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TONGUÇ ÇAǦIN, PAULO E. OLIVEIRA AND NURIA TORRADO

Abstract: Moderate deviations are an important topic in many theoretical or ap-
plied statistical areas. We prove two versions of a moderate deviation for associated
and strictly stationary random variables with finite moments of order q > 2. The
first one uses assumption depending on the rate of a Gaussian approximation, while
the second one discusses more natural assumptions to obtain the approximation
rate. The control of the dependence structure relies on the decay rate of the co-
variances, for which we assume a relatively mild polynomial decay rate. The proof
combines a coupling argument together with a suitable use of Berry-Esséen bounds.
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1. Introduction
Sums of random variables have always been a central subject in the proba-

bilistic literature, with a special interest on their asymptotics. Among results
on this topic the important Central Limit Theorems (CLT) describes the
limiting distributional behaviour of such sums, providing useful approximate
descriptions of the tail probabilities. These, besides their natural theoretical
interest, are extremely relevant in statistical applications. There is, however,
a limitation inherent to the properties of convergence in distribution, re-
quiring that the tails considered through the limiting process should behave
like the variance. More specifically, if the random variables Xn, n ≥ 1, are
assumed centered and we define Sn = X1+ · · ·+Xn, s

2
n = ES2

n, the CLT pro-
vide the approximation of P(Sn > xsn) by N(x) = 1−Φ(x), for x > 0 fixed,
where Φ is the distribution function of a standard Gaussian variable. If we
allow x to depend on n, converging to infinity, then the above approximation
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is known as a moderate or large deviation, depending on how fast x grows
to infinity, moderate deviations corresponding to the case where x = O(sn).
Remark that the approximating function N is no longer necessarily the tail
of a standard Gaussian, depending on the growth rate of x to infinity.
First large deviations were proved by Linnik [10], Ibragimov and Linnik [9],

Nagaev [14, 15] or Rozovski [25] for independent and identically distributed
variables. We refer the reader to the survey paper by Nagaev [16] for a
nice account of these early results. The techniques of proof were based on
suitable exponential bounds, the so called Fuk-Nagaev inequalities, on the
tail probabilities. A typical result, given in Theorem 1.9 in Nagaev [16],
states that

P(Sn > xsn) = (1− Φ(x) + nP(X1 > xsn)) (1 + o(1)), (1)

provided that x ≥ 1, sn = n1/2 and the right tail of the Xn’s is a regularly
varying function. Extensions of such results have been recently proved by
Peligrad, Sang, Zhong and Wu [24] considering weighted sums S̃n =

∑
cn,iXi

instead of Sn. These authors prove a result similar to (1) under essentially
the same assumptions on the random variables (i.i.d. and regularly varying
tails) and a regularity condition on the weights: maxi cn,i/ES̃

2
n −→ 0. The

proof of this extension relies on moderate or large deviations for triangular
arrays of random variables and convenient strong approximations between
the tails of S̃n and the sums of tails of the Xn’s, much in the same spirit
of the proof technique used in Theorem 1.9 in Nagaev [16]. Going back
to early results, moderate or large deviations for triangular arrays of row-
wise independent variables were considered by Rubin and Sethuraman [26],
Amosova [1], Slastnikov [27] or, more recently, by Frolov [5]. All the results
mentioned so far characterize the tail probabilities directly. Concerning large
deviations, that is, x growing fast to infinity, a lot of attention was given to
the logarithms of the tail probabilities instead, thus providing exponential
bounds for the tail probabilities themselves. The bound for these logarithms
appears then as the Fenchel-Légendre transform of the normalized logarithm
of the Laplace transform of Sn (notice that we are now back to non-weighted
sums). A good account of results in this direction can be found in the book
by Dembo and Zeitouni [4]. The interest on logarithmic tails meant that
there are much fewer results available in the non-logarithmic scale in recent
literature, particularly for weighted sums. Another recent direction of devel-
opment is concerned with dependent variables. Here, available results seem
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even more scarce. Looking at large deviations, some results were proved by
Nummelin [20], Bryc [2] or Bryc and Dembo [3] considering mixing vari-
ables or, Henriques and Oliveira [8] for associated random variables. Here
the interest was on logarithmic scale results and the proof techniques re-
lied on suitable exponential bounds and required a rather fast decay on the
coefficients characterizing the dependence structure, meaning they should
decrease faster than geometrically. More recently, for mixing variables Mer-
levède, Peligrad and Rio [12] relaxed the assumption on the mixing coeffi-
cients, requiring just the geometric decay to prove a large deviation. Their
proof technique, called by the authors a “Cantor set construction”, adapts
the block decomposition of sums, popular for proving CLT, to large devi-
ations. These authors have more recently extended their results to other
forms of weak dependent variables (see Merlevède, Peligrad and Rio [13]).
Efforts in the non-logarithmic scale for dependent variables were made by
Grama [6], Grama and Haeusler [7] for martingales, Wu and Zhao [30] for
stationary processes, Tang [28] for negatively dependent variables or Liu [11]
for negatively dependent heavy tailed variables.
In this paper we present a moderate deviation in the non-logarithmic scale

for sums of associated random variables. In Section 2 we give some definitions
and recall some auxiliary results, in Section 3 we prove a first moderate
deviation based on an assumption depending on a Gaussian approximation.
In Section 4 we discuss this approximation issue, giving a general moderate
deviation based on more natural assumptions. Finally, in Section 5 we give
an application to moving averages of our results.

2. Framework and auxiliary results
To define appropriately our framework let Xn, n ≥ 1, be strictly stationary

centered and associated random variables with finite variances. Denote Sn =
X1 + · · · + Xn and s2n = ES2

n. Recall that association means that for any
m ≥ 1 and any two real-valued coordinatewise nondecreasing functions f
and g,

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0,

whenever this covariance exists. It is well known that the covariance structure
of associated random variables characterizes their asymptotics, so it is natural
to seek assumptions on the covariances.
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A common assumption when proving Central Limit Theorems is 1
n
s2n −→

σ2 > 0 (see, for example, Newman and Wright [18, 19] or Oliveira and Su-
quet [22, 23]), so we will be assuming that this is fulfilled in the sequel. Notice
this assumption implies that s2n ∼ n. Finally, define the Cox-Grimmett coef-
ficients, commonly used to control dependence for associated variables:

u(n) =
∞∑

k=n

Cov(X1, Xk). (2)

Our proof will rely on a suitable approximation to independent variables that
will be chosen so they satisfy the moderate deviation we want to extend.
We quote next a result by Frolov [5], providing a moderate deviation for
triangular arrays of row-wise independent random variables. This will be the
tool to prove the moderate deviation for the approximating variables.

Theorem 2.1 (Theorem 1.1 in Frolov [5]). Let Xn,k, k = 1, . . . , kn, n ≥ 1,
be an array of row-wise independent variables with Fn,k(y) = P(Xn,k ≤ y),

EXn,k = 0 and EX2
n,k = σ2

n,k < ∞. Denote Tn =
∑kn

k=1Xn,k and Bn =∑kn
k=1 σ

2
n,k. For q > 2, let βn,k =

∫∞
0 yq Fn,k(dy) < +∞, and define

Mn =

kn∑

k=1

βn,k and Ln = B−q/2
n Mn.

Assume that Ln −→ 0, and that, for each ε > 0,

Λn(x) = x4B−1
n

n∑

k=1

∫ −ε
√
Bn/x

5

−∞
y2 Fn,k(dy) −→ 0. (3)

If x −→ +∞ such that x2 − 2 log(L−1
n )− (q − 1) loglog(L−1

n ) −→ −∞ then

P(Tn ≥ xB1/2
n ) ∼ 1√

2π x
e−x2/2.

Remark that, using standard Gaussian approximations, from the conclu-

sion of this theorem follows easily that P(Tn ≥ xB
1/2
n ) = (1−Φ(x))(1+o(1)),

where Φ stands for the distribution function of a standard Gaussian variable.
Finally, we will be dealing with integration of squares of sums of random

variables that we will need to decompose. The following result describes how
we can do this and control the original integral.
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Lemma 2.2 (Lemma 4 in Utev [29]). Let Un, n ≥ 1, be random variables.
Then, for every ε > 0 and n ≥ 1,

∫

{|
∑n

i=1
Ui|>εn}

(
n∑

i=1

Ui

)2

dP ≤ 2n
n∑

i=1

∫

{|Ui|>ε/2}
U 2
i dP.

3. A general moderate deviation
We now state the moderate deviation for associated random variables. Be-

sides moment conditions we will require a suitable decrease rate on the Cox-
Grimmett coefficients (2). To state and prove our first result we need some
preparatory definitions. Consider an increasing sequence of integers pn < n

2
and define rn as the largest integer that is less or equal to n

2pn
. Decompose

Sn = X1+ · · ·+Xn into blocks, each summing pn variables. For this purpose,
define

Yj,n =

jpn∑

ℓ=(j−1)pn+1

Xℓ, j = 1, . . . , 2rn,

which obviously verify

Sn = Y1,n + · · ·+ Y2rn,n +
n∑

ℓ=2rnpn+1

Xℓ.

The final term is a residual block summing at most 2pn−1 variables. Finally,
put

Zn,od =

rn∑

j=1

Y2j−1,n and Zn,ev =

rn∑

j=1

Y2j,n.

Define now a family of coupling variables: Y ∗
j,n, j = 1, . . . , rn, are independent

random variables such that Y ∗
j,n has the same distribution as Yj,n. Remark

that, if the original variablesXn are strictly stationary, the Y
∗
j,n, j = 1, . . . , rn,

are identically distributed. Moreover, in such case, E(Y ∗
j,n)

2 = s2pn. Further,
denote

Z∗
n,od =

rn∑

j=1

Y ∗
2j−1,n and Z∗

n,ev =

rn∑

j=1

Y ∗
2j,n.

Theorem 3.1. Let Xn, n ≥ 1, be strictly stationary, centered and associated
random variables. Let Sn = X1 + · · ·+Xn, s

2
n = ES2

n. Assume that

(A1): the random variables Xn have finite moments of order q > 2;
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(A2): x2
n = 2γ logn, for some γ < q

2 − 1;

(A3): 1
ns

2
n −→ σ2 for some σ2 < ∞;

(A4): u(n) = O
(
n− 1+3γ

1−α

)
, where α ∈

(
max

(
1
2 +

1
q ,

1
2 +

1+2γ
2(q−1)

)
, 1

)
;

(A5): |P (Sn > 2xnsn)− 2P (Zn,od > xnsn)| = O (n−γ).

Then

P(Sn > 2xnsn) = (1− Φ(xn))(1 + o(1)). (4)

Proof. The proof of the theorem follows the more or less classical steps
after the decomposition of Sn into blocks and coupling these blocks with
variables with the same distribution but independent: 1. prove the moderate
deviation for the coupling variables; 2. control the difference between the
original blocks and the coupling ones; 3. prove the residual block converges
to zero at the appropriate rate; 4. finally, approximate the convenient tail
probabilities. To complete this plan we need to be more specific about the
sequence pn used for the construction of the blocks. We will assume that
pn ∼ n1−α, where α ∈ (0, 1) is given by (A4) (remark that the assumption
on γ in (A2) ensures that a choice α < 1 is indeed possible).
Step 1. To accomplish this step we apply Theorem 2.1 to the random

variables Y ∗
j,n defining each of the summations Z∗

n,od and Z∗
n,ev. We shall

concentrate on Z∗
n,od, as the other summation is analogous. Now, as men-

tioned above, Z∗
n,od is a sum of identically distributed random variables. It

follows from (A1), that the moment assumption required by Theorem 2.1 on
the variables Y ∗

j,n is satisfied. Referring to the notation of Theorem 2.1, we

have Bn = rns
2
pn

∼ nσ2 (this corresponds to our s2n), Mn = rnE(Y
q
j,nIYj,n≥0)

and Ln = rnB
−q/2
n E(Y q

j,nIYj,n≥0) ∼ rnn
−q/2pqn = n(1−α)(q−1)+1−q/2. The ex-

ponent in this last expression is rewritten as q
2
− α(q − 1) < −γ < 0, as

follows from (A4), thus Ln −→ 0, as required by Theorem 2.1. Moreover,
x2
n − 2 logL−1

n ∼ n2γ − n2α(q−1)−q. Again from (A4), α > 1
2
+ 1+2γ

2(q−1)
, so it

follows that 2α(q−1)−q > 2γ, thus x2
n−2 logL−1

n −→ −∞, hence satisfying
the assumption on xn in Theorem 2.1.
Concerning (3), a Lindeberg like assumption in Theorem 2.1, notice that

when applied to the Y ∗
j,n variables, remembering that Bn ∼ n and all the

terms in the summation are identical, it may be rewritten as

x4
nE
(
Y 2
j,nI(−∞,−εsn/x5

n)
(Yj,n)

)
−→ 0.
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(We do not include the ∗ as the mathematical expectation above only depends
on the moments of each variable). Of course, we may replace sn by n1/2.
Enlarging the integration set, we obviously have the upper bound

x4
nE
(
Y 2
j,nI(−∞,−εn1/2/x5

n)
(Yj,n)

)
≤ x4

nE
(
Y 2
j,nI|Yj,n|>εn1/2/x5

n

)
.

The integrand above is the square of a sum of random variables, so we need
to separate the random variables in this square. This may be accomplished
using Lemma 2.2. Remembering that the Xn variables are identically dis-
tributed, one easily obtains that

x4
nE
(
Y 2
j,nI|Yj,n|>εn1/2/x5

n

)

≤ 2x4
np

2
n

∫

{|Xi|>εn1/2/(2pnx5
n)}

X2
i dP

≤ 2x4
np

2
n (E |X1|q)2/q

(
P

(
|X1| >

εn1/2

2pnx5
n

))1−2/q

≤ 2x4
np

2
n (E |X1|q)2/q

(
E |X1|q

(
2pnx

5
n

εn1/2

)q)1−2/q

= 2E |X1|q
2q−2pqnx

5q−6
n

εq−2n(q−2)/2
.

Taking into account (A2), xn grows to infinity at a logarithmic rate, thus the
asymptotic behaviour of the term above is driven by the polynomial factors.
We have chosen pn ∼ n1−α, so it follows that

pqnx
5q−6
n

n(q−2)/2
∼ pqn(logn)

5q/2−3

n(q−2)/2
∼ nq(1/2−α)+1(logn)5q/2−3 −→ 0,

since q(12 − α) + 1 < 0, taking into account (A4). Then, from Theorem 2.1
it follows that (remember E(Y 2

j,n) = s2pn)

P
(
Z∗
n,od > xnspn

√
rn
)
∼ 1√

2π xn

e−x2
n/2.

Step 2. Denote by G1 the distribution function of Zn,od, by G2 the distri-
bution function when the summands are assumed independent, that is, the



8 T. ÇAǦIN, P. E. OLIVEIRA AND N. TORRADO

distribution function of Z∗
n,od, and by ϕ1 and ϕ2 the corresponding charac-

teristic functions:

ϕ1(t) = E
(
eitZn,od

)
and ϕ2(t) =

rn∏

j=1

E
(
eitYj,n

)
.

The classical Berry-Esséen inequality states that

sup
x∈R

|G1(x)−G2(x)| ≤ c1

∫ T

−T

|ϕ1(t)− ϕ2(t)|
|t| dt+

c2
T
, for every T > 0,

where c1 and c2 are constants independent of T . It follows from Newman’s
inequality for characteristic functions of associated variables (Theorem 1 in
Newman [17]) that

|ϕ1(t)− ϕ2(t)| ≤
t2

2

∑

j 6=k

Cov (Yj,n, Yk,n) .

As the Xn are stationary, it still follows that

∑

j 6=k

Cov (Yj,n, Yk,n) ≤ n

+∞∑

ℓ=pn+2

Cov (X1, Xℓ) = nu(pn + 2) ≤ nu(pn),

referring to the Cox-Grimmett coefficients, as the covariances are nonnega-
tive. Inserting this into the Berry-Esséen bound one finds

sup
x∈R

|G1(x)−G2(x)| ≤
c1
2

∫ T

−T

nu(pn) |t| dt+
c2
T

≤ c1
2
nu(pn)T

2 +
c2
T
,

So, by choosing T ∼ (nu(pn))
−1/3, we find an upper bound of order (nu(pn))

1/3.
Using now the choice pn ∼ n1−α and taking into account (A4), it follows that

(nu(pn))
1/3 ∼ n−γ. Given the behaviour of xn described in assumption (A2),

it follows that x−1e−x2/2 ∼ n−γ, hence, we have (nu(pn))
1/3 = O

(
x−1e−x2/2

)
,

which controls the convergence rate of the approximation between the actual
variables and the coupling ones.
Step 3. We prove that the residual block defines probabilities that converge

to zero faster than the terms considered in the previous steps. Remember
that it follows from (A3) that sn ∼ n1/2. Thus, as the variables Xℓ are
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identically distributed,

P




n∑

ℓ=2rnpn+1

Xℓ > xnsn




≤
n∑

ℓ=2rnpn

P

(
Xℓ >

xnn
1/2

n− 2rnpn

)
≤ (n− 2rnpn)

q+1

xnnq/2
E |X1|q .

As x2
n = 2γ logn it is enough to verify that

(n− 2rnpn)
q+1

nq/2
≤ 2q+1pq+1

n

nq/2
∼ n(q+1)(1−α)−q/2.

Now (q + 1)(1− α)− q
2 > (q − 1)(1− α)− q

2 > γ, as follows from the (A4),
so

P




n∑

ℓ=2rnpn+1

Xℓ > xnsn


 = O

(
n−γ
)
.

Step 4. In the previous steps we controlled the behaviour of P(Zn,od >
xnspn

√
rn), but we are interested in probabilities of the form P(Sn > 2xnsn).

The difference between these two terms is controlled at the appropriate con-
vergence rate by (A5).

Remark 3.2. We give an example showing that (A5) is indeed achievable.
We have assumed the Xn to be stationary, so Zn,od and Zn,ev have the same
distribution. Assume, for simplicity, that Sn = Zn,od+Zn,ev, that is, the resid-
ual term does not exist (remember we have already shown that this residual
term is negligible). So one could look at

P (Sn > 2xsn)− 2P (Zn,od > xsn) .

Assume (Zn,od, Zn,ev) has Gaussian distribution with mean (0, 0) and covari-
ance Cov(Zn,od, Zn,ev) = ρn. Remark that, as Var(Zn,od) ∼ Var(Zn,ev) ∼ n

2 ,
we have ρn ≤ n

2 . It is easily verified that Sn is Gaussian with mean 0 and
variance n+ 2ρn. So, denoting by Z a standard Gaussian random variable:

P
(
Sn > 2x

√
n+ 2ρn

)
− 2P

(
Zn,od > x

√
n+ 2ρn

)

= P(Z > 2x)− P

(
Z > x

√
2n+ 4ρn

n

)
.

(5)
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As we have already remarked, as x −→ +∞,

P(Z > x) ∼ 1√
2π x

e−x2/2 .

Using this approximation on (5) and multiplying by xex
2/2, we find

[
P
(
Sn > 2x

√
n+ 2ρn

)
− 2P

(
Zn,od > x

√
n+ 2ρn

)] x

e−x2/2

∼ exp
(
−3x2/2

)

2
√
2π

+
exp

(
−x2(1/2 + 2ρn/n)

)
√
2π
√

2 + 4ρn/n
.

As both exponents are negative, this remains bounded, so that (A5) is ful-
filled.

Remark 3.3. Still about (A5). One can easily see that the argument above
is a lot more restrictive if we compare∣∣∣P (Sn > xsn)− 2P

(
Zn,od >

xsn
2

)∣∣∣ .

Indeed, repeating the approximations for the Gaussian variable as above, one
could only conclude about the boundedness of this difference if ρn ≥ n

2 . Now
remember that ρn represents the covariance of two random variables with
variances equal to n

2
, so in order to make these two requirements compati-

ble we would need that ρn ∼ n
2 , thus reducing significantly the possibility of

choices for ρn.

Assumption (A4) describes the decrease rate for the Cox-Grimmett co-
efficients depending on a parameter that is used for tuning the technical
construction needed for the proof. It is useful to have a version of the result
with an assumption independent from these tuning parameters.

Corollary 3.4. The result in Theorem 3.1 holds if we replace (A4) by

(A4 ′): u(n) = O
(
n−θ
)
, where θ > (1 + 3γ)max

(
2 + 4

q−2, 2 +
4γ+2

q−2γ−2

)
.

Proof. With respect to the proof of Theorem 3.1, it is enough to verify that

θ > 1+3γ
1−α , where α > max

(
1
2 +

1
q ,

1
2 +

1+2γ
2(q−1)

)
. From here follow immediate

bounds for 1 − α that we plug in the above expression to find the given
condition for the choice of the parameter θ.

Remark 3.5. Notice that the assumption on the Cox-Grimmett coefficients,
in either form (A4) or (A4 ′), is much milder than what was assumed in
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Henriques and Oliveira [8] to prove a large deviation principle: Cov (X1, Xn) =
a0 exp

(
−n(logn)1+a

)
, where a0 > 0 and a > 0.

Let us get back to the discussion about assumption (A5), seeking for
more a natural sufficient condition. According to Remark 3.2, when the
distributions are Gaussians, (A5) is satisfied. So, one way to look for more
natural conditions is to try to control the distance with respect to Gaussian
distributions using Berry-Esséen bounds.

Theorem 3.6. Let Xn, n ≥ 1, be strictly stationary centered and associated
random variables. Let Sn = X1 + · · · +Xn, s

2
n = ES2

n. Assume that (A1)–
(A4) in Theorem 3.1 are satisfied with q ≥ 3 and γ < min(1

5
, q
2
− 1). Then

(4) holds.

Proof. We need to verify that (A5) is satisfied. For this purpose introduce

Gaussian centered variables Ŝn, Ẑn,od and Ẑn,ev with variances ES2
n, EZ

2
n,od

and EZ2
n,ev, respectively, and such that Cov(Ẑn,od, Ẑn,ev) = Cov(Zn,od, Zn,ev),

and decompose

|P (Sn > 2xnsn)− 2P (Zn,od > xnsn)|
≤
∣∣∣P (Sn > 2xnsn)− P

(
Ŝn > 2xnsn

)∣∣∣

+
∣∣∣P
(
Ŝn > 2xnsn

)
− 2P

(
Ẑn,od > xnsn

)∣∣∣

+
∣∣∣P
(
Ẑn,od > xnsn

)
− 2P (Zn,od > xnsn)

∣∣∣ .

Remark 3.2 shows that the middle term above∣∣∣P
(
Ŝn > 2xnsn

)
− 2P

(
Ẑn,od > xnsn

)∣∣∣ = O
(
n−γ
)
.

As the variables satisfy the Central Limit Theorem, the remaining terms
may be bounded by the Berry-Esséen inequality. Now, taking into account
Corollary 4.14 in Oliveira [21], the convergence rate for these terms is of
order n−1/5. Hence, |P (Sn > 2xnsn)− 2P (Zn,od > xnsn)| is of the same order
as the slowest term, that is n−γ, thus (A5) is satisfied, so the conclusion of
Theorem 3.1 holds, that is, (4) is verified.

4.Main result
The result stated in Theorem 3.6 is a sort of a worst case scenario concern-

ing the approximation to the Gaussian distribution. We may improve on our
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Theorem 3.1 if we are more precise about the convergence rate in assumption
(A3). To accomplish this we need first to prove an adapted version of the
Berry-Esséen bound for the approximation of distribution functions in the
Central Limit Theorem.

Theorem 4.1. Let Xn, n ≥ 1, be strictly stationary, centered and associated
random variables with finite moments of order 3. Let Sn = X1 + · · · + Xn,
s2n = ES2

n and assume that 1
ns

2
n −→ σ2 < ∞. If pn and rn are sequences as

defined in the beginning of Section 2, then, for n large enough,

sup
x∈R

|P (Sn ≤ xsn)− Φ(x)| ≤ T 2

(
1−

2rns
2
pn

s2n

)
+

24

π
√
2π T

(6)

+4
√
π c′1e

c′1/(2c
2
1)
rnE |Yj,n|3

s3n
,

where Φ(·) is the distribution function of the standard Gaussian distribution,

T =
s2pnsn

4E|Y 3
j,n| and c1, c

′
1 > 0 are constants that do not depend on the random

variables.

Proof. Using the classical Berry-Esséen bound we have for every T > 0
(see, for example, Theorem A.1 in [21]),

sup
x∈R

|P (Sn ≤ xsn)− Φ(x)| ≤ 1

π

∫ T

−T

1

|t|
∣∣∣ϕSn

( t
sn
)− e−t2/2

∣∣∣ dt+ 24

π
√
2π T

,

where ϕSn
represents that characteristic function of Sn. To bound the integral

above remember that Sn = Y1,n + · · · + Y2rn,n and add and subtract the

terms
∏2rn

j=1Ee
it
sn

Yj,n and e−rnt
2s2pn/s

2
n inside the absolute value and separate

the corresponding three integrals, and that, due to the strict stationarity,
the blocks Yj,n have the same distribution as Spn. Now, using Newman’s
inequality for characteristic functions (Theorem 1 in Newman [17]), for the
first integral obtained it follows immediately that,

∫ T

−T

1

|t|

∣∣∣∣∣E exp

(
it
sn

2rn∑

j=1

Yj,n

)
−

2rn∏

j=1

Ee
it
sn

Yj,n

∣∣∣∣∣ dt

≤ 1

2

∫ T

−T

1

|t|
∑

j 6=j′

t2

s2n
Cov(Yj,n, Yj′,n) dt =

T 2

2

(
1−

2rns
2
pn

s2n

)
.
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The third integral is also easily bounded. Indeed, using |ex − ey| ≤ |x− y|,
∫ T

−T

1

|t|
∣∣∣e−rnt

2s2pn/s
2
n − e−t2/2

∣∣∣ dt ≤ T 2

2

(
1−

2rns
2
pn

s2n

)
.

We have thus obtained the first two terms in the upper bound in (6). The
remaining integral to analyse is

∫ T

−T

1

|t|

∣∣∣∣∣

2rn∏

j=1

Ee
it
sn

Yj,n − e−rnt
2s2pn/s

2
n

∣∣∣∣∣ dt =
∫ T

−T

1

|t|

∣∣∣∣∣

2rn∏

j=1

ϕYj,n

(
t
sn

)
− e−rnt

2s2pn/s
2
n

∣∣∣∣∣ dt,

where ϕYj,n
is the characteristic function of Yj,n. Let Wj, j = 1, . . . , 2rn,

be random variables with the same distribution as Yj,n such that these two
variables are independent. Then, for each j = 1, . . . , rn, E(Wj − Yj,n) = 0,

Var(Wj − Yj,n) = 2s2pn and E |Wj − yj,n|3 ≤ 8E |Yj,n|3. Hence, for some θ ∈
(−1, 1),

∣∣∣ϕYj,n

(
t
sn

)∣∣∣
2

= ϕWj−Yj,n

(
t
sn

)
≤ 1−

s2pnt
2

s2n
+

4θ

3

|t|3 E |Yj,n|3
s3n

≤ exp

(
−
s2pnt

2

s2n
+

4θ

3

|t|3 E |Yj,n|3
s3n

)
,

and ∣∣∣∣∣

2rn∏

j=1

ϕYj,n

(
t
sn

)∣∣∣∣∣

2

≤ exp

(
−
2rnt

2s2pn
s2n

+
8θ

3

|t|3E |Yj,n|3
s3n

)
.

Assume that |t| ≤ T =
s2pns

2
n

4E|Y 3
j,n| . Then

8θ
3
|t|3E|Yj,n|3

s3n
≤ 2rnt

2s2pn
3s2n

, thus

∣∣∣ϕYj,n

(
t
sn

)
− e−rnt

2s2pn/s
2
n

∣∣∣ ≤ exp

(
−
2rnt

2s2pn
3s2n

)
+ exp

(
−
rnt

2s2pn
s2n

)

≤ 2 exp

(
−
2rnt

2s2pn
3s2n

)
. (7)

Another Taylor expansion gives, for some θ ∈ (−1, 1),

ϕYj,n

(
t
sn

)
= 1−

t2s2pn
2s2n

+ θ
|t|3 E |Yj,n|3

6s3n
. (8)
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If we assume now that |t| ≤ sn

c1(2rnE|Yj,n|3)
1/3 , it follows from the previous

inequality that
∣∣∣ϕYj,n

(
t
sn

)
− 1
∣∣∣ ≤ 1

2(2rn)2/3c21
+

1

12c31rn
,

which is, for n large enough, arbitrarily small, thus the characteristic function
is bounded away from 0 for |t| ≤ sn

c1(2rnE|Yj,n|3)
1/3 . Moreover, from (8) and

taking into account the upper bound for |t|, it follows that
∣∣∣ϕYj,n

(
t
sn

)
− 1
∣∣∣
2

≤
t4s4pn
2s4n

+
t6(E |Yj,n|3)2

18s6n
≤ |t|3E |Yj,n|3

s3n

1 + 18c21
36c31

.

As the characteristic functions are bounded away from 0, we may take their
logarithms, for which we find that, for some θ, γ ∈ (−1, 1),

logϕYj,n

(
t
sn

)
= −

t2s2pn
2s2n

+ θ
|t|3E |Yj,n|3

6s3n
+ γ

1 + 18c21
36c31

|t|3 E |Yj,n|3
s3n

= −
t2s2pn
2s2n

+ η
|t|3 E |Yj,n|3

2s3n
,

where η = θ
3 + γ 1+18c21

18c31
. If we define c′1 =

1
3 +

1+18c21
18c31

, we have |η| ≤ c′1 ≤ 1, for

c1 conveniently chosen. Summing these bound for the logarithms, we find
that

logϕSn

(
t
sn

)
= −

rnt
2s2pn
s2n

+ η
rn |t|3E |Yj,n|3

s3n
,

and
∣∣∣∣∣

2rn∏

j=1

Ee
it
sn

Yj,n − e−rnt
2s2pn/s

2
n

∣∣∣∣∣ ≤ e−rnt
2s2pn/s

2
n

∣∣∣ec′1rn|t|
3
E|Yj,n|3/s3n − 1

∣∣∣

≤ c′1rn|t|3E|Yj,n|3
s3n

ec
′

1rn|t|
3
E|Yj,n|3/s3n e−rnt

2s2pn/s
2
n.

In order to get an unified upper bound with (7) we choose the constant c1
such that, for each |t| > sn

c1(2rnE|Yj,n|3)
1/3 ,

c′1rn |t|3E |Yj,n|3
s3n

≥ c′1
2c31

=
6c31 + 18c21 + 1

36c61
≥ 2,
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which is fulfilled if c1 < .7621. For such a constant we have thus that
∣∣∣∣∣

2rn∏

j=1

Ee
it
sn

Yj,n − e−rnt
2s2pn/s

2
n

∣∣∣∣∣ ≤
c′1rn |t|3 E |Yj,n|3

s3n
ec

′

1rn|t|
3
E|Yj,n|3/s3n e−rnt

2s2pn/s
2
n,

for every |t| ≤ T =
s2pnsn

4E|Y 3
j,n| . Taking into account this variation for t, it

still follows that
c′1rn|t|

3
E|Yj,n|3
s3n

≤ c′1
2c21

. Furthermore, as 1
ns

2
n −→ σ2 it follows

rns
2
pn

sn
−→ 1, hence, for n large enough, we have 1

4 <
rns

2
pn

sn
< 1, so that

e−rnt
2s2pn/s

2
n ≤ e−t2/4. Inserting this bounds in the integral we find the remain-

ing upper bound in (6).
Theorem 4.1 shows that the rate of the convergence 1

ns
2
n −→ σ2 can play

an important role on simplifying assumption (A5) in Theorem 3.1.

Theorem 4.2. Let Xn, n ≥ 1, be strictly stationary, centered and associated
random variables. Let Sn = X1 + · · ·+Xn, s

2
n = ES2

n. Assume that

(B1): the random variables Xn have finite moments of order q ≥ 3;
(B2): x2

n = 2γ logn, for some γ < min
(
1
2 ,

q
2 − 1

)
;

(B3): for some σ2 < ∞,
∣∣ 1
ns

2
n − σ2

∣∣ = O(nβ), for some β < 0;

(B4): u(n) = O
(
n− 1+3γ

1−α

)
, where α ∈

(
3
4 +

γ
2 , 1
)
.

Then

P(Sn > 2xnsn) = (1− Φ(xn))(1 + o(1)). (9)

Proof. We follow the arguments in the proof of Theorem 3.1, with pn ∼
n1−α. This produces a convergence term of order n−γ. Now, we have to
verify that the approximation to the Gaussian is, at least, as fast as the rate
n−γ. Looking at the upper bound in (6), remark that it follows from (B3)

that
∣∣∣1− 2rns

2
pn

s2n

∣∣∣ = O(nβ(1−α)). Moreover, we have T =
s2pnsn

4E|Yj,n|3
∼ n1/2p−2

n ∼
n2α−3/2 −→ ∞, as α > 3

4. This implies that the two first terms in the upper

bound in (6) are of order T 2nβ(1−α) ∼ n4α−3+β(1−α) and T−1 ∼ n3/2−2α. It
follows from (B4) that both 4α − 3 + β(1 − α) < −γ and 3/2− 2α < −γ,
thus converging faster than the order n−γ that comes from the arguments in
course of proof of Theorem 3.1. Finally, the last term in the upper bound in
(6) is easily verified to be of order n3/2−2α, as is the term corresponding to
T−1, so the proof is concluded.



16 T. ÇAǦIN, P. E. OLIVEIRA AND N. TORRADO

Finally, we may state a result in the same spirit as Corollary 3.4. We state
it without proof, as this is a very simple replication of the argument used to
prove Corollary 3.4.

Corollary 4.3. The result in Theorem 4.2 holds if we replace (B4) by

(B4 ′): u(n) = O
(
n−θ
)
, where θ > 4 + 20γ

1−2γ
.

5. An application
As an application of the previous results, consider a moving average model

Xn =
∑∞

i=1 φiεn−i, where the εn are independent and identically distributed
with mean 0, variance 1 and finite moments of order q > 2, and φn > 0,
so the Xn, n ≥ 1, are associated. Using Hölder inequality it easily follows
that Xn has finite moment of order q, for some ρ ∈ (0, 1),

∑∞
i=1 φ

ρq
i < ∞ and∑∞

i=1 φ
(1−ρ)q/(q−1)
i < ∞. Concerning the covariances, whose control is needed

in order to verify (A4 ′), it is easily verified that

Cov(X1, Xn) =
∞∑

i=1

φiφn−1+i ≤
( ∞∑

i=n

φτ
i

)1/τ ( ∞∑

i=1

φτ ′

i

)1/τ ′

, (10)

where τ, τ ′ > 1 are such that τ−1 + (τ ′)−1 = 1. So, (A4 ′) is verified if the
moving average coefficients satisfy, for some τ > 1,

φn −→ 0,

∞∑

i=1

φs
i < ∞, where s = min

(
ρq,

(1− ρ)q

q − 1
,

τ

τ − 1

)
, ρ ∈ (0, 1),

∞∑

i=n

φτ
i ∼ n−θτ , θ > (1 + 3γ)max

(
2 +

4

q − 2
, 2 +

4γ + 2

q − 2γ − 2

)
.

Assume now that the coefficients verify φn ∼ n−a, for some a > 0. We
need to adjust the choice of the decrease rate, that is, the exponent a, in
order to meet the requirements discussed above. To have the appropriate
finite moment of order q for the Xn we need to ensure the convergence of the
above mentioned series. This follows if we can choose ρ ∈ (0, 1) such that

aρq > 1 and (1−ρ)aq
q−1 > 1, that is 1

aq < ρ < 1 − aq
q−1. Such a choice is always

possible as soon as a > 1. Inserting now the behaviour of the φi in (10) it
follows that Cov(X1, Xn) ∼ n−(a+1/τ), so that the Cox-Grimmett coefficient
u(n) ∼ n−(a+1+1/τ), where τ > 1 is arbitrarily chosen. Thus, in order to verify
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(A4 ′) we must require a+1+ 1
τ
> (1+3γ)max

(
2 + 4

q−2
, 2 + 4γ+2

q−2γ−2

)
, where

0 < γ < q
2
−1 and q > 2. So, finally, taking into account the liberty to choose

τ , it is enough to require that a > (1+ 3γ)max
(
2 + 4

q−2
, 2 + 4γ+2

q−2γ−2

)
− 2. A

condition based on the more usable Corollary 4.3 would require a+ 1 + 1
τ >

4+ 20γ
1−2γ or, using the liberty to choose τ , a > 2+ 20γ

1−2γ and we should remember

that in this case we must have 0 < γ < min
(
1
2
, q
2
− 1
)
and q ≥ 3.
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