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Abstract: We study rolling maps of the ellipsoid rolling upon its affine tangent
space along a geodesic. It is known that the Jacobi geodesic problems is related
to the mechanical problem of Carl Neumann. We derive new integrals of motion
for this system. We derive a simple formula for the angular velocity of the rolling
ellipsoid in terms of the Gauss map. We provide an elementary proof of the Gauss
curvature of an ellipsoid, for any dimension.
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1. Introduction
Let En =

{
x ∈ Rn+1

∣∣ 〈x,D−2x〉 = 1
}

, D = diag(d1, d2, . . . , dn+1) � 0, be
an n-ellipsoid isometrically embedded in Euclidean space Rn+1, n > 1, and
let SE(n + 1) denote the special Euclidean group, the group of orientation
preserving isometries of the embedding space Rn+1. Suppose En rolls, without
slip or twist, upon its affine tangent space. Given a piecewise smooth curve
γ in En, i.e., a map from an interval I ⊂ R to En, there is a unique rolling
map χ: I → SE(n+ 1). The rotational part χ∗ of the rolling map is a group
action SO(n + 1), whilst the angular velocity in the body coordinate system
(χ−1χ̇)∗: I → h ⊂ so(n + 1) is a curve in an n-vector sub-space h of the Lie
algebra so(n+1). This paper considers the angular velocity curves in h when
En rolls along a geodesic.

The problem of geodesics on an ellipsoid has been studied by many math-
ematicians, notably by Legendre, Bessel and Gauss, to mention just a few
names. It wasn’t until the xix century, when C. G. J. Jacobi had shown
that Hamilton-Jacobi equations for a general case of a triaxial ellipsoid are
separable in the elliptic coordinates. Two constants of motion of a free point
in En are well known

E = 〈γ̇, γ̇〉 and J = 〈D−2γ,D−2γ〉 〈D−1γ̇,D−1γ̇〉.
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The first one comes from the energy conservative laws and the second one
is the celebrated Joachimsthal integral. The Jacobi problem of geodesics has
been one of those problems that stimulated many areas of mathematics. In
his paper [10] Horst Knörrer studied a link between geodesics on quadrics
and the Carl Neumann problem, a classical problem of a point moving on
the unit sphere in the presence of a quadratic potential. In this paper we
investigate a relationship between, what is now called, the Knörrer system
of geodesics on the ellipsoid and the rolling maps. As a result we find a new
form of integrals of motions of En, where En rolls without a slip or twist
along geodesics, that involve curves in the vector subspace h ⊂ so(n+ 1).

Various generalisations of the original geodesic problem in E2 are found
in the literature. For example, the generalised Jacobi problem studied in [1]
considers a point moving on a surface of an ellipsoid E2 under the influence of
a quadratic potential. In their study of the flow generated by the generalised
Jacobi problem the authors derive necessary and sufficient conditions for this
generalisation to be integrable with a meromorphic first integral. When the
ellipsoid is the unit sphere, this problem reduces to C. Neumann. Then,
as in the case of geodesic motion, this problem is separable in the elliptic
coordinates. On the other hand, if the potential vanishes then the problem
is reduced to free motion of a point leading to geodesics and Joachimsthal
integral.

New types of geodesics appear in the pseudo-Riemannian geometry [5].
The induced metric from the Minkowski embedding space on the ellipsoid
degenerates along two curves called the tropics. The induced metric is Rie-
mannian in the polar caps and Lorentzian in the equatorial belt bounded
by the tropics. There are the three types of geodesics γ: space-like (posi-
tive energy 〈γ̇, γ̇〉 > 0), time-like (negative energy 〈γ̇, γ̇〉 < 0) or light-like
(zero energy or null 〈γ̇, γ̇〉 = 0). In the Minkowski space, the null geodesics
separate the space-like geodesics from the time-like geodesics. There exists
Joachimsthal integral for this problem.

A class of integrable Hamiltonian systems are studied in [8] through the
Maximum Principle. The author considers a class of left-invariant variational
problems on a Lie group, whose Lie algebra admits a Cartan decomposition
g = h+ k. This framework provides insight to the isospectral methods appli-
cable to the Neumann mechanical and Jacobi geodesic problems.
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Fedorov and Jovanović in [4] study multidimensional generalisations of the
Veselova problem of a non-holonomic rigid body motion. The authors con-
sider the so called LR systems — non-holonomic systems with a left-invariant
metric and right-invariant non-holonomic constraints. A particular case of
these investigations is the Jacobi problem for geodesics on an ellipsoid.

A good review of related problems can be found in [2]. The authors con-
sider several isomorphisms between Jacobi geodesic problem and integrable
cases from rigid body dynamics: Moser, Brun, Chaplygin and the Neumann
system. The isomorphism of the Brun and Neumann problems is described.
Isomorphism between the Chaplygin ball problem (the rolling of a dynami-
cally asymmetrical balanced ball without slipping on a plane) and the Neu-
mann system.

In this paper we derive the integrals of motion for an ellipsoid rolling along
geodesic upon its (affine) tangent space. The notion of rolling maps for
Riemannian manifolds is revisited in Section 2. We present some results
concerning geometric properties of an ellipsoid in Section 2.2. An elementary
proof of the formula for the Gaussian curvature of an ellipsoid is given in
Proposition 4. A remarkable simple formula for the angular velocity in the
body coordinate system in terms of the rolling curve is given in Corollary 6.
Section 3 formulates the Jacobi and the Neumann problems. In Section 3.1
we give a brief description of yet another point of view of the Neumann
problem through a Lie algebra with semi-direct product. Our main result,
Theorem 11, relates the Uhlenbeck algebraic integrals to the rolling ellipsoid.
Section 4 concludes this paper.

2. Background
Consider an n-dimensional Riemannian manifold M isometrically embed-

ded in Rm, with 1 < n < m. The embedding defines a Riemannian metric g
on M, inherited from the ambient Euclidean metric in Rm. Let X(M) be the
space of smooth vector fields on M. Then ∇XY :X(M) × X(M) → X(M)
is the Riemannian (or Levi-Civita) connection of g. For any smooth curve
γ: I → M parameterised by t, where I ⊂ R is an interval, let DtV denote
the covariant derivative of a vector field V along γ, cf. [15, page 57].

We now recall a definition and some results concerning rolling maps.
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Figure 1. The rolling map χ of an ellipsoid E2 on a plane along
a rolling curve σ1.

2.1. Rolling maps

We follow Sharpe’s definition [19, Appendix B] of a rolling map in Eu-
clidean space extended to Riemannian manifolds, as in [6].

Definition 1. Let M0 and M1 be two n-manifolds isometrically embedded in
an m-dimensional Riemannian manifold M and let σ1: I →M1 be a piecewise
smooth curve in M1, where 1 < n < m. A rolling map of M1 on M0 along
σ1, without slipping or twisting, is a piecewise smooth map χ: I → Isom(M),
a Lie group of isometries of M, satisfying the following conditions:

Rolling: for all t ∈ I,
(a) χ(t)(σ1(t)) ∈M0;
(b) Tχ(t)(σ1(t))(χ(t)(M1)) = Tχ(t)(σ1(t))M0.

The curve σ0: I → M0 defined by σ0(t) := χ(t)(σ1(t)) is called the
development curve of σ1.

No-slip: σ̇0(t) = χ∗(t)(σ̇1(t)), for almost all t ∈ I, where χ∗ is the
push-forward of χ.

No-twist: two complementary conditions, for almost all t ∈ I,
tangential : (χ̇(t) ◦ χ−1(t))∗(Tσ0(t)M0) ⊂ Tσ0(t)M

⊥
0 ,



A NOTE ON THE ROLLING ELLIPSOID AND THE C. NEUMANN PROBLEM 5

normal : (χ̇(t) ◦χ−1(t))∗(Tσ0(t)M
⊥
0 ) ⊂ Tσ0(t)M0, where TpM

⊥
0 de-

notes the normal space at p ∈M0.

It is known that rolling maps are symmetric and transitive. To be more
precise, if M1 rolls upon M0 with rolling map χ, along σ1, then M0 rolls upon
M1 with rolling map χ−1 along the development curve σ0. If M1 rolls upon
M2 with rolling map χ1, rolling curve σ1 and development curve σ2, and M2

rolls upon M3 with rolling map χ2, rolling curve σ2 and development curve
σ3, then M1 rolls upon M3 with rolling map χ2◦χ1, along rolling curve σ1 and
development curve σ3. Rolling maps preserve parallel transport and covariant
differentiation. Hence, the geodesic curvatures of rolling and development
curves are equal. In particular, geodesics are mapped to geodesics through
rolling.

Theorem 2 (Sharpe [19, Appendix B]). Let M0,M1 ↪→ Rn+r be n-subma-
nifolds. Given a piecewise smooth curve σ1: I →M1 there is a unique rolling
map χ: I → SE(n+ r), with rolling curve σ1.

We have the following Proposition 3 stating differential equations for rolling
maps of smooth manifolds of co-dimension 1. These equations are a direct
consequence of [19, Lemma 2.3, Appendix B]. An interested reader can find
a proof in [12]. First, recall the two operators of differential geometry, the
second fundamental form II:X(M) × X(M) → X(M)⊥ and the Weingarten
map Ξ:X(M) × X(M)⊥ → X(M). Both operators are tensor fields and are
related by

〈X,Ξ(Y,Λ)〉 = −〈II(X, Y ),Λ〉 for all X, Y ∈ X(M) and Λ ∈ X(M)⊥.
(1)

Proposition 3. In terms of angular velocity in the body coordinate system
the rolling equations of an n-manifold N isometrically embedded in Rn+1 on
its affine tangent space are given by

(χ−1χ̇)∗V = −II1(σ̇1, V ) and (χ−1χ̇)∗Λ = −Ξ1(σ̇1,Λ),

for all V ∈ Tσ1(t)N and Λ ∈ (Tσ1(t)N)⊥.

In this paper we are concerned with an n-ellipsoid embedded in Rn+1,
denoted En ↪→ Rn+1, cf. Figure 1. Here, the Euclidean group SE(n + 1) =
SO(n+ 1)nRn+1 is the group of isometries acting on En, and both, (χ̇χ−1)∗
and (χ−1χ̇)∗ are vectors in se(n + 1) = TeSE(n + 1) that can be identified
with (n+ 1)× (n+ 1)-skew-symmetric matrices.



6 K. A. KRAKOWSKI AND F. SILVA LEITE

Proposition 3 can be illustrated with the following (non-commuting) dia-
gram:

TpRn+1

π>

}}

π⊥

##

TpEn

−II1σ̇1

44
oo (χ−1χ̇)∗

// (TpEn)⊥
−Ξ1

σ̇1

tt

2.2. Rolling ellipsoid in Euclidean space

Rolling an ellipsoid in Euclidean space has been already studied in [6].
Then in a different context in [13], whose extended version [14] include deriva-
tions of some differential geometric properties of an ellipsoid. We begin by
recalling a few of them that will be needed here: the Weingarten map, the
second fundamental form and the Gaussian curvature. From now on we
assume that En ↪→ Rn+1, where n > 1.

Given a positive definite matrix D = diag(d1, d2, . . . , dn+1) � 0 define an
ellipsoid En by

En :=
{
x ∈ Rn+1

∣∣ 〈x,D−2x〉 = 1
}
. (2)

By differentiation of a unit normal vector Λ = −D−2p/|D−2p| ∈ (TpEn)⊥
moving along a curve in En it is straightforward to find the Weingarten map
ΞΛ at p ∈ En to be given by

ΞΛ(X) = −D−2

(
X

|D−2p|
− p

|D−2p|3
〈D−2X,D−2p〉

)
, for any X ∈ TpEn.

The second fundamental form is a symmetric tensor that depends only on
values of vector fields at a point, hence with (1) it can be verified that

II(X, Y ) = −〈D
−1X,D−1Y 〉
|D−2p|2

D−2p, for any X, Y ∈ TpEn. (3)

The ellipsoid En is a smooth Riemannian manifold with positive Gaussian
curvature. Its precise value is given by the following proposition.

Proposition 4. The Gaussian curvature K(p) of En isometrically embedded
in Rn+1 is given by

K(p) =
det(D−2)

|D−2p|n+2 > 0.
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Proof : We use the following relations of the scalar second fundamental form
h and the shape operator s, cf. [15, page 140]: II(X, Y ) = h(X, Y )Λ and
h(X, Y ) = 〈X, sY 〉, for any tangent vectors X, Y and a normal unit vector
Λ. From the second fundamental form (3) it follows that

h(X, Y ) =
〈D−1X,D−1Y 〉
|D−2p|

= 〈X, sY 〉, hence sY =
D−2Y

|D−2p|
.

The shape operator is positive definite and self adjoint. Suppose that svi =
λivi, for i = 1, 2, . . . , n, where vi are the eigenvectors and λi are the cor-
responding eigenvalues. Then with the generalised cross product to Rn+1,
cf. [20, page 84], one has

v1 × v2 × · · · × vn = αΛ, where Λ ∈ (TpEn)⊥.

On one hand

(sv1)× (sv2)× · · · × (svn) = (λ1λ2 · · ·λn) v1 × v2 × · · · × vn = (αΛ)
n∏
i=1

λi,

on the other hand, by the properties of linear mapping acting on the cross
product (cf. [14])

(sv1)×(sv2)×· · ·×(svn) =
D−2v1

|D−2p|
×D−2v2

|D−2p|
×· · ·×D−2vn

|D−2p|
=

det(D−2)

|D−2p|n
·D2(αΛ).

Since the Gaussian curvature is defined as the product of the eigenvalues of s,
therefore

K(p) =
n∏
i=1

λi =
det(D−2)

|D−2p|n
· 〈D2Λ,Λ〉 =

det(D−2)

|D−2p|n
· 〈p,D

−2p〉
|D−2p|2

=
det(D−2)

|D−2p|n+2 .

What was to show.

Throughout this paper, we use the following convention. For any two
vectors X, Y ∈ Rm, with m > 1, let X ⊗ Y be an m × m-matrix with
entries (X ⊗ Y )ij = X iY j. If X, Y are represented as column vectors, then

X ⊗ Y = X · Y T. Furthermore, let X ∧ Y = X ⊗ Y − Y ⊗X, then X ∧ Y is
a skew-symmetric m×m-matrix of rank zero or two.

Given a rolling curve σ1: I → En, the following lemma establishes a rela-
tionship between the rolling map and σ1.
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Lemma 5. The rolling map χ of an ellipsoid rolling upon its affine tangent
space satisfies

(χ−1χ̇)∗ = − 1

|D−2σ1|2
(
D−2σ̇1

)
∧
(
D−2σ1

)
.

Proof : The above equality follows directly from Proposition 3. To prove the
lemma let us first rewrite the Weingarten map and the second fundamental
form in a more convenient way

ΞΛ(X) = − 1

|D−2p|
(
D−2X − Λ〈D−2X,Λ〉

)
and

II(X, Y ) =
1

|D−2p|
〈D−2X,Y 〉Λ.

Any vector U ∈ TpRn+1 can be uniquely written as U = V + αΛ, where
V ∈ TpEn. Hence

(χ−1χ̇)∗U = (χ−1χ̇)∗(V + αΛ) = −II(σ̇1, V )− αΞ(σ̇1,Λ)

=
1

|D−2p|
(−〈D−2σ̇1, V 〉Λ + αD−2σ̇1 − αΛ〈D−2σ̇1,Λ〉)

=
1

|D−2p|
(〈Λ, U〉D−2σ̇1 − 〈D−2σ̇1, U〉Λ).

Since a covector in Euclidean space is identified with its transpose, then after
expanding Λ to its full expression one arrives at

(χ−1χ̇)∗ = − D−2σ̇1

|D−2p|2
(
D−2p

)T
+

D−2p

|D−2p|2
(
D−2σ̇1

)T
,

where p = σ1(t). The result now follows.

Consider the Gauss map. Given a curve σ1: I → En, the unit normal vector
along σ1 is given by

η := ρ ·D−2σ1, where ρ =
1

|D−2σ1|
. (4)

There is the following simple formula relating a rolling curve in En to a curve
in so(n+ 1). This follows immediately from Lemma 5.
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Corollary 6. The angular velocity in the body coordinate system of an ellip-
soid rolling upon its affine tangent space satisfies

(χ−1χ̇)∗ = η ∧ η̇.
To conclude this section we will establish a relationship between two dif-

ferent metrics, used in the remainder of this paper. Define the following
quadratic form on the space of compatible matrices

〈〈A,B〉〉 :=
1

2
trace(ATB) =

1

2
trace(ABT). (5)

We will need the following property of the ‘∧’ operator, for some later cal-
culations, given here as Propositions 7. Simple proof is omitted.

Proposition 7. For any X, Y, Z,W ∈ Rm there is the following relation
between metric (5) and the inner (dot) Euclidean product

〈〈X ∧ Y , Z ∧W 〉〉 = 〈X,Z〉〈Y,W 〉 − 〈X,W 〉〈Y, Z〉.
Remark 8. Proposition 7 shows that 〈〈X ∧ Y , Z ∧W 〉〉 has precisely the same
symmetries as the Riemannian curvature tensorRm(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉.
In particular, for the unit sphere, the equality holds

〈〈X ∧ Y , Z ∧W 〉〉 = Rm(X, Y, Z,W ).

3. Geodesics on Ellipsoid
This extremely fertile problem goes back to the xix century and Jacobi,

who first showed that the problem of geodesics on a triaxial ellipsoids can be
reduced by quadrature. In 1839, in his letter to Bessel [7], C. G. J. Jacobi
wrote about his discovery that the geodesic equations expressed in ellip-
soidal coordinates, are separable. Surprisingly, the problem of geodesics is
connected to fundamental models in classical and quantum mechanics. Our
study was largely influenced by Knörrer’s paper [10], where the classical
C. Neumann problem is linked to geodesics on quadrics.

3.1. The Neumann problem

Consider a point on the sphere moving in a quadratic potential 〈γ,Aγ〉,
where A is a symmetric matrix. The equation governing the motion of this
point is

γ̈ = −Aγ + uγ, where u = 〈γ,Aγ〉 − 〈γ̇, γ̇〉. (6)

If it is supposed that A = diag(a0, a1, . . . , an) then the components γi of γ
are eigenfunctions of the one-dimensional Schrödinger operator (−d2/dt2 +u)
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with the eigenvalue ai. Knörrer attributes finding algebraic integrals of the
Neumann problem (6) to Karen Uhlenbeck’s informal preprint [21], whose
copy eluded the authors. Let C(z) denotes the set of complex rational func-
tions that are not everywhere zero. For x, y ∈ Rn+1 let Φz(x, y) ∈ C(z) be
the rational function

Φz(x, y) = 〈x, (A− z I)−1y〉2 + (1−〈x, (A− z I)−1x〉) 〈y, (A− z I)−1y〉, (7)

where I is the identity matrix. If ξ(t) is a solution to the Neumann prob-
lem (6) then the coefficients of Φz(ξ̇, ξ) ∈ C(z) are independent of t.

The following geometric interpretation of (7) can be found in [17]. Let Qz

be a bi-linear symmetric form on Rn+1 given by Qz(x, y) := 〈x, (A− z I)−1y〉
and let Qz(x) denote Qz(x, x). Then Qz(x) = 1 generates a family of
quadrics. Assume for a moment that ai are ordered a0 < a1 < · · · < an
then the quadrics are ellipsoids, when z < a0, and hyperboloids, for all
ai−1 < z < ai, i = 1, 2, . . . , n, cf. Figure 2. For any x ∈ Rn+1 the equation
Qz(x) = 1 has exactly n + 1 solutions, lying in the above intervals, each.
Therefore, through every point x ∈ Rn+1, such that xj 6= 0, j = 0, . . . , n,
pass exactly n+ 1 quadrics. Because

Φz(x, y) = Q2
z(x, y) + (1−Qz(x)) Qz(y) = Qz(y)− (Qz(x) Qz(y)−Q2

z(x, y))

then Φz(x, y) = 0 if and only if the line x + ty is tangent to the quadric
Qz = 1 at point x, under the condition that Qz(y) 6= 0.

Knörrer [10] shows that if a geodesic γ on a quadric Q, defined by q(x) = 0,
is parameterised by γ̈(t) = −ε dq(γ(t)) + v(t) · γ̇(t), with a constant ε = ±1,
then the corresponding unit normal vector ξ(t) at the point γ(t) is a solution
of the Neumann problem

ξ̈ = −εAξ + uξ, where A = Hess(q) =

(
∂2q

∂xi ∂xj

)
and u :=

1

4
v2− 1

2
v̇.

Specifically, in the case of the ellipsoid (2) one considers the Gauss map η,
as in (4), along a reparametrised geodesic. By Knörrer’s result, the Gauss
map solves the Neumann problem, therefore the Uhlenbeck’s algebraic inte-
grals (7) hold, in this case.

The Neumann problem can be also analysed through actions of Lie groups.
Consider ϑ ∈ so(n+ 1) and ζ ∈ sym(n+ 1) given by

ϑ := η̇ ∧ η and ζ := η ⊗ η, where 〈η, η〉 = 1 and 〈η̇, η〉 = 0.
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Figure 2. A family of confocal quadrics: ellipsoids, when z < a0

(grey), hyperboloids of one sheet, for a0 < z < a1 (red) and two-
sheeted elliptic hyperboloids, when a1 < z < z2 (blue).

It has been noticed by Uhlenbeck and described by Tudor Ratiu that the
Neumann problem is equivalent to the following one.

Lemma 9 (Uhlenbeck, cf. [18]). The system (6) is equivalent to

ζ̇ = [ϑ, ζ] and ϑ̇ = [ζ,A], where 〈η, η〉 = 1 and 〈η̇, η〉 = 1. (8)

By “normalising” the matrices A 7→ A− trace(A) I/ (n+ 1) and ζ 7→ ζ −
I/ (n+ 1), equations (8) remain the same. Therefore one can consider this
system to be set out for A, ζ,ϑ ∈ sl(n+ 1).

Ratiu [18] has found the following beautiful interpretation of system (8)
with the language of Lie algebras of which we give a brief account, now.

3.2. Hamiltonian formalism

Consider a Lie group G given by a semi-direct product G = SL(n + 1) n
sl(n+ 1) of SL(n+1), the special linear group, i.e., real matrices with deter-

minant 1, with the Lie algebra sl(n+ 1) acting as a vector space. The group
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operation is defined by

(g1, h1) · (g2, h2) = (g1 · g2, h1 + Adg1h2).

The identity of G is (id, 0) and the inverse (g, h)−1 = (g−1,−Adg−1h). Let
s̃ym(n+ 1) ⊂ sl(n+ 1) denote the vector space of all symmetric matrices of
trace zero. Then the Lie group N defined as N = SO(n+ 1)n s̃ym(n+ 1) is
a subgroup of G, with Lie algebra N. Therefore G = N⊕K is the direct sum
decomposition of the Lie algebra of G, where N is a sub-algebra of G and
K is a vector sub-space of G. The following diagram illustrates the above
structure.

N = SO(n+ 1) n s̃ym(n+ 1) ⊂ G = SL(n+ 1) n sl(n+ 1)

G = sl(n+ 1) n sl(n+ 1)

exp

OO

ΠN

tt

ΠK

**
N = so(n+ 1) n s̃ym(n+ 1)

exp

OO

K = s̃ym(n+ 1)× so(n+ 1)

The co-adjoint orbits are important in studies of Hamiltonian functions, the
conserved quantities. They also lead to integrable systems. In particular
one is interested in the action of N on N?, but since 〈〈N,R〉〉 = 0, this can
be simplified, because the metric on G induces isomorphisms K⊥ ∼= R? and
R⊥ ∼= K?. Furthermore, the algebra G has the non-degenerate, bi-invariant
two-form ks, the semi-direct product that is given by

ks((ξ1, η1) , (ξ2, η2)) := 〈〈ξ1, η2〉〉 + 〈〈ξ2, η1〉〉.

With such product ks there is K⊥ = K and R⊥ = R. Therefore the co-adjoint
action of N on N? induces the adjoint action of N on K. The adjoint action
of G on G is given by

Ad(g,h)(ξ, η) = (Adgξ,Adgη + [h,Adgξ]).

With this in mind, it is easy to calculate the required adjoint action of (g,A)
on (z⊗ z, 0), where z = (1, 1, . . . , 1)/

√
n+ 1 is a vector in Rn+1.

Adg(z⊗ z) = η ⊗ η = ζ and [A, ζ] = A (η ⊗ η)− (η ⊗ η)A = (Aη) ∧ η.

This yields

Ad(g,A)(z⊗ z, 0) = (η ⊗ η, η̇ ∧ η) = (ζ,ϑ).



A NOTE ON THE ROLLING ELLIPSOID AND THE C. NEUMANN PROBLEM 13

Figure 3. Family of geodesics γi on the ellipsoid with developing
curves on its tangent space — straight line segments (right) and
corresponding curves ϑi in so(3) projected onto R3 (left).

Since (Aη) ∧ η = (Aη − 〈Aη, η〉η) ∧ η, the equivalence with the Neumann
problem can be achieved by taking η̇ = Aη − 〈Aη, η〉η. Then 〈〈η̇, η〉〉 = 0 as
needed. This Lie group construction is summarised by the following theorem.

Theorem 10 (Ratiu [18]). The N = so(n + 1) × s̃ym(n + 1)-orbit through
(z⊗z−I/(n+1), 0) in R⊥ = R = s̃ym(n+1)×so(n+1), consists of all pairs
(ζ,ϑ), ζij = xixj, for i 6= j, and ζii = xixi−1/(n+1), ϑij = yixj−xiyj, |x| =
1, 〈x, y〉 = 0. With the Kirillov-Kostant-Souriau symplectic structure this 2n-
dimensional orbit is symplectically diffeomorphic via (ζ,ϑ) 7→ (x, y) to TSn

with the symplectic structure induced from R2n+2 by −
∑n+1

i=1 dx
i ∧ dyi. The

Hamiltonian E(ζ,ϑ) = −1
2〈〈ϑ,ϑ〉〉+ 〈〈A, ζ〉〉 defines on this orbit the equations

of motion of the C. Neumann problem

ζ̇ = [ϑ, ζ] and ϑ̇ = [ζ,A] where 〈η, η〉 = 1 and 〈η̇, η〉 = 1.

3.3. Algebraic integrals

Coming back to the problem of rolling ellipsoid upon its affine tangent space
we derive an analogous to Uhlenbeck’s algebraic integrals, for the rolling map
of the ellipsoid along geodesics. From the nature of the rolling map, through
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the non-holonomic “no-slip” and “no-twist” constraints, in Definition 1, it is
known that ϑ is a horizontal curve for an n-dimensional distribution.

Theorem 11. Let γ: I → En be a geodesic, parameterised by

γ̈(t) = −D−2γ(t) + v(t) · γ̇(t).

Furthermore let ϑ = η̇ ∧ η, where η is the unit normal vector along γ and let
ζ = η ⊗ η. Then the coefficients of Ψz(ζ,ϑ) ∈ C(z) given by

Ψz(ζ,ϑ) := −1

2
〈〈ϑ(D−2 − z I)−1, (D−2 − z I)−1ϑ〉〉 + 〈〈ζ, (D−2 − z I)−1〉〉

are independent of t.

Proof : For the proof one can show that under the hypothesis Ψz(y⊗y, x∧y) =
2 Φz(x, y). But perhaps it will be more instructive to prove the result by
going back to the original version of the Neumann problem (6). To shorten
the notation, denote X = (D−2 − z I)−1. By Knörrer’s result, η is a solution
to the Neumann problem

η̈ = −D−2η + uη = −X−1η + (u− z) η.

Apply ‘∧η’ to both sides of the above equality, then ϑ̇ = η̈∧η = −(X−1η)∧η.
To prove the theorem, it is enough to show that the derivative of Ψz(ζ,ϑ)
with respect to t is zero.

d

dt
〈〈ϑX,Xϑ〉〉 = 2 〈〈Xϑ̇X,ϑ〉〉 = −2 〈〈η ∧ (Xη), η̇ ∧ η〉〉 = 2 〈η̇,Xη〉 =

d

dt
〈η,Xη〉.

Since 〈η,Xη〉 = trace(ηηTX) = 2 〈〈η ⊗ η,X〉〉 the result now follows.

The function v of the parametrisation in Theorem 11 is given by

v = 2
〈D−2η,D−2η̇〉
〈η̇,D−2η̇〉

.

In the case of the unit sphere D = I. Then v = 0 and Ψz becomes

Ψz(ζ,ϑ) = − 1

2(1− z)2 〈〈ϑ,ϑ〉〉 +
1

(1− z)
, z 6= 1.

Thus Ψz(ζ,ϑ) is now equivalent to the energy integral, with 〈〈ϑ,ϑ〉〉 = 〈γ̇, γ̇〉 =
const, which encodes the fact that geodesics have constant speed. Moreover,
since v = 0 then clearly ϑ is a constant curve in so(n+ 1). Thus the rolling
map for the unit sphere Sn rolling upon its affine tangent space assigns a
single point in so(n+ 1) to every geodesic in Sn.
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4. Conclusion and Further Questions
In this paper we have shown that rolling an ellipsoid along a geodesic

has a simple expression for its integrals of motions. Our approach uses a
different mathematical formalism than Hamiltonian mechanics. The integrals
are based on Uhlenbeck’s algebraic integrals for the C. Neumann problem and
on their generalisation to geodesics on quadrics found by Knörrer [10]. We
have linked some expressions appearing in Hamiltonians considered in [8, 4,
18], for example, to the angular velocity for the ellipsoid En ↪→ Rn+1 rolling,
without a slip or twist, upon its affine tangent space.

A possible extension to this study is to consider the pseudo-Riemannian
case. Rolling maps has been studied, for instance in [3], and in [11] and
connecting this knowledge with the studies of geodesics on ellipsoids, or more
general on quadrics, could bring some new insights into integrals of motions
for Lorentzian metrics.

We hope to consider more general setting and a geometric interpretation
of the integrals of motions in future work.
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