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Introduction

In a previous paper ([15]), continuing in a way a paper by Simmons ([19]),
we analyzed several features of the subfitness axiom. Defined by Isbell in [9],
it was right away dismissed because of its unsatisfactory categorial behaviour.
But a categorial behaviour of an isolated concept is not everything and one
can show that subfitness is in fact a very useful one. In [15] we presented

• several results on subfitness as a supportive property (e.g. in the
context of weak Hausdorff properties it not only makes one of them
conservative, as shown in [5] — see also [4]; moreover, augmented by
subfitness many weak Hausdorff properties coincide),

• some features of the relation between subfitness and fitness,

• a related concept of prefitness and a new characteristic of fitness.

When preparing a talk for the ACT V Conference (Brussels, September
2014), aiming to advertise the usefulness of subfitness we obtained some
further new facts and insights we would like to present here.
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2 J. PICADO AND A. PULTR

A brief analysis of the Isbell’s spatialization theorem (the only feature of
subfitness the author seemed to really like) leads us to a concept of T1-
spatiality. This, a.o. compared with the concept of TD-spatiality ([3]), is a
subject of Section 2.
In Section 3 we discuss the relation of subfitness with some other weak

separation axioms, in particular with the symmetry, also in the context of
spaces where the subfitness, although not often employed, is also relevant
([6]).
In Section 4 we discuss the codensity (in analogy with density, a subspace

resp. sublocale is codense if the intersection with each non-void closed sub-
object is non-void). In particular we show that a locale is subfit iff it has no
non-trivial codense subobject.
Comparing the results for spaces and for locales we encounter several seem-

ing discrepancies. They are explained in Section 5 scrutinizing the relations
of induced sublocales and subspaces in spatial frames.

Originally, the authors’ intention was just to supplement the previous paper
[15] by the facts appearing in the ACT V talk as mentioned above. It should
be stated, however, that while doing this we have encountered new problems
(and re-encountered an old, unsolved, one) deserving further investigation.
The subject is not exhausted.

1. Preliminaries

1.1. In a poset (X,≤) we use the standard notation ↓A = {x | ∃a ∈ A, x ≤
a} and similarly ↑A. The suprema (joins) are denoted, as usual, by ∨,

∨

,
and infima (meets) by ∧,

∧

. The elements 0 resp. 1 is the smallest resp. the
largest element, and a∗ is the pseudocomplement of a (if it exists).

1.2. A frame resp. co-frame is a complete lattice L satisfying the distributive
law

a ∧ (
∨

B) =
∨

{a ∧ b | b ∈ B} resp. a ∨ (
∧

B) =
∧

{a ∨ b | b ∈ B}

for all a ∈ L and B ⊆ L. Thus, the mappings (x 7→ x ∧ b) : L → L preserve
suprema and hence we have the right Galois adjoints (x 7→ (b→x)) : L → L,

a ∧ b ≤ c iff a ≤ b→c,
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making the frame a Heyting algebra.
A typical frame is the lattice

Ω(X)

of all open sets of a topological space X. A frame homomorphism h : L → M
preserves all joins and finite meets; if f : X → Y is a continuous map we have
a frame homomorphism Ω(f) : Ω(Y ) → Ω(X) defined by Ω(f)(U) = f−1[U ].

1.2.1. The Ω above is a contravariant functor from the category Top of
topological spaces into the category of frames, Frm. It becomes covariant if
we consider the opposite category

Loc = Frmop.

It is of advantage to treat the category Loc as a concrete one with the
opposite arrows to frame homomorphisms h : L → M represented as their
right Galois adjoints f : M → L; these will be referred to as localic maps.
Emphasizing this point of view we often speak of frames as of locales.

1.2.2. The functor Ω : Top → Loc has a right adjoint Σ : Loc → Top

called the spectrum. For us it will be of advantage to use the description of
ΣL as the set {p ∈ L | p prime} endowed with the topology {Σa | a ∈ L}
where Σa = {p | a � p}.

1.3. One thinks of a frame L as of a generalized space. One of several
representations of a (generalized) subspace of L is that of a sublocale. It is a
subset S ⊆ L such that

(S1) M ⊆ S ⇒
∧

M ∈ S, and
(S2) x ∈ L, s ∈ S ⇒ x→s ∈ S.

S is a frame in the order of L and inherits its Heyting structure, and the
embedding jS : S ⊆ L is a localic map. The corresponding frame homomor-
phism (the left adjoint)

νS : L → S

is given by νS(x) =
∧

{s ∈ S | s ≥ x}. The system of all sublocales consti-
tutes a co-frame

S(L)

with the order given by inclusion, meet coinciding with the intersection and
the join given by

∨

Si = {
∧

M | M ⊆
⋃

Si};
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the top is L and the bottom is the set O = {1}; the latter, representing the
void subspace, will be referred to as the void, or empty, sublocale.
Another representation of sublocales we will sometimes use is that by frame

congruences E = {(a, b) ∈ L× L | νS(a) = νS(b)}.

1.3.1. Open resp. closed subspaces are represented by open resp. closed
sublocales

o(a) = {x | a→x = x} = {a→x | x ∈ L} resp. c(a) = ↑a = {x | x ≥ a}.

o(a) and c(a) are complements of each other. Here are a few rules (see e.g.
[13, 12]):

• o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b), o(
∨

ai) =
∨

o(ai),
• c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b), c(

∨

ai) =
⋂

c(ai),
• o(a) ∩ c(b) 6= O iff a � b, and c(a) ⊆ o(b) iff a ∨ b = 1.

1.3.2. Similarly like in spaces and subspaces,

open sublocales in a sublocale S are the oS(νS(a)) = S ∩ o(a), and

similarly we have the closed sublocales of S, cS(νS(a)) = S ∩ c(a).

Due to (S1) one has an extremely simple formula for the closure S (the
smallest closed sublocale containing S):

S = ↑
∧

S.

1.3.3. Observation. o(a) ∩ S 6= O iff o(a) ∩ S 6= O (since o(a) ∩ S = O iff
S ⊆ ↑a iff S ⊆ ↑a).

1.3.4. An important property of a complemented S is that for any system
Ti, i ∈ I, of sublocales one has

S ∩
∨

Ti =
∨

(S ∩ Ti) (1.3.4)

(note that this is exceptional: S(L) is a co-frame, not a frame; in fact this
law characterizes complementarity — see [13, VI.4.4.3]).

1.4. A frame L is subfit if

∀a, b ∈ L, a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c.

Equivalently, L is subfit iff

each open sublocale in L is a join of closed ones.

In fact, this is the original definition, the first order formula above came later
(see e.g. [18]).
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Subfitness is not a hereditary property, but we have

1.4.1. Proposition. A complemented sublocale of a subfit frame is subfit.

Proof : Let oS(a) be open in S, thus, by 1.3.2, oS(a) = o(a) ∩ S (for a ∈
S, νS(a) = a). We have o(a) =

∨

{c(b) | c(b) ⊆ o(a)} and hence, by (1.3.4),

oS(a) = o(a) ∩ S =
∨

{c(b) ∩ S | c(b) ⊆ o(a)} =

=
∨

{cS(νS(b)) | c(b) ⊆ o(a)}.

For more about frames see e.g. [10, 13, 12, 16].

1.5. A cover of a frame L is a subset C ⊆ L such that
∨

C = 1. For a cover
C and an element x ∈ L set

Cx =
∨

{c ∈ C | c ∧ x 6= 0}.

A system C of covers is admissible if

∀a ∈ L, a =
∨

{x | ∃C ∈ C, Cx ≤ a}.

We say that a cover A refines a cover B and write A ≤ B if for every a ∈ A
there exists a b ∈ B such that a ≤ b.

1.5.1 A nearness (see e.g. [2]) on L is an admissible system of covers A such
that

(N1) if A ∈ A and A ≤ B then B ∈ A, and

(N2) if A,B ∈ A then A ∧B = {a ∧ b | a ∈ A, b ∈ B} ∈ A.

This extends the concept of a regular nearness, as defined for spaces by
Herrlich [7], to the point-free context. In [8] the admissibility was modified
to fit the general Herrlich’s concept of nearness. This will be discussed in 5.2
below. For a further generalization see [14].

2. Isbell’s Spatiality Theorem; T1-spatiality

2.1. A frame L is max-bounded if for each x ∈ L there is a maximal p ∈ L
such that x ≤ p.

2.2. T1-spatial frames. A frame L is T1-spatial if for each x ∈ L,

x =
∧

{p | p maximal, x ≤ p}.
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Thus, if L is T1-spatial then it can be represented as Ω(Σmax(L)) where
Σmax(L) is the subspace of Σ(L) carried by all the maximal p ∈ L (note that
all the maximal elements are prime, but of course not all the prime elements
are maximal).

2.2.1. Note. Obviously the space Σmax(L) is T1 so that a T1-spatial frame
is representable by a T1-space. On the other hand, the representability of L
as Ω(X) with a T1-space X seems to be so far a slightly weaker condition:
immediately it implies only representing L by a subspace of Σ(L) consisting
of mutually incomparable primes. But see 2.6.1 below.

2.3. Proposition. A max-bounded frame is T1-spatial iff it is subfit.

Proof : ⇐: Let a � b. Take a c such that a ∨ c = 1 6= b ∨ c, and a maximal
p ≥ b ∨ c. Then p � a (else p ≥ a ∨ c = 1) so that a � p ≥ b.

⇒: Let a � b. Choose a maximal c such that a � c ≥ b. Then a∨ c > c and
hence by maximality a ∨ c = 1, and b ∨ c = c 6= 1.

2.3.1. Corollary. (Isbell’s Spatiality Theorem) A compact subfit frame is

T1-spatial.

(By Zorn’s Lemma, a compact frame is obviously max-bounded.)

2.3.2. Note. The representation by maximal elements does not necessarily
mean a representation by the whole of the spectrum. Of course, in such a
representation of a T1-space all of the maximal elements have to be present.
But the spectrum can have more points (there may be non-maximal primes
constituting together with the maximal ones the sobrification of the space).
This can easily happen even to a compact space. Consider an infinite set

X with the topology of complements of finite sets plus ∅. It is a compact T1

(and hence subfit) space, but not a sober one. In the spectrum there is an
extra point ω (corresponding to the void set which is in this Ω(X) prime)

such that {ω} = X (so that the sobrification is not T1 !).
On the other hand, the representation of a regular compact frame by the

maximal elements coincides with the spectrum, since the space in question
is here necessarily sober.

2.4. TD-spatiality (see [3]). A frame L is TD-spatial if L ∼= Ω(X) with a
TD-space X.
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Write
a <· b

for immediate precedence, that is, for the situation where a < b and if a ≤
x ≤ b then either a = x or x = b. The following characteristic is in [3].

2.4.1. Proposition. A frame is TD-spatial iff for any a < b there are u, v
with a ≤ u <· v ≤ b.

2.4.2. Note. This is how the condition in 2.4.1 implies plain spatiality:
Define h : L → {u, v} by setting h(x) = (x ∨ u) ∧ v. Then because of the
immediate precedence we have really h(x) ∈ {u, v}, h is obviously a frame
homomorphism, and we have h(u) = u and h(v) = v.

2.5. A frame is step-bounded if for each a < 1 there are u, v such that

a ≤ u <· v.

2.5.1. Lemma. A T1-spatial frame satisfies the formula from 2.4.1.

Proof : Let a < b. Pick a maximal p such that a ≤ p � b. Thus, a ≤ b∧p < b.
Let b ∧ p < x ≤ b. Then x � p since otherwise x ≤ b ∧ p; consequently
x ∨ p 6= p, and by maximality x ∨ p = 1. Thus,

b = b ∧ (x ∨ p) = (b ∧ x) ∨ (b ∧ p) = x ∨ (b ∧ p) = x

so that b ∧ p <· b.

2.5.2. Proposition. A subfit step-bounded frame is T1-spatial.

Proof : For a < 1 choose u, v with a ≤ u <· v. By subfitness there is a c such
that v ∨ c = 1 6= u ∨ c.
We will prove that u ∨ c is maximal. Consider an x with u ∨ c < x. We

have
u ≤ x ∧ v ≤ v

so that either u = x∧v or v = x∧v. If u = x∧v then we have a contradiction

x = x ∧ (v ∨ c) = (x ∧ v) ∨ (x ∧ c) = u ∨ (x ∧ c) = (u ∨ x) ∧ (u ∨ c) < x.

Hence x ∧ v = v. That is, x ≥ v, and we see that x ≥ u ∨ c ∨ v = 1, and
u ∨ c ≥ a is maximal.
Thus, L is max-bounded and using subfitness again we conclude by 2.3

that it is T1-spatial.

2.6. Theorem. The following statements about a frame L are equivalent:
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(1) L is T1-spatial.

(2) L is TD-spatial and subfit.

(3) L is step-bounded and subfit.

Proof : (1)⇒(2) follows from 2.3 and 2.5.1. Note that 2.3 is applicable be-
cause L, being T1-spatial, is indeed max-bounded.
(2)⇒(3) is trivial.
(3)⇒(1) is in 2.5.2.

Now we can justify the definition in 2.2.

2.6.1. Corollary. A frame is T1-spatial iff it is isomorphic to an Ω(X) with
a T1-space X.

(⇒ is trivial. On the other hand, an Ω(X) with a T1-space X is obviously
subfit and a TD-frame.)

2.6.2. Notes. 1. The equivalence (1)≡(2) corresponds to the (hopefully)
standard classical fact that for a space, T1 is equivalent to TD & (subfit).
(T1 ⇒ TD&(subfit) obviously. Let X be TD&(subfit) and let x 6= y; consider
by TD an open U ∋ x such that U r {x} is open, and by subfitness a V such
that U ∪ V = X and (U r {x}) ∪ V = X r {x}. Then x /∈ V ∋ y.)

2. On the other hand, the equivalence (1)≡(3) is a new fact characterizing
(a special kind of) spatiality by first order formulas in the language of the
order.

2.7. Remark. Recall Theorem 3.4 from [8] stating that for a T1-space X, X
is sober iff each T0-spatial sublocale is T1 iff it has no Sierpiński sublocale. In
view of T1-spatiality this fact is, perhaps, more transparent. The sobriety of
a representation of a T1-spatial frame amounts to the system of all maximal
elements coinciding with the spectrum, that is, with each prime element
being maximal.

3. Subfitness and some related separation axioms, in

particular symmetry

3.1. Weak subfitness and prefitness. Here are two separation axioms
related to subfitness, the weak subfitness

∀a > 0 ∃c, c 6= 1 and a ∨ c = 1, (wsfit)
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and prefitness,

∀a > 0 ∃c, c∗ 6= 0 and a ∨ c = 1. (prefit)

3.1.1. Notes. 1. Weak subfitness is obtained from (sfit) considering just
b = 0.

2. Prefitness is more usually formulated by stating that for each a > 0 there
is an x 6= 0 such that x ≺ a (that is, x∗ ∨ a = 1). We have chosen an
equivalent formulation making it particularly obvious that

(prefit) implies (wsfit).

Although these two concepts look formally very close in actual fact they are
worlds apart. The weak subfitness is weaker than subfitness and this is still
weaker than T1. On the other hand, prefitness is already close to regularity
(where for a � b one has an x ≺ a such that x � b) and it is not implied
by subfitness. What is perhaps more interesting is that prefitness does not
imply subfitness either (see [15]).

3.2. Recall 2.3. Since a finite space is T1 only if it is discrete we immediately
obtain that

a finite distributive lattice is a Boolean algebra iff it is subfit.

This is a part of a much more general statement. The point is that the dual
of a (finite) distributive lattice is again a (finite) distributive lattice and that,
while (wsfit) is in our context a very weak axiom indeed, its dual

b < 1 ⇒ ∃c, c 6= 0, and b ∧ c = 0 (dual.wsfit)

is (again in our context) a very strong one.

3.2.1. Proposition. A pseudocomplemented distributive lattice (in particu-

lar, a frame) is a Boolean algebra iff it is dually weakly subfit.

Proof : Suppose the pseudocomplement x∗ of some x ∈ L is not a comple-
ment, that is, x ∨ x∗ 6= 1. If we have (dual.wsfit) there is a c 6= 0 such that
c∧ (x∨ x∗) = (c∧ x)∨ (c∧ x∗) = 0, hence c∧ x = 0 so that c ≤ x∗ and since
also c ∧ x∗ = 0 we have a contradiction c = 0.

3.2.2. Since a Boolean algebra is fit (indeed regular) we have

Corollary. For finite frames the subfitness is hereditary.

(That is, unlike in 1.4.1 we do not need the complementarity.)
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3.2.3. Note. Thus, a finite frame that is not subfit (that is, a Boolean
algebra) cannot be a sublocale of a finite subfit frame. But with infinite
extensions the situation is different. Consider the following example.
In the set ω + 1 = {0, 1, . . . , ω} take the topology consisting of the empty

set and the complement of finite sets that contain ω. The obtained space is
easily seen to be subfit, but it contains (a.o.) the Sierpiński space

(

{0, ω}, {∅, {ω}, {0, ω}}
)

.

3.3. Back to subfitness, in particular in spaces. We have the obvious

3.3.1. Fact. A frame L is subfit if and only if each of its closed sublocales

is weakly subfit.

(If a � b we have a ∨ b 6= b = 0↑b and hence there is a c, b ≤ c 6= 1 such
that a ∨ b ∨ c = a ∨ c = 1; on the other hand b ∨ c = c 6= 1.)

Now let us have a space X. In the definition of weak subfitness consider
a = X rA1 and set A2 = X r c. From 3.3.1 we easily infer

3.3.2. Proposition. A space X is weakly subfit iff for each non-empty

closed A1 ⊂ X there is a non-empty closed A2 such that A1 ∩ A2 = ∅.
Consequently, X is subfit if and only if

for every closed A1, B with ∅ 6= A1 ⊂ B there is a

closed A2 such that ∅ 6= A2 ⊆ B and A1 ∩ A2 = ∅.
(∗)

From the formula (∗) we obtain an easy proof of the Isbell-Simmons char-
acterization of subfit spaces.

3.3.3. Theorem. (Isbell-Simmons) A space is subfit if and only if

for each x ∈ X and open U ∋ x there is a y ∈ {x} with {y} ⊆ U . (I-S)

Proof : (∗) ⇒ (I-S): Take an x ∈ U . If {x} * U set B = {x}, A = XrU and

A1 = {x}∩A to obtain ∅ 6= A1 ⊂ B and a closed A2 such that ∅ 6= A2 ⊆ {x}
and A1 ∩ A2 = ∅. Then A2 ∩ A = A2 ∩ {x} ∩ A = ∅, and for y ∈ A2,

{y} ⊆ A2 ⊆ X rA = U .

(I-S) ⇒ (∗): Let ∅ 6= A1 ⊂ B. Choose an x ∈ BrA1 and set U = X rA1.

Now if y ∈ {x} and {y} ⊆ U then {y} ∩ A1 = ∅ and {y} ⊆ {x} ⊆ B. Set

A2 = {y}.



STILL MORE ABOUT SUBFITNESS 11

3.4. The symmetry axiom. Later on we will discuss a general concept
of a nearness in frames, closely connected with the subfitness. Recall that
in the classical context a space admits a nearness iff it is symmetric in the
sense that

x ∈ {y} ⇔ y ∈ {x}. (symm)

Note. In classical topology a property equivalent to symmetry appeared for
spaces already in 1951 ([11]), in the form of the statement (2) in 3.4.1 below,
under the name of weak regularity. This term is somewhat surprising for a
property weaker than T1 (although stronger than subfitness, see 3.4.2 below).

Since the axiom of symmetry is not often discussed it may be in order to
recall a few equivalent characteristics.

An inflation of a space X is obtained as follows. Take a disjoint system
Φ = {φ(x) | x ∈ X} of sets and endow the union

XΦ =
⋃

{φ(x) | x ∈ X}

with the topology consisting of the open sets

UΦ =
⋃

{φ(x) | x ∈ U}

with U open in X.

3.4.1. Proposition. The following statements on a space X are equivalent.

(1) X is symmetric.

(2) For every open U ⊆ X and every x ∈ U , {x} ⊆ U .

(3) X is an inflation of a T1-space.

(4) Each open subset of X is a union of closed ones.

Proof : (1)⇒(2): Let x ∈ U open and y ∈ {x}. Then x ∈ {y} and hence
y ∈ U .

(2)⇒(3): Define

x ∼ y ≡df {x} = {y}.

Then ∼ is an equivalence with the equivalence class of x equal to {x}: indeed,
if x is not in {y} then x is in the open X r {y}, hence {x} ⊆ X r {y} and

{x} and {y} are disjoint.
Now we see that

X/∼
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is a T1-space (the ∼ -preimage of (X/∼)r {{y}} is the open X r {x}), and
that X is an inflation of X/∼ (with φ({x}) = {x}).

(3)⇒(4): If XΦ is an inflation of a T1 space X then each φ(x) is closed by
T1, and an open U is a union of such sets by the definition of inflation.

(4)⇒(1): Let x /∈ {y}. Then x ∈ U = X r {y} =
⋃

i
Ai with Ai closed, and

for some i, x ∈ Ai, and hence {x} ⊆ Ai and finally y /∈ {x}.

3.4.2. Comparing 3.4.1(2) with 3.3.3 we immediately see that

(symm) is stronger than (sfit).

It is strictly stronger: take N = {0, 1, 2, . . .} and declare a non-void U ⊆ N
for open if 0 ∈ U and N r U is finite. The resulting space is subfit but not
symmetric.

4. Codensity

4.1. Recall that a subspace Y of a space X (more generally, a sublocale S
of a locale L) is dense if for each open U 6= ∅ (each a 6= 0), U ∩ Y 6= ∅
(o(a) ∩ S 6= O).
Dually, we will say that a subspace Y of a space X (more generally, a

sublocale S of a locale L) is codense if for each closed A 6= ∅ (each a 6= 1),
A ∩ Y 6= ∅ (c(a) ∩ S 6= O).

4.2. A frame homomorphism h : L → M is said to be codense if h(a) = 1
implies a = 1.

4.2.1. Proposition. Let f : M → L be the localic map associated with a

frame homomorphism h : L → M (that is, the right Galois adjoint of h).
Then f [M ] is codense in L iff h is codense.

Proof : We have

c(a) ∩ f [M ] = {f(x) | a ≤ f(x)} = {f(x) | h(a) ≤ x}.

Thus, c(a) ∩ f [M ] 6= O = {1} iff f(h(a)) < 1 and hence the codensity of
f [M ] amounts to the implication a < 1 ⇒ f(h(a)) < 1, that is, f(h(a)) =
1 ⇒ a = 1. Since 1 ≤ f(h(a)) iff 1 = h(1) ≤ h(a) this is equivalent to
h(a) = 1 ⇒ a = 1.
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4.3. In analogy with the semiclosed sublocales from [15],

sc(a) =
∧

{o(u) | c(a) ⊆ o(u)},

we define the semiopen sublocales

so(a) =
∨

{c(u) | c(u) ⊆ o(a)}.

Thus we have

so(a) =
∨

{c(u) | c(u) ∩ c(a) = O}

=
∨

{c(u) | c(u ∨ a) = O} =
∨

{c(u) | u ∨ a = 1}.

These equalities are obvious and we will use any of the formulas without
further mentioning.

4.4. Proposition. In every frame L, so(a) ∧ c(a) = O and so(a) ∨ c(a) is

codense.

Proof : The first equality follows from the fact that so(a) ⊆ o(a). Now let
c(b) 6= O (that is, b 6= 1). If c(b)∧c(a) = O then b∨a = 1 and c(b) ⊆ so(a).

4.5. Proposition. The following statements about a frame L are equivalent:

(1) L is subfit.

(2) Every codense sublocale S ⊆ L is equal to L.
(3) For every a ∈ L, so(a) = o(a).
(4) Each open sublocale in L is a join of closed ones.

Proof : (1)⇒(2): Let S be codense and let a ∈ L. Set s =
∧

{t | t ∈ S, a ≤ t}.
Suppose s ∨ c = 1 and a ∨ c ≤ t ∈ S. Then a ≤ t and hence s ≤ t, and since
c ≤ t we have 1 = s∨ c ≤ t. By codensity, a∨ c = 1, so that s∨ c = 1 implies
a ∨ c = 1 and by subfitness s ≤ a and a = s ∈ S.

(2)⇒(3): By 4.4, so(a)∧ c(a) = O and so(a)∨ c(a) = L so that so(a) = o(a),
the unique complement.

(3)⇒(1): Let (3) hold and let a � b. Then c(b) * c(a) and since c(b) =
c(b) ∩ (so(a) ∨ c(a)) we have c(b) ∩ so(a) 6= O and hence for some c with
c ∨ a = 1, c(b) ∩ c(c) 6= O, that is, b ∨ c 6= 1.

(4): this standard characteristic of subfitness is a trivial reformulation of
(3).
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4.6. Here is a related characteristic of weak subfitness (where int(S) denotes
the interior of a sublocale S, that is, the largest open sublocale contained
in S); slightly surprisingly, it comes in terms of semiclosed sublocales rather
than in terms of semiopen ones.

Proposition. A frame L is weakly subfit iff int(sc(a) ∧ o(a)) = O for every

a ∈ L.

Proof : Assume L is weakly subfit and let o(b) ⊆ sc(a) ∧ o(a). Then b ≤ a
and

o(u) ≥ c(a) ⇒ o(u) ≥ o(b),

that is,
u ∨ a = 1 ⇒ u ≥ b. (∗)

Therefore, by weak subfitness, b > 0 would imply the existence of an u 6= 1
such that b ∨ u = 1, which is absurd: by (∗), from 1 = b ∨ u ≤ a ∨ u would
follow u ≥ b and then 1 = u ∨ b = u.
Hence b = 0.
Conversely, let a > 0. Since int(sc(a) ∧ o(a)) = O, we have in particular

that o(a) * sc(a). This means that there is some u such that c(a) ⊆ o(u)
(i.e., a ∨ u = 1) and o(a) * o(u) (i.e., a � u and so u 6= 1).

4.7. Proposition. Any codense sublocale of a normal frame is normal.

Proof : Let jS : S ⊆ L be a codense sublocale of a normal frame L. We
use the symbol ⊔ for denoting the joins in the frame S. If a ⊔ b = 1 in
S then a ∨ b = 1 in L (otherwise, a ∨ b ≤ s 6= 1 for some s ∈ S). By
normality, there are u, v ∈ L satisfying u ∧ v = 0 and a ∨ u = 1 = b ∨ v.
Then, immediately, νS(u) ∧ νS(v) = 0, a ⊔ νS(u) ≥ νS(a) ⊔ νS(u) = 1 and
b ⊔ νS(v) ≥ νS(b) ⊔ νS(v) = 1.

5. Some seeming paradoxes

5.1. Recall 3.4.1. A space X is symmetric iff each open subset of X is a
union of closed ones. By 4.5, a frame is subfit iff each open sublocale is a join
of closed ones.

Strange. But by 3.4.2, subfitness is strictly weaker than symmetry, even for
spaces.
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5.2. Existence of a nearness. Recall the nearness defined by a system of
covers as in 1.5. The admissibility is based on the “cover stars”

Au =
∨

{a | a ∈ A, a ∧ u 6= 0}

of elements of L. This in fact corresponds to the stars of open sets

st(C, U) =
⋃

{C | C ∈ C, C ∩ U 6= ∅},

and hence the nearness in 1.5.1 is in fact just an extension of Herrlich’s regular
nearness ([7]), not of the general one, the admissibility of which is based on
the stars of points

st(C, x) =
⋃

{C | C ∈ C, x ∈ C}.

Now in a frame we do not have (to have) points, but this is not really an
obstacle: equivalently, we can base the admissibility of the (general) nearness
on stars of subsets, st(C,M) =

⋃

{C | C ∈ C, C ∩ M 6= ∅}, with the same
result, and this can be imitated by using the stars of sublocales S,

AS =
∨

{o(a) | o(a) ∩ S 6= O}

and declaring a system of covers A (satisfying (N1) and (N2) from 1.5.1) for
a general nearness on L if

∀a ∈ L, o(a) =
∨

{S ∈ S(L) | ∃A ∈ A, AS ⊆ o(a)}.

5.2.1. The extension is correct. General sublocales are, of course, many
more than subspaces, but by 1.3.3,

for any cover A and any sublocale S, AS = AS

so that the admissibility reduces to stars of closed sublocales only, and they
correspond precisely to closed subsets.

5.2.2. Theorem. A frame admits a generalized nearness iff it is subfit.

Proof : By 5.2.1, L admits a generalized nearness iff

∀a ∈ L, o(a) =
∨

{S | S ∈ S(L), ∃A ∈ A, AS ⊆ o(a)}.

Hence each open sublocale is a join of closed ones and L is subfit by 3.4.1.
Conversely, if L is subfit, then o(a) =

∨

{c(b) | c(b) ⊆ o(a)} (by 3.4.1).
Now c(b) ⊆ o(a) iff o(a) ∨ o(b) = o(a ∨ b) = L iff a ∨ b = 1 which makes
{a, b} a cover. Hence {a, b}c(b) ⊆ o(a) (as o(b)∩ c(b) = O) and see that each
system of covers containing all the finite covers is admissible.
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Strange. It is well known that a space admits a nearness iff it is symmetric.
But here we have admissible nearnesses on subfit spaces, more general than
symmetric ones.

5.3. Proposition. The following statements about a space X are equivalent:

(1) X is T1.

(2) Each subset of X is a union of closed ones.

(3) There is no non-trivial codense subspace Y of X.

Proof : (1)⇒(2) is trivial.

(2)⇒(3): If Y 6= X choose a non-void closed subset A ⊆ X r Y to obtain
A ∩ Y = ∅.

(3)⇒(1): If X is not T1 there is an x with {x} 6= {x}. Then for every closed
set A containing x we have A∩(Xr{x}) 6= ∅. Hence Xr{x} is codense.

Strange. This may seem even more peculiar than the previous two observa-
tions: we are speaking only of subspaces and not of general sublocales, hence
we should have the corresponding separation condition weaker, if anything,
while we have a stronger one.

5.4. The explanation of the discrepancies above is not hard. The point
is in an imperfect pointfree representation of subspaces as sublocales in an
“insufficiently separated” space.
For the purposes of the following paragraph it will be of advantage to

represent sublocales as (frame) congruences. For a subset Y ⊆ X define a
congruence EY by setting

EY = {(U, V ) | U, V ∈ Ω(X), U ∩ Y = V ∩ Y }.

The correspondence Y 7→ EY is not always one-to-one. To be precise:

the correspondence Y 7→ EY is one-to-one iff X is a TD-space

(see [1]). However, it is easy to see that

TD & (sfit) = T1 and TD & (symm) = T1.

Hence, our space is either TD and then (sfit), (symm) and T1 coincide, or
it is not TD, and then claiming that two sublocales representing subspaces
coincide does not say enough on the relation on the subspaces themselves.
The latter case is more interesting and we will discuss it in the following
subsections.
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5.5. Let us say that subsets Y , Z are congruence-equivalent (briefly, cong-
equivalent) and write

Y ≈ Z

if EY = EZ. More explicitly

Y ≈ Z ≡def (∀ open U, V, U ∩ Y = V ∩ Y iff U ∩ Z = V ∩ Z).

5.5.1. Observation. If Y ≈ Z and W is open then W ∩ Y ≈ W ∩ Z.

(U ∩ (W ∩ Y ) = (U ∩W ) ∩ Y iff (U ∩W ) ∩ Z = U ∩ (W ∩ Z).)

If X is not TD we cannot infer the non-existence of a codense subset from
subfitness. But we have at least the following

5.5.2. Proposition. Let Y be codense in a subfit X. Then Y ≈ X.

Proof : Suppose U ∩ Y = V ∩ Y and U 6= V , say let there be an x ∈ U r V .
Take an y ∈ {x} such that A = {y} ⊆ U . Since V is open, {x} ∩ V = ∅
and hence also A ∩ V = ∅ and A ∩ (V ∩ Y ) = ∅. On the other hand,
A ∩ U ∩ Y = A ∩ Y 6= ∅, by codensity.

The converse holds in every space:

5.5.3. Proposition. Let Y be a subspace of a space X such that Y ≈ X.

Then Y is codense.

Proof : Y ≈ X means that

A ∩ Y = B ∩ Y iff A = B for every open A,B.

In particular, for B = X, we have

Y ⊆ A iff A = X for every open A.

Now suppose Y is not codense. Then there is some closed F 6= ∅ such that
Y ∩ F = ∅. Therefore X r F is an open set containing Y . Hence F = ∅, a
contradiction.

5.5.4. In a space we have a statement similar to 4.4 for any subspace, not
only for an open one. Set

s(Y ) =
⋃

{A | A closed, A ⊆ Y }.

We have

Lemma. s(Y ) ∪ (X r Y ) is codense.
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Proof : Let C be non-void closed. Consider s(Y )∪ (X rY )∩C. If C ∩ (X r
Y ) = ∅ then C ⊆ Y and hence C ⊆ s(Y ).

Now the cong-equivalence relation yields a new characteristic of subfit
spaces:

5.5.5. Proposition. A space is subfit iff U ≈ s(U) for every open U .

Proof : The implication “⇒” follows from 5.5.4 and 5.5.1. For the converse
implication we use the Isbell-Simmons Theorem. So let U be an open set,
x ∈ U . The condition U ≈ s(U) means that

A ∩ U = B ∩ U iff A ∩ s(U) = B ∩ s(U) for every open A,B.

In particular, for B = U we have

U ⊆ A iff s(U) ⊆ A for every open A. (5.5.5)

Applying (5.5.5) to U * X r {x} we conclude that s(U) * X r {x}, that

is, s(U) ∩ {x} 6= ∅. Hence there is some y ∈ {x} and some closed F ⊆ U
containing y.

Note. This of course also concerns the admissibility of a nearness in a subfit
space.

5.6. Remark. The reader probably knows that the stronger property of
fitness is characterized, equivalently, by closed sublocales being meets of open
ones, and by all sublocales being meets of open ones. Comparing 3.4.1(4)
and 5.3(2) we see that we cannot expect an analogous strengthening of the
characteristic for subfitness: the two conditions are not equivalent even just
for spaces. The question naturally arises for which frames all sublocales are
joins of closed ones. It turns out that this condition is very prohibitive; for
instance it is not satisfied in the compact interval 〈0, 1〉 so that it cannot be
guaranteed even by a strong separation (moreover supported by compact-
ness) — not to speak of subfitness. It is an interesting topic and it is being
investigated. It does not have, however, much to do with subfitness and
therefore it does not fit into this article.
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