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1. Introduction

The Frölicher-Nijenhuis calculus was developed in the seminal article [2]
and extended to Lie algebroids in [10]. It has proven to be an indispensable
tool of Differential Geometry. Indeed, different kinds of curvatures and ob-
structions to integrability are computed by the Frölicher-Nijenhuis bracket.
For example, if J : TM → TM is an almost-complex structure, then J is
complex structure if and only if the Nijenhuis tensor NJ = 1

2[J, J ]FN vanishes
(this is the celebrated Newlander-Nirenberg theorem [9]). If F : TM → TM

is a fibrewise diagonalizable endomorphism with real eigenvalues and of con-
stant multiplicity, then the eigenspaces of F are integrable if and only if
[F, F ]FN = 0 (see [4]). Further, if P : TE → TE is a projection operator on
the tangent spaces of a fibre bundle E → B, then [P, P ]FN is a version of the
Riemann curvature (see [5], page 78). Finally, given a Lie algebroid A and
N ∈ Γ(A∗⊗A) such that [N,N ]FN = 0, one can construct a new (deformed)
Lie algebroid AN (cf. [3, 6]). Moreover, Frölicher-Nijenhuis calculus is useful
in geometric mechanics where it allows to give an intrinsic formulation of
Euler-Lagrange equations. In this field, Lie algebroids have also been shown
to be a useful tool to deal with systems with some kinds of symmetries.
In [8], P. Michor obtained a short expression for the Frölicher-Nijenhuis

bracket on manifolds in terms of the covariant Lie derivatives. A formula for
the Frölicher-Nijenhuis bracket on Lie algebroids in supergeometric language
was obtained by P. Antunes in [1]. In this paper we define some operators
relevant for Frölicher-Nijenhuis calculus in the setting of Lie algebroids, in-
cluding the covariant Lie derivative, and study their properties. In this way
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we are able to extend Michor’s formula for Frölicher-Nijenhuis bracket to Lie
algebroids.

2. Covariant Lie derivative on Lie algebroids

Let (A, [ , ], ρ) be a Lie algebroid over a manifoldM , and E a vector bundle
overM . We write Ωk(A, E) = Γ(∧kA∗⊗E) for the space of skew-symmetric
E-valued k-forms on A. If E =M × R is the trivial line bundle over M , we
denote Ωk(A, E) by Ωk(A).
We write Σm for the permutation group on {1, . . . , m}. For k and s such

that k + s = m, we denote by Shk,s the subset of (k, s)-shuffles in Σm. Thus
σ ∈ Shk,s if and only if

σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < · · · < σ(k + s).

Similarly, for a triple (k, l, s), such that k + l + s = m, we denote by Shk,l,s
the subset of (k, l, s)-shuffles in Σm, that is the set of permutations σ, such
that

σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l),

σ(k + l + 1) < · · · < σ(k + l + s).

For a k-form ω ∈ Ωk(A) and φ ∈ Ωp(A, E) , we define the form ω∧φ ∈
Ωk+p(A, E) by

(ω∧φ) (Z1, . . . , Zp+k) =
∑

σ∈Shk,p

(−1)σω
(

Zσ(1), . . . , Zσ(k)
)

φ(Zσ(k+1), . . . , Zσ(k+p)).

Here and everywhere in this paper Z1, . . . , Zp+k denote arbitrary sections of
the Lie algebroid A. If E = M × R is the trivial line bundle over M , we
denote ∧ by ∧, and Ω∗(A) becomes a commutative graded algebra with the
multiplication given by ∧. Further, note that Ω∗(A, E) is an Ω∗(A)-module
with the action given by ∧. For any ω ∈ Ωk(A) we define the operator ǫω on
Ω∗(A, E) by

ǫω : Ω∗(A, E) → Ω∗+k(A, E)

φ 7→ ω∧φ

Sometimes, given a operator A we will use ω ∧ A as an alternative notation
for ǫωA.
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Let φ ∈ Ωp(A,A). For any vector bundle E overM , we define the operator
iφ on Ω∗(A, E) by

(iφψ) (Z1, . . . , Zp+k) =
∑

σ∈Shp,k

(−1)σψ
(

φ(Zσ(1), . . . , Zσ(p)), Zσ(p+1), . . . , Zσ(p+k)
)

(1)

where ψ ∈ Ωk+1(A, E).
We say that ∇ : Γ(A)× Γ(E) → Γ(E) is an A-connection on E (see [7]) if

1) ∇X is an R-linear endomorphism of Γ(E);
2) ∇s is a C∞(M)-linear map from Γ(A) to Γ(E);
3) ∇X(fs) = (ρ(X)f)s + f∇Xs for any f ∈ C∞(M), X ∈ Γ(A), and s ∈

Γ(E).

The curvature of an A-connection ∇ is defined by

R(X, Y )s := ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

It is easy to check that R is tensorial and skew-symmetric in the first two
arguments, thus we can consider R as an element of Ω2(A,End(E)), where
End(E) is the endomorphism bundle of E.
Given an A-connection on a vector bundle E, we define the covariant ex-

terior derivative on Ω∗(A, E) by

(d∇φ) (Z1, . . . , Zp+1) =
∑

σ∈Sh1,p

(−1)σ∇E
Zσ(1)

(

φ(Zσ(2), . . . , Zσ(p+1))
)

−
∑

σ∈Sh2,p−1

(−1)σφ
([

Zσ(1), Zσ(2)
]

, Zσ(3), . . . , Zσ(p+1)

)

.

Note that d∇ is related to the curvature R of ∇E by the formula

((d∇)2φ)(Z1, . . . , Zp+2) =
∑

σ∈Sh2,p

(−1)σR(Zσ(1), Zσ(2))
(

φ(Zσ(3), . . . , Zσ(p+2))
)

.

Definition 1. A derivation of degree k on Ω∗(A, E) is a linear map D : Ω∗(A, E) →
Ω∗+k(A, E) such that

D(ω∧φ) = D(ω)∧φ+ (−1)kpω∧D(φ)

for all ω ∈ Ωp(A) and φ ∈ Ω∗(A, E), where D : Ω∗(A) → Ω∗(A) is some
map.
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For any derivation D on Ω∗(A, E) and α ∈ Ω∗(A), we have

[D, ǫα] = ǫDα.

In particular, the map D is unique for a given derivation D on Ω∗(A, E). Let
ω1 ∈ Ωp1(A), ω2 ∈ Ωp2(A). From the following computation

D((ω1 ∧ ω2)∧φ) = D(ω1 ∧ ω2)∧φ+ (−1)k(p1+p2)ω1 ∧ ω2∧D(φ)

D(ω1∧(ω2∧φ)) = D(ω1) ∧ ω2∧φ+ (−1)kp1ω1∧D(ω2∧φ)

= D(ω1) ∧ ω2∧φ+ (−1)kp1ω1 ∧D(ω2)∧φ+ (−1)k(p1+p2)ω1 ∧ ω2∧D(φ)

one can see that D is a derivation on Ω∗(A).
It is easy to check that for any given φ ∈ Ωk(A,A), iφ is a derivation of

degree k − 1, and d∇ is a derivation of degree 1 on Ω∗(A, E). The covariant
Lie derivative L∇

φ is defined as the graded commutator [iφ, d
∇] = iφd

∇ +

(−1)kd∇iφ. The graded commutator of two derivations of degree k and l is
a derivation of degree k + l. In particular, L∇

φ is a derivation of degree k for

any φ ∈ Ωk(A,A).
Suppose we have an A-connection ∇ on A. We will say that ∇ is torsion-

free if ∇XY − ∇YX = [X, Y ] for all X, Y ∈ Γ(A). On every algebroid
(A, [ , ], ρ), there exists a torsion-free A-connection. Namely, one can take
an arbitrary bundle metric onA and the associated Levi-Civita connection on
A. Given A-connections ∇A on A and ∇E on E, we define ∇Xs ∈ Ωp(A, E)
for every s ∈ Ωp(A, E) by

(∇Xs)(Z1, . . . , Zp) := ∇E
X(s(Z1, . . . , Zp))−

p
∑

t=1

s(Z1, . . . ,∇
A
XZt, . . . , Zp).

It is easy to check that for any s ∈ Ωk(A, E), X ∈ Γ(A), and a torsion-
free A-connection on A, we have L∇

Xs = ∇Xs + i∇Xs and ∇X = d∇X. In
other words ∇X = L∇

X − id∇X . Motivated by this relation, we define for
φ ∈ Ωp(A,A) an operator ∇φ on Ω∗(A, E) by

∇φ := L∇
φ − (−1)pid∇φ. (2)

Note that ∇φ depends on two connections: an A-connection on E and a
torsion-free A-connection on A. Since ∇φ is a linear combination of two
derivations of degree p, we see that ∇φ is a derivation of degree p. The
following proposition shows that for s ∈ Ω∗(A,E) the map ∇s : Ω∗(A,A) →
Ω∗ (A, E) is a homomorphism of Ω∗(A)-modules.
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Proposition 2. For any ω ∈ Ωp(A), φ ∈ Ωk(A,A), and s ∈ Ω∗(A, E), we
have

∇ω∧φs = (ω ∧∇φ)s = ǫω∇φs = ω∧(∇φs).

Proof : The equation

L∇
ω∧φ =

[

iω∧φ, d
∇
]

=
[

ω ∧ iφ, d
∇
]

= (−1)k+p(dω) ∧ iφ + ω ∧ L∇
φ

implies that ω ∧ L∇
φ = L∇

ω∧φ − (−1)p+ki(dω)∧φ. Now we have

ω ∧∇φ = ω ∧ L∇
φ − (−1)pω ∧ id∇φ = L∇

ω∧φ − (−1)p+ki(dω)∧φ − (−1)piω∧d∇φ

= L∇
ω∧φ − (−1)p+kidω∧φ+(−1)kω∧d∇φ = ∇ω∧φ.

It was proven in [10] that the commutator [iφ, iψ] for φ ∈ Ωk(A,A) and
ψ ∈ Ωl(A,A) is given by the formula

[iφ, iψ] = iiφψ − (−1)(k−1)(l−1)iiψφ. (3)

Theorem 3. Let ∇ be a torsion-free A-connection on A and ∇E be an A-
connection on a vector bundle E. For φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A) we
have on Ω∗(A, E)

[∇φ, iψ] = i∇φψ − (−1)k(l−1)∇iψφ. (4)

Proof : First we check the claim for φ = X ∈ Γ(A) and ψ = Y ∈ Γ(A). Let
s ∈ Ωp+1(A, E). We get

(∇XiY s)(Z1, . . . , Zp) = ∇E
X(s(Y, Z1, . . . , Zp))−

p
∑

t=1

s(Y, Z1, . . . ,∇XZt, . . . , Zp)

= (∇Xs)(Y, Z1, . . . , Zp) + s(∇XY, Z1, . . . , Zp)

= (iY∇Xs)(Z1, . . . , Zp) + (i∇XY s)(Z1, . . . , Zp).

Thus [∇X, iY ] = i∇XY . Since (4) is additive in φ and ψ, it is enough to prove
it for φ = α∧X, ψ = β∧Y , where α ∈ Ωk(A), β ∈ Ωl(A), and X, Y ∈ Γ(A).
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Repeatedly using Proposition 2 and [∇X, iY ] = i∇XY , we get
[

∇α∧X , iβ∧Y
]

= [α ∧∇X , β ∧ iY ] = [ǫα, β ∧ iY ]∇X + ǫα [∇X , β ∧ iY ]

= (−1)klǫβ [ǫα, iY ]∇X + ǫα[∇X, ǫβ]iY + ǫαǫβ[∇X , iY ]

= −(−1)kl−lǫβǫiY α∇X + ǫαǫ∇XβiY + ǫαǫβi∇XY

= iα∧∇Xβ∧Y+α∧β∧∇XY + (−1)(k−1)l∇β∧iY α∧X

= iα∧∇X(β∧Y ) + (−1)(k−1)l∇β∧iY (α∧X)

= i∇α∧X(β∧Y ) + (−1)(k−1)l∇iβ∧Y (α∧X).

To formulate the next result, we extend the definition of R by defining for
any φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A) the form R(φ, ψ) ∈ Ωk+l+1(A,A) as
follows

R(φ, ψ)(Y1, . . . , Yk+l+1) =

=
∑

σ∈Shk,l,1

R(φ(Yσ(1), . . . , Yσ(p)), ψ(Yσ(p+1), . . . , Yσ(p+q)))Yσ(p+q+1).

Theorem 4. Let ∇ be a torsion-free A-connection on A and ∇E a flat A-
connection on a vector bundle E over M (i.e. ∇E is a representation of A).
Then for any φ ∈ Ωk(A,A), ψ ∈ Ωl(A,A), we have the following equality on
Ω∗(A, E)

[∇φ,∇ψ] = ∇∇φψ − (−1)kl∇∇ψφ − iR(φ,ψ). (5)

Proof : First we prove (5) for φ = X,ψ = Y ∈ Γ(A). For s ∈ Ωp(A), we get

(∇X∇Y s)(Z1, . . . , Zp)=∇E
X(∇

E
Y s(Z1, . . . , Zp))−

p
∑

s=1

∇E
Y s(Z1, . . . ,∇XZs, . . . , Zp)

= ∇E
X∇

E
Y (s(Z1, . . . , Zp))−

p
∑

s=1

∇E
X(s(Z1, . . . ,∇YZs, . . . , Zp))

−

p
∑

s=1

∇E
Y (s(Z1, . . . ,∇XZs, . . . , Zp) +

p
∑

s=1

s(Z1, . . . ,∇Y∇XZs, . . . , Zp)

+
∑

s 6=t

s(Z1, . . . ,∇YZt, . . . ,∇XZs, . . . , Zp).
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By anti-symmetrization of the above formula in X and Y and using that ∇E

is flat, we get

[∇X ,∇Y ] s(Z1, . . . , Zp) =∇
E
[X,Y ](s(Z1, . . . , Zp))−

p
∑

s=1

s(Z1, . . . , [∇X,∇Y ]Zs, . . . , Zp).

Further

(∇∇XY −∇∇YX)s(Z1, . . . , Zp) = ∇E
∇XY−∇YX

(s(Z1, . . . , Zp))

−

p
∑

s=1

s(Z1, . . . , (∇∇XY −∇∇YX)Zs, . . . , Zp).

Taking the difference of the last two formulas and using the definition of R
and that ∇ torsion-free, we have

(([∇X,∇Y ]−∇∇XY +∇∇YX)s)(Z1, . . . , Zp) = (−iR(X,Y )s)(Z1, . . . , Zp).

Since (5) is additive in φ and ψ, it is enough to prove it for φ = α∧X and
ψ = β∧Y , where α ∈ Ωk(A), β ∈ Ωl(A), and X, Y ∈ Γ(A). Using the
already proved case and Proposition 2, we get

[∇α∧X ,∇β∧Y ] = [α ∧∇X , β ∧∇Y ] = [ǫα, β ∧∇Y ]∇X + ǫα[∇X , β ∧ ∇Y ]

= (−1)klǫβ[ǫα,∇Y ]∇X + ǫα[∇X , ǫβ]∇Y + ǫαǫβ[∇X,∇Y ]

= −(−1)klǫβǫ∇Y α∇X + ǫαǫ∇Xβ∇Y + ǫαǫβ(∇∇XY −∇∇YX − iR(X,Y )).

Repeatedly using Proposition 2, we see that [∇α∧X ,∇β∧Y ] can be written as
∇θ + iτ , where

θ = −(−1)klβ ∧∇Y α∧X + α ∧∇Xβ∧Y + α ∧ β∧∇XY − α ∧ β∧∇YX

= α∧ ∇X(β ∧Y )− (−1)kl(β ∧ ∇Y (α∧X)) = ∇φψ − (−1)kl∇ψφ

and

τ = −α ∧ β∧R(X, Y ) = −R(α∧X, β∧Y ) = −R(φ, ψ).

This finishes the proof.

Note that the connection ∇ρ
Xf := ρ(X)f defined on the trivial line bundle

M × R → M is obviously flat. Thus (5) holds on Ω∗(A), if ∇ is defined via
∇ρ and any torsion-free connection on A.
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3. The Frölicher-Nijenhuis bracket on Lie algebroids

In [10], Nijenhuis defined the Frölicher-Nijenhuis bracket on Lie algebroids
of φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A) by an equality of operators on Ω∗(A)
equivalent to

[L∇
φ , iψ] = i[φ,ψ]FN − (−1)k(l−1)L∇

iψφ
. (6)

He also obtained a formula for computing [φ, ψ]FN . In the next theorem we
give an alternative formula using the covariant Lie derivatives, which extends
the one obtained in [8] to the Lie algebroids setting.

Theorem 5. Let φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A). Suppose ∇ be a torsion-
free A-connection on A. Then

[φ, ψ]FN = L∇
φ ψ − (−1)klL∇

ψφ.

Proof : By (2) we have

[L∇
φ , iψ] = [∇φ + (−1)kid∇φ, iψ] = [∇φ, iψ] + (−1)k[id∇φ, iψ].

Hence, using (3) and (4) we get

[L∇
φ , iψ] = i∇φψ − (−1)k(l−1)∇iψφ + (−1)kii

d∇φ
ψ − (−1)kliiψd∇φ.

Next, using (2) in the second summand we have

[L∇
φ , iψ] =− (−1)k(l−1)

(

L∇
iψφ

− (−1)k+l−1id∇iψφ

)

+ i∇φψ + (−1)kii
d∇φ

ψ − (−1)kliiψd∇φ.

Notice that the subscripts of L∇ in (6) and in the above formula are the
same. Hence, due to the injectivity of φ 7→ iφ, we get by comparing the
subscripts of i that

[φ, ψ]FN =(−1)k(l−1)(−1)k+l−1d∇iψφ+∇φψ + (−1)kid∇φψ − (−1)kliψd
∇φ

=∇φψ + (−1)kid∇φψ − (−1)kl(iψd
∇φ− (−1)l−1d∇iψφ)

Finally, using the definitions of ∇φ and of L∇
ψ we get the claimed result.
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[8] P. W. Michor. Remarks on the Frölicher-Nijenhuis bracket. In Differential geometry and its
applications (Brno, 1986), volume 27 of Math. Appl., pages 197–220. Reidel, Dordrecht, 1987.

[9] A. Newlander and L. Nirenberg. Complex analytic coordinates in almost complex manifolds.
Ann. of Math. (2), 65:391–404, 1957.

[10] A. Nijenhuis. Vector form brackets in Lie algebroids. Arch. Math. (Brno), 32(4):317–323, 1996.

Antonio De Nicola

CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address : antondenicola@gmail.com

Ivan Yudin

CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal

E-mail address : yudin@mat.uc.pt


	1. Introduction
	2. Covariant Lie derivative on Lie algebroids
	3. The Frölicher-Nijenhuis bracket on Lie algebroids
	Acknowledgments
	References

