other in a Mal’tsev
category C when the subobjects (r2, r1) : R � X × X and
(w1, w2) : W � X×X commute in the unital fiber PtX(C). In set-theoretical
terms, the cooperator R ×X W → X × X in the fiber is necessarily of the
form ϕ(xRyWz) = (x, p(xRyWz)), with the two equations p(xRxWy) = y
and p(xRyWy) = x. The morphism p : R ×X W → X satisfying these two
equations, which is characteristic of the fact that R and W centralise each
other (see [5]), is called the connector between the relations R and W .
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It was proved in [8] that, in a S-protomodular category C, any fiber PtX(C)
is SPtX(C)-unital. This means that, given a product diagram in PtX(C):

A

f $$H
HH

HH
HH

HH
HH
⟨1,tf⟩

// A×X B

��

πAoo
πB // B

⟨sg,1⟩
oo

g

zzvvv
vv
vv
vv
vv

X,

s

ddHHHHHHHHHHH t

::vvvvvvvvvvv

OO

where one of the two points belongs to S, the morphisms ⟨1, tf⟩ and ⟨sg, 1⟩
are jointly strongly epimorphic.

Thanks to this fact, in a S-protomodular category we can keep the same
definition of reflexive relations centralising each other as for Mal’tsev cate-
gories, provided that one of the relations, let us choose W , is a S-reflexive
relation:

Definition 3.3. Given a reflexive relation R and a S-reflexive relation W on
the same object X in a S-protomodular category C, we say that R andW cen-
tralise each other when there is a (necessarily unique) morphism
p : R×X W → X, where R×X W is defined by the following pullback:

R×X W

p1

��

p2 //
W

w1

��

σR
oo

R
r2 //

σW

OO

X

eW

OO

eR
oo

such that pσR = w2 and pσW = r1. In set-theoretical terms, this means that
we have both p(xRxWy) = y and p(xRyWy) = x. The morphisms σR and
σW , defined by the universal property of the pullback, are explicitly given by
σR(yWz) = yRyWz and σW (xRy) = xRyWy. We denote this situation by
[R,W ] = 0.

Since W is a S-reflexive relation, the split epimorphism (w1, eW ) is in S,
and consequently the pair (σR, σW ) is jointly strongly epimorphic. This im-
plies that the connector p is unique.

In the context of pointed Mal’tsev categories, the so-called “Smith is Huq”
condition is the following:
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(SH) Two effective equivalence relations centralise each other if and only if
their normalisations commute,

where the normalisation of an equivalence relation is the “equivalence class
of 0”, i.e. it is the composite r2k, where the relation is given by

R
r2

//

r1 //
Xeoo

and k is a kernel of r1. It is always a monomorphism. It is always true
that, when two effective equivalence relations centralise each other, then
their normalisations commute. The converse, however, is not always true,
not even in semi-abelian categories [13], as the well-known counterexample
of digroups shows. We are now interested in the study of the (SH) condition
in the context of pointed S-protomodular categories.

4. The “Smith is Huq” condition for S-protomodular
categories
Throughout this section C will be a pointed S-protomodular category with

the two following additional conditions:

- every product projection, i.e. every point of the form X × Y
πY

// Y
⟨0,1⟩
oo

belongs to the class S (we observe that this implies, in particular, that
the category is unital);

- S is closed under composition.

It is immediate to see that the first condition is satisfied by any Jonsson-
Tarski variety with the class S of Schreier split epimorphisms. This is not
the case for the second one. However, Proposition 2.3.2 in [6] shows that it
is satisfied in the case of monoids. It is then easy to see that Schreier split
epimorphisms are closed under composition in any category of monoids with
operations: in order to do that, it suffices to observe that a split epimor-
phism (f, s) in a category C of monoids with operations is a Schreier split
epimorphism if and only if (U(f), U(s)) is a Schreier split epimorphism in the
category Mon of monoids, where U is the forgetful functor U : C → Mon,
forgetting everything but the monoid structure of the objects of C.

Before stating the first important result of this section, we need to recall
the following.
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Definition 4.1. An internal reflexive graph

C1
c

//
d //

C0eoo (1)

is multiplicative if it is equipped with a morphism m : C2 → C1, where C2 is
the pullback of d along c, such that the following equalities are satisfied:

m⟨ed, 1⟩ = m⟨1, ec⟩ = 1,

where the morphisms C1
⟨ed,1⟩

//
⟨1,ec⟩

// C2 are induced by the universal property of

the pullback.

Theorem 4.2. Under the hypotheses above, consider the following condi-
tions:

(a) Every reflexive graph

X
k=ker d

  A
AA

AA
AA

A

C1
c

//
d //

C0eoo

Y
l=ker c

>>}}}}}}}}

such that both points (d, e) and (c, e) belong to S and [X,Y ] = 0 is
multiplicative.

(b) Two effective S-equivalence relations centralise each other as soon as
their normalisations commute.

(c) Every reflexive graph

X
k=ker d

  A
AA

AA
AA

A

C1
c

//
d //

C0eoo

Y
l=ker c

>>}}}}}}}}

such that both morphisms d and c are S-special and [X,Y ] = 0 is
multiplicative.

Then we have the following chain of implications: (a) =⇒ (b) =⇒ (c).
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Proof : We start by proving that (a) implies (b). Consider the following
diagram:

Y

⟨0,l⟩
��

Y

l
��

R[d, c]

πd,c
1

��

πd,c
2

// R[c]

πc
1
��

πc
2

//
∆d,c

2oo C1

c
��

∆c
oo

X
⟨k,0⟩

// R[d]

∆d,c
1

OO

πd
1
��

πd
2

// C1

d
��

∆c

OO

c
//

∆d
oo C ′

0

X
k

// C1
d

//

∆d

OO

C0,

where R[d] and R[c] are two effective S-equivalence relations (kernel pairs
of d and c, respectively), k is a kernel of d, l is a kernel of c, R[d, c] is the

pullback of πd2 along πc1, ∆
d and ∆c are the diagonal morphisms, while ∆d,c

1

and ∆d,c
2 are induced by the universal property of the pullback R[d, c]. Since

R[d] and R[c] are S-equivalence relations, we have that the points (πd1 ,∆
d)

and (πc1,∆
c) belong to the class S. By symmetry of the relations, also the

points (πd2 ,∆
d) and (πc2,∆

c) belong to S. Suppose, moreover, that there ex-
ists a cooperator φ : X × Y → C1.

We build the following reflexive graph:

R[d, c]
cod

//
dom //

C1,soo (2)

where

dom = πd1π
d,c
1 , cod = πc2π

d,c
2 , s = ∆d,c

1 ∆d = ∆d,c
2 ∆c.

Since the class S is closed under composition, we have that both (dom, s)
and (cod, s) belong to S. In order to apply the hypothesis (a), we need to
prove that [Ker(dom),Ker(cod)] = 0. We first observe that, in set-theoretical
terms, the elements of R[d, c] can be represented as triples:

· ·xoo
f

// · ·y
oo
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Then dom(x, f, y) = x, cod(x, f, y) = y and hence Ker(dom) = P (c, ck) and
Ker(cod) = P (d, dl) are given by the following pullbacks:

P (c, ck)

pc1
��

pc2 // X

ck
��

C1 c
// C ′

0,

P (d, dl)

pd1
��

pd2 // Y

dl
��

C1
d

// C0.

The cooperator

ψ : Ker(dom)×Ker(cod) → R[d, c]

is defined, using the cooperator φ : X × Y → C1 in the following way:

ψ( · ·0oo
f

// · ·g
oo , · ·hoo a // · ·0oo ) = · ·hoo

φ(f,a)
// · ·g

oo

In other terms, the morphism ψ is obtained by using repeatedly the univer-
sal property of the pullbacks as in the following diagrams: first we get the
morphisms α and β as in the diagrams below:

P (c, ck)× P (d, dl)

p2

��

pc2×pd2 //

α

((

X × Y

φ
��

R[d]

��

// C1

d
��

P (d, dl)
pd1

// C1
d

// C0,

P (c, ck)× P (d, dl)

p1

��

pc2×pd2 //

β

((

X × Y

φ
��

R[c]

��

// C1

c
��

P (c, ck)
pc1

// C1 c
// C ′

0,
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and then ψ is induced by α and β:

P (c, ck)× P (d, dl)

α

$$

ψ
((

β

))
R[d, c]

��

// R[c]

��

R[d] // C1.

Now, thanks to the hypothesis (a), we get that the graph (2) is multiplicative.
The needed connector p : R[d, c] → C1, in order to conclude the proof, is
determined by:

· ·hoo
p(f,g,h)

// · ·f
oo = m( · ·g

oo
f

// · ·f
oo , · ·hoo h // · ·g

oo ),

where m is the multiplication in the graph (2).

The proof that (b) implies (c) is much easier: given a reflexive graph

C1
c

//
d //

C0eoo

such that d and c are S-special and [Ker(d),Ker(c)] = 0, it suffices to con-
sider the kernel equivalence relations R[d] and R[c]: they are S-equivalence
relations, because d and c are S-special. Hypothesis (b) gives a connector
p : R[d, c] → C1; the multiplication m we are looking for is then given by:

m(f, g) = p ( · ·g
oo 1 // · ·f

oo ).

We observe that the proof of the previous theorem is analogous to the one
of Theorem 2.3 in [18] for the case of pointed protomodular categories, i.e.
when the class S is the class of all points. In the “absolute” context con-
sidered in [18], conditions (a) and (c) above are equivalent (because every
morphism is S-special), hence the three conditions of the previous theorem
become equivalent. The “relative” context of pointed S-protomodular cat-
egories appears then to be more diversified. The following example, in the
category of monoids with the class S of Schreier split epimorphisms, exhibits
a multiplicative reflexive graph (actually, an internal category) such that
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both the domain and codomain morphisms form, with the unit morphism,
points belonging to S, but none of them is S-special.

Example 4.3. Any commutative monoid M can be seen as an internal cat-
egory (with only one object) in the category of monoids:

M //
//
1.oo

It is immediate to see that both the domain and codomain morphisms (which
coincide in this example) form, with the unit morphism (which is, in this case,
the unique morphism 1 →M), a Schreier split epimorphism. However, they
are special morphisms if and only if M is a group (see [6] for more details).

We will prove in the next section that all the conditions of Theorem 4.2
are satisfied in every category of monoids with operations, equipped with the
class S of Schreier split epimorphisms.

The equivalence recalled above of Theorem 2.3 in [18] was used in the same
paper to give a characterisation of semi-abelian categories [13] in which the
“Smith is Huq” condition (SH) is satisfied: it happens if and only if every
star-multiplicative graph (see the definition below) is multiplicative ([18],
Theorem 3.8). The proof of this result uses the fact that, in a semi-abelian
category, a reflexive graph is star-multiplicative if and only if the kernels of
the domain and codomain morphisms commute ([18], Proposition 3.7). The
situation in a S-protomodular category is much more complicated, as the
following results will show.

We first recall from [12] and [15] the following definitions.

Definition 4.4. A reflexive graph (1), with k : X → C1 a kernel of d and
l : Y → C1 a kernel of c is star-multiplicative if there exists a morphism
ξ : P (d, ck) → X, where P (d, ck) is the pullback:

P (d, ck)

p1
��

p2 // X

ck
��

C1
d

// C0,

such that

ξ⟨k, 0⟩ = 1X = ξ⟨eck, 1X⟩.
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It is star-divisible if there exists a morphism ω : X ×X → C1 such that

ω⟨1X , 0⟩ = k and ω⟨1X , 1X⟩ = eck.

Proposition 4.5. If C is a pointed S-protomodular category and (1) is a
S-reflexive graph such that X (the kernel of d) is a S-special object, then (1)
is star-multiplicative if and only if it is star-divisible.

Proof : Suppose first that (1) is star-multiplicative, with star-multiplication
ξ. In the following pullback, the lower split epimorphism belongs to S, hence
the upper one belongs to S, too:

P (d, ck)

p1
��

p2
// X

ck
��

⟨eck,1⟩
oo

C1
d

// C0.
eoo

Consider then the following diagram:

X
⟨k,0⟩

// P (d, ck)

⟨ξ,p2⟩
��

p2
// X

⟨eck,1⟩
oo

X
⟨1,0⟩

// X ×X
π2

// X.
⟨1,1⟩
oo

Since ξ is a star-multiplication, the diagram gives rise to a morphism of split
extensions: the upper one is in S, as already observed; the lower one also is,
because X is a S-special object. Then the Split Short Five Lemma for split
extensions in S (which is a consequence of Theorem 3.2 in [8]) implies that
⟨ξ, p2⟩ is an isomorphism. We can then define the needed star-division by
putting

ω = p1⟨ξ, p2⟩−1 : X ×X → C1.

Indeed:

ω⟨1X , 0⟩ = p1⟨ξ, p2⟩−1⟨1X , 0⟩ = p1⟨k, 0⟩ = k

and

ω⟨1X , 1X⟩ = p1⟨ξ, p2⟩−1⟨1X , 1X⟩ = p1⟨eck, 1⟩ = eck.
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Conversely, suppose that (1) is star-divisible, with star-division ω. The
morphism ⟨ω, π2⟩ in the diagram below is determined by the universal prop-
erty of the pullback:

X ×X

ω

!!

π2

((

⟨ω,π2⟩
&&

P (d, ck)

p1
��

p2
// X

ck
��

C1
d

// C0,

indeed:
dω⟨1X , 0⟩ = dk = 0 = ckπ2⟨1X , 0⟩,

dω⟨1X , 1X⟩ = deck = ck = ckπ2⟨1X , 1X⟩,
and the morphisms ⟨1X , 0⟩ and ⟨1X , 1X⟩ are jointly strongly epimorphic, be-
cause X is a S-special object. The fact that ω is a star-division turns ⟨ω, π2⟩
a morphism of split extensions:

X
⟨1,0⟩

// X ×X

⟨ω,π2⟩
��

π2
// X

⟨1,1⟩
oo

X
⟨k,0⟩

// P (d, ck)
p2

// X.
⟨eck,1⟩
oo

As observed in the first part of the proof, both split extensions belong to S.
Once again, the Split Short Five Lemma implies that ⟨ω, π2⟩ is an isomor-
phism. We get then a star-multiplication by putting

ξ = π1⟨ω, π2⟩−1 : P (d, ck) → X.

Indeed:
ξ⟨k, 0⟩ = π1⟨ω, π2⟩−1⟨k, 0⟩ = π1⟨1X , 0⟩ = 1X

and
ξ⟨eck, 1⟩ = π1⟨ω, π2⟩−1⟨eck, 1⟩ = π1⟨1X , 1X⟩ = 1X .

Remark In a S-protomodular category, on a S-reflexive graph (1) there is
at most one star-multiplication, because, as observed in the previous proof,

the split epimorphism P (d, ck)
p2

// X
⟨eck,1⟩
oo belongs to S, and hence ⟨k, 0⟩ and
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⟨eck, 1⟩ are jointly strongly epimorphic. If, moreover, X is S-special, then
there is at most one star-division, because ⟨1X , 0⟩ and ⟨1X , 1X⟩ are jointly
strongly epimorphic.

In order to compare the fact that a S-reflexive graph is star-multiplicative
(or star-divisible) with the fact that the kernels of the domain and codomain
morphisms commute, we need the following.

Lemma 4.6. Let (1) be a star-multiplicative (or, equivalently, star-divisible)
S-reflexive graph such that X, the kernel of d, is a S-special object. The
following conditions are equivalent:

(i) the square P (d, ck)

p1
��

ξ
// X

ck
��

C1 c
// C0

is a pullback;

(ii) the square X ×X

ω
��

π1 // X

ck
��

C1 c
// C0

is a pullback.

Proof : Suppose that Condition (i) is satisfied. Consider the following dia-
gram:

X ×X

⟨ξ,p2⟩−1

��

π1 // X

P (d, ck)
ξ

//

p1
��

X

ck
��

C1 c
// C0.

The lower square is a pullback by hypothesis. The upper square commutes by
definition of the morphism ⟨ξ, p2⟩ : P (d, ck) → X ×X, because π1⟨ξ, p2⟩ = ξ.
It is a pullback because ⟨ξ, p2⟩−1 is an isomorphism. Then the whole rectan-
gle is a pullback.
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The proof that (ii) implies (i) is similar: it suffices to consider the diagram:

P (d, ck)
⟨ω,π2⟩−1

//

p1
��

X ×X

ω
��

π1 // X

ck
��

C1 C1 c
// C0.

Proposition 4.7. If (1) is a star-divisible S-reflexive graph, X = Ker(d)

is a S-special object and the square X ×X

ω
��

π1 // X

ck
��

C1 c
// C0

is a pullback, then

[X, Y ] = 0, where Y = Ker(c).

Proof : Complete the pullback in the statement with the horizontal kernels:

X
⟨0,1⟩

//

i
��

X ×X

ω
��

π1 // X

ck
��

Y
l

// C1 c
// C0.

Since the right hand side square is a pullback, i is an isomorphism. Its inverse
j is such that

ω⟨0, 1⟩j = ω⟨0, j⟩ = l.

Then we can define the cooperator φ : X×Y → C1 by putting φ = ω(1× j).
It is in fact a cooperator, since

φ⟨1, 0⟩ = ω(1× j)⟨1, 0⟩ = ω⟨1, 0⟩ = k

and
φ⟨0, 1⟩ = ω(1× j)⟨0, 1⟩ = ω⟨0, j⟩ = l.

Corollary 4.8. If (1) is a star-multiplicative S-reflexive graph, X = Ker(d)

is a S-special object and the square P (d, ck)

p1
��

ξ
// X

ck
��

C1 c
// C0

is a pullback, then

[X, Y ] = 0, where Y = Ker(c).
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The converses of Proposition 4.7 and Corollary 4.8 seem to be false in
general. In order to have that a S-reflexive graph with commuting kernels is
star-divisible (or star-multiplicative), we need stronger hypotheses. First we
need to introduce a generalisation of the notion of S-special morphism.

Definition 4.9. A morphism f : A → B in a S-protomodular category C is
said to be t-special, where t : Z → A is another morphism in C, if the upper
split epimorphism in the following pullback belongs to S:

P

π1
��

π2 // Z
⟨t,1⟩
oo

ft
��

A
f

// B.

Observe that, even when f has a section s such that (f, s) ∈ S, it is not
necessarily t-special, because the section ⟨t, 1⟩ is not the one induced by s
through the universal property of the pullback. A morphism f : A → B is
S-special if and only it is 1A-special.

Proposition 4.10. Let (1) be a S-reflexive graph such that also the point
(c, e) belongs to S, X is S-special, d is l-special and c is k-special, where
k : X → C1 and l : Y → C1 are kernels of d and c, respectively. If [X,Y ] = 0,
then (1) is star-divisible (and hence star-multiplicative, too) and the square

X ×X

ω
��

π1 // X

ck
��

C1 c
// C0

is a pullback.

Proof : We denote by P (c, ck) and P (d, dl) the following pullbacks:

P (c, ck)
pc2 //

pc1
��

X

ck
��

C1 c
// C0

P (d, dl)
pd2 //

pd1
��

Y

dl
��

C1
d

// C0.

First we observe that cφ = ckπX , where φ : X × Y → C1 is the cooper-
ator. This is easily seen by precomposing both sides with ⟨0, 1⟩ and ⟨1, 0⟩
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(that are jointly strongly epimorphic). Thus we obtain an induced morphism
⟨φ, πX⟩ : X × Y → P (c, ck). It is actually a morphism of split extensions:

Y
⟨0,1⟩

// X × Y
πX //

⟨φ,πX⟩
��

X
⟨1,0⟩
oo

Y
⟨l,0⟩

// P (c, ck)
pc2 // X.

⟨k,1⟩
oo

Since, by our hypotheses, (πX , ⟨1, 0⟩) and (pc2, ⟨k, 1⟩) belong to S (the first
because product projections are in S, the latter because c is k-special), the
Split Short Five Lemma implies that ⟨φ, πX⟩ is an isomorphism. Similarly
we obtain an isomorphism ⟨φ, πY ⟩:

X
⟨1,0⟩

// X × Y
πY //

⟨φ,πY ⟩
��

Y
⟨0,1⟩
oo

X
⟨k,0⟩

// P (d, dl)
pd2 // Y.
⟨l,1⟩
oo

For simplicity, let us denote α = ⟨φ, πX⟩−1 and β = ⟨φ, πY ⟩−1. Observe that
the following conditions hold:

φα = pc1
πXα = pc2

φβ = pd1

πY β = pd2

Now we show that in this case, that is when the two kernels commute, the
two objects X and Y are isomorphic in a strong sense: there are morphisms
i : X → Y and j : Y → X such that ij = 1Y , ji = 1X , ckj = dl and ck = dli.
Indeed, defining

i = πY α⟨eck, 1X⟩
j = πXβ⟨edl, 1Y ⟩,

where ⟨eck, 1X⟩ : X → P (c, ck) and ⟨edl, 1Y ⟩ : Y → P (d, dl) are induced by
the universal property of the pullback, we show that ckj = dl by using the
fact that cφ = ckπX and observing that

ckj = ckπXβ⟨edl, 1⟩ = cφβ⟨edl, 1⟩ = cpd1⟨edl, 1⟩ = cedl = dl;
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in a similar manner we prove ck = dli. To prove ij = 1Y we first observe
that

β⟨edl, 1Y ⟩ = α⟨edl, j⟩ (3)

or, equivalently, that ⟨φ, πX⟩β⟨edl, 1Y ⟩ = ⟨edl, j⟩. Indeed we have

⟨φ, πX⟩β⟨edl, 1Y ⟩ = ⟨φβ, πXβ⟩⟨edl, 1Y ⟩ = ⟨pd1⟨edl, 1Y ⟩, πXβ⟨edl, 1Y ⟩⟩
= ⟨edl, j⟩.

From here we observe that composing both sides of the equation (3) with πY
gives on the one hand 1Y , while on the other hand we get ij:

πY β⟨edl, 1Y ⟩ = pd2⟨edl, 1Y ⟩ = 1Y ,

πY α⟨edl, j⟩ = πY α⟨eckj, j⟩ = πY α⟨eck, 1X⟩j = ij.

This shows that ij = 1Y , a similar argument can be used to show that
ji = 1X . It is now an easy task to check that ⟨1, i⟩ : X → X × Y is the same
as α⟨eck, 1X⟩, since

πXα⟨eck, 1X⟩ = 1X

and

πY α⟨eck, 1X⟩ = i

and similarly we have β⟨edl, 1Y ⟩ = ⟨j, 1Y ⟩. Now we can define the star-
division as ω = φ(1× i) : X ×X → C1. It is in fact a star-division, since

ω⟨1, 0⟩ = φ(1× i)⟨1, 0⟩ = φ⟨1, 0⟩ = k

and

ω⟨1, 1⟩ = φ(1× i)⟨1, 1⟩ = φ⟨1, i⟩ = φα⟨eck, 1X⟩ = pc1⟨eck, 1X⟩ = eck.

Finally, to prove that the square

X ×X

ω
��

π1 // X

ck
��

C1 c
// C0

is a pullback we use the facts that i is an isomorphism, the split epimorphisms
(π1, ⟨1, 1⟩) and (pc2, ⟨eck, 1⟩) are both in S (the first because X is S-special,
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the second because (c, e) is in S) and the commutativity of the diagram

X
⟨0,1⟩

//

i
��

X ×X
π1 //

⟨ω,π1⟩
��

X
⟨1,1⟩
oo

Y
⟨l,0⟩

// P (c, ck)
pc2 // X

⟨eck,1⟩
oo

to show that ⟨ω, π1⟩ is an isomorphism.

5. Variations on the “Smith is Huq” condition
Before proving that, in every category of monoids with operations, the

(SH) condition, relatively to S-equivalence relations (condition (b) of Theo-
rem 4.2), is satisfied, we study some variations of this condition. The first
one (condition (i) in Theorem 5.1 below) was already considered, in the ab-
solute case (i.e. when S is the class of all points) in [9].

Let C be a pointed finitely complete category. For any object X ∈ C the
kernel functor

KerX : PtX(C) → C
is the functor associating, with every point, its kernel.

Theorem 5.1. Let C be a S-protomodular category. Consider the following
conditions:

(i) For every X ∈ C the kernel functor KerX : PtX(C) → C reflects the
commutativity of normal subobjects, whenever the domains of the two
subobjects are points belonging to S;

(ii) two S-equivalence relations centralise each other as soon as their nor-
malisations commute.

We have that condition (i) implies condition (ii).

Proof : As we observed in Section 3, two S-equivalence relations R and W on
the same object X can be seen as two subobjects of (π1,∆X) : X ×X � X
in PtX(C):

R //
(r2,r1) //

r2
##H

HH
HH

HH
HH

HH
X ×X

π1
��

Woo
(w1,w2)oo

w1
zzuu
uu
uu
uu
uu
uu

X.

eR
ccHHHHHHHHHHH

eW
::uuuuuuuuuuuu

∆X

OO
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Observe that, being R an equivalence relation (and hence symmetric), the
points (r1, eR) and (r2, eR) are isomorphic. Since the first is in S, the second
is in S, too. Moreover, r1 and r2 have isomorphic kernels. The relations R
and W as above are actually normal subobjects of (π1,∆X), indeed they are
the normalisations of the following equivalence relations in PtX(C):

X ×R

πX

$$I
II

II
II

II
II

II
II

II
II

I 1X×r1
//

1X×r2 //
X ×X

π1

��

oo // X ×W
1X×w2oo

1X×w1

oo

πX

zzuu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u

X.

⟨1X ,eR⟩

ddIIIIIIIIIIIIIIIIIIII

∆X

OO

⟨1X ,eW ⟩

::uuuuuuuuuuuuuuuuuuuuu

Recalling that two S-equivalence relations on X centralise each other if and
only if, when they are seen as subobjects in PtX(C), they commute, the fact
that condition (i) implies (ii) is immediate.

Since the kernel functors always preserve the commutativity of any pair
of subobjects, it is easy to see that condition (i) above is equivalent to the
condition that, for every morphism p : E → B in C, the pullback functor

p∗ : PtB(C) → PtE(C),

which sends every split epimorphism over B into its pullback along p, reflects
the commutativity of normal subobjects, whenever the domains of the two
subobjects are points belonging to S.

It was proved in [6], Theorem 2.4.6, that, in the category Mon of monoids,
the kernel functors reflect the commutativity not only of pairs of normal
subobjects, but of any pair of morphisms, provided that their domains are
points belonging to the class S of Schreier split epimorphisms. This fact,
which obviously implies both conditions in the previous theorem, is true in
any category of monoids with operations. Before proving this, we reformulate
the above mentioned condition about the reflection of commutativity by the
kernel functors in other terms, following the same idea as in Proposition 4.1
in [19].

Proposition 5.2. Let C be a S-protomodular category. The following con-
ditions are equivalent:
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(i) For every X ∈ C the kernel functor KerX : PtX(C) → C reflects the
commutativity of any pair of morphisms, whenever their domains are
points belonging to S;

(ii) given any diagram of the form

A

α   @
@@

@@
@@

@
f

// B
roo

β
��

s // C
g

oo

γ~~}}
}}
}}
}}

D,

(4)

where (f, r) and (g, s) are points in S, and αr = β = γs, if the
morphisms αk and γl commute (where k : X → A is a kernel of f , and
l : Y → C is a kernel of g), there exists a morphism φ : A×B C → D,
where A×B C is the following pullback

A×B C

p1
��

p2
// C

e2oo

g
��

A

e1

OO

f
// B,

roo

s

OO

such that φe1 = α and φe2 = γ.

Proof : Condition (i) is the particular case of (ii), where the morphism β in
diagram (4) has a retraction p making α and γ morphisms of points. The
only thing that needs to be proved is that the morphism φ is a morphism of
points, whose domain is fp1 = gp2 : A ×B C → B, with section e1r = e2s.
We first observe that

pφe1 = pα = f = fp1e1,

and, similarly, pφe2 = fp1e2. Being e1 and e2 jointly strongly epimorphic,
we get that pφ = fp1 = gp2. Moreover

φe1r = αr = β.

This proves that (ii) implies (i). To prove the converse, we rewrite diagram
(4) as:

A

f
##G

GG
GG

GG
GG

G

⟨α,f⟩
// D ×B

πB
��

C
⟨γ,g⟩
oo

g
{{ww
ww
ww
ww
ww

B,

rccGGGGGGGGGG
⟨β,1⟩
OO s ;;wwwwwwwwww
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and we look at it as a cospan (⟨α, f⟩, ⟨γ, g⟩) in PtB(C). Since (f, r) and (g, s)
belong to S, it is immediate to see that (i) implies (ii).

Corollary 5.3. If the equivalent conditions of Proposition 5.2 are satisfied,
then all the conditions of Theorem 4.2 are satisfied.

Proof : We only need to prove Condition (a), since the others are implied
by it. In order to do that, consider a S-reflexive graph (1) such that both
points (d, e) and (c, e) belong to S and the kernels of d and c commute. Then
Condition (ii) of Proposition 5.2, applied to the diagram

C1

1C1 !!B
BB

BB
BB

B d
// B

eoo

e
��

e // C
c

oo

1C1~~}}
}}
}}
}}

C1,

gives the desired multiplication.

In order to prove that in every category of monoids with operations the
equivalent conditions of Proposition 5.2 are satisfied, we need the following.

Lemma 5.4. If X
k

// A
qf

oo

f
// B

soo is a Schreier split epimorphism in a cat-

egory of monoids with operations, the Schreier retraction qf satisfies the fol-
lowing equalities:

(a) kqf(s(b)+ k(x))+ s(b) = s(b)+ k(x) for any b ∈ B and any x ∈ X;
(b) qf(a+ a′) = qf(a) + qf(sf(a) + qf(a

′));
(c) qf(a ∗ a′) = qf(a) ∗ qf(a′) + sf(a) ∗ qf(a′) + qf(a) ∗ sf(a′)

for any binary operation ∗ ∈ Ω2, different from the monoid operation
+.

Proof : The equalities (a) and (b) were proved in [6], Proposition 2.1.5. The
equality (c) was proved, in the particular case of semirings, in [6], Proposition
6.0.11; the proof of the general case is completely analogous. Observe that
sf(a)∗qf(a′) and qf(a)∗sf(a′) belong to the kernel of f , so they are elements
of X.
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Proposition 5.5. Let C be a category of monoids with operations. Consider
the following diagram in C:

Y

l
��

A×B C

p1
��

p2
// C

e2oo

g
��

qg

OO

γ

��

X
k

// A

e1

OO

f
//

qf
oo

α ++

B
roo

s

OO

β

  A
AA

AA
AA

A

D,

where (f, r) and (g, s) are Schreier split epimorphisms, with kernels k and l,
respectively, and αr = β = γs. If αk and γl commute, then there exists a
morphism φ : A×B C → D such that φe1 = α and φe2 = γ.

Proof : We first observe that saying that αk and γl commute means that,
for every x ∈ X and every y ∈ Y , αk(x) + γl(y) = γl(y) + αk(x), and
αk(x)∗γl(y) = γl(y)∗αk(x) = 0 for any other binary operation ∗ ∈ Ω2. The
morphism φ we are looking for is defined by:

φ(a, c) = αkqf(a) + γ(c).

It is easy to see that φe1 = α and φe2 = γ, indeed:

φe1(a) = φ(a, sf(a)) = αkqf(a) + γsf(a) = α(kqf(a) + rf(a)) = α(a),

and
φe2(c) = φ(rg(c), c) = αkqfrg(c) + γ(c) = γ(c),

since qfr = 0 ([6], Proposition 2.1.5). It remains to prove that φ is a mor-
phism. We have:

φ((a, c) + (a′, c′)) = φ(a+ a′, c+ c′) = αkqf(a+ a′) + γ(c+ c′) =

= αk(qf(a) + qf(rf(a) + kqf(a
′))) + γ(c) + γ(c′) =

= αkqf(a) + αk(qf(rf(a) + kqf(a
′))) + γlqg(c) + γsg(c) + γ(c′)

Since αk and γl commute, the last expression is equal to:

αkqf(a) + γlqg(c) + αk(qf(rf(a) + kqf(a
′))) + αrf(a) + γ(c′) =

= αkqf(a) + γlqg(c) + α(k(qf(rf(a) + kqf(a
′))) + rf(a)) + γ(c′) =

= αkqf(a) + γlqg(c) + α(rf(a) + kqf(a
′)) + γ(c′) =
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= αkqf(a) + γlqg(c) + γsg(c) + αkqf(a
′) + γ(c′) =

= αkqf(a) + γ(c) + αkqf(a
′) + γ(c′) = φ(a, c) + φ(a′, c′)

If ∗ is any other binary operation, we have:

φ(a, c) ∗ φ(a′, c′) = (αkqf(a) + γ(c)) ∗ (αkqf(a′) + γ(c′)) =

= αkqf(a) ∗ αkqf(a′) + γ(c) ∗ αkqf(a′) + αkqf(a) ∗ γ(c′) + γ(c) ∗ γ(c′) =
= αkqf(a) ∗ αkqf(a′) + γ(lqg(c) + sg(c)) ∗ αkqf(a′)+

+αkqf(a) ∗ γ(lqg(c′) + sg(c′)) + γ(c) ∗ γ(c′)
Using the distributivity of ∗ w.r.t. + and the fact that αk and γl commute,
which gives that γlqg(c) ∗ αkqf(a′) = 0 = αkqf(a) ∗ γlqg(c′), we obtain that
the last expression is equal to:

αkqf(a) ∗ αkqf(a′) + γsg(c) ∗ αkqf(a′) + αkqf(a) ∗ γsg(c′) + γ(c) ∗ γ(c′) =

= αkqf(a) ∗αkqf(a′)+αrf(a) ∗αkqf(a′)+αkqf(a) ∗αrf(a′)+ γ(c) ∗ γ(c′) (•)
=

= αk(qf(a) ∗ qf(a′) + rf(a) ∗ qf(a′) + qf(a) ∗ rf(a′)) + γ(c) ∗ γ(c′) =
= αkqf(a ∗ a′) + γ(c) ∗ γ(c′) = φ(a ∗ a′, c ∗ c′) = φ((a, c) ∗ (a′, c′))

where the equality (•) holds because rf(a)∗qf(a′) and qf(a)∗rf(a′), being in
the kernel of f , can be seen as elements of X. This completes the proof.

Combining the previous proposition with Corollary 5.3, we get the following

Corollary 5.6. In every category of monoids with operations, two Schreier
equivalence relations centralise each other as soon as their normalisations
commute.

6. Consequences of the “Smith is Huq” condition
As a consequence of the “Smith is Huq” condition for S-equivalence re-

lations, we mention the following fact, concerning the characterisation of
internal categories and internal groupoids. The following proposition was
proved in [8] (Proposition 7.5 there):

Proposition 6.1. Let C be a S-protomodular category. Consider a S-reflexive
graph in C such that d is a S-special morphism:

C1
c

//

d //
C0.eoo

The following conditions are equivalent:
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(1) the graph is underlying an internal S-category;
(2) the graph is underlying an internal S-groupoid;
(3) the kernel equivalence relations of d and c centralise each other.

If C is a S-protomodular category in which the “Smith is Huq” condi-
tion for S-equivalence relations is satisfied, the previous propositions can be
reformulated in the following way:

Proposition 6.2. Let C be a S-protomodular category in which the “Smith is
Huq” condition for S-equivalence relations is satisfied. Consider a S-reflexive
graph in C such that d is a S-special morphism:

C1
c

//

d //
C0.eoo

The following conditions are equivalent:

(1) the graph is underlying an internal S-category;
(2) the graph is underlying an internal S-groupoid;
(3) the kernels of d and c commute.
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