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HYPERSYMPLECTIC STRUCTURES WITH TORSION ON
LIE ALGEBROIDS

P. ANTUNES AND J.M. NUNES DA COSTA

Abstract: Hypersymplectic structures with torsion on Lie algebroids are investi-
gated. We show that each hypersymplectic structure with torsion on a Lie algebroid
determines three Nijenhuis morphisms. From a contravariant point of view, these
structures are twisted Poisson structures. We prove the existence of a one-to-one
correspondence between hypersymplectic structures with torsion and hyperkähler
structures with torsion. We show that given a Lie algebroid with a hypersymplectic
structure with torsion, the deformation of the Lie algebroid structure by any of the
transition morphisms does not affect the hypersymplectic structure with torsion.
We also show that if a triplet of 2-forms is a hypersymplectic structure with torsion
on a Lie algebroid A, then the triplet of the inverse bivectors is a hypersymplectic
structure with torsion for a certain Lie algebroid structure on the dual A∗, and
conversely. Examples of hypersymplectic structures with torsion are included.

Introduction

Hypersymplectic structures with torsion on Lie algebroids were introduced
in [5], in relation with hypersymplectic structures on Courant algebroids,
when these Courant algebroids are doubles of quasi-Lie and proto-Lie bialge-
broids. In fact, while looking for examples of hypersymplectic structures
on Courant algebroids we found in [5], in a natural way, hypersymplec-
tic structures with torsion on Lie algebroids. A triplet (ω1, ω2, ω3) of non-
degenerate 2-forms on a Lie algebroid (A, µ) is a hypersymplectic structure
with torsion if the transition morphisms Ni, i = 1, 2, 3, satisfy N2

i = −idA
and N1dω1 = N2dω2 = N3dω3 (Definition 1.1). These structures can be
viewed, in a certain sense, as a generalization of hypersymplectic structures
on Lie algebroids, a structure we have studied in [3], but also as being in
a one-to-one correspondence with hyperkähler structures with torsion, a no-
tion already known in the literature. Hyperkähler structures with torsion
on manifolds, also known as HKT structures, first appear in [10] in relation
with sigma models in string theory. Let us briefly recall what a HKT mani-
fold is. Let M be a hyperhermitian manifold, i.e., a manifold equipped with
three complex structures N1, N2 and N3 satisfying N1N2 = −N2N1 = N3
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and a metric g compatible with the three complex structures. If there exists
a linear connection ∇ on M such that ∇g = 0, ∇N1 = ∇N2 = ∇N3 = 0
and H, defined by H(X, Y, Z) = g(X,∇YZ −∇ZY − [Y, Z]), is a 3-form on
M , then M is a HKT manifold. In [9] it was proved that the condition of H
being a 3-form can be substituted by the following equivalent requirement:
N1dω1 = N2dω2 = N3dω3, where ω1, ω2 and ω3 are the associated Kähler
forms. Later, in [7], the authors showed that the assumption of N1, N2 and
N3 being Nijenhuis can be removed from the definition of HKT manifold,
because the equalities N1dω1 = N2dω2 = N3dω3 imply the vanishing of the
Nijenhuis torsion of the morphisms N1, N2 and N3. Thus, the definition
of a HKT manifold can be simplified, requiring that it is an almost hyper-
hermitian manifold satisfying N1dω1 = N2dω2 = N3dω3. Inspired in the
latter definition of HKT manifold, we extend to Lie algebroids the notion of
HKT structure. It is worth to mention that our definition of hypersymplec-
tic structure with torsion and HKT structure is more general than the usual
one, since we consider the cases of (almost) complex and para-complex mor-
phismsNi. Besides the relation of hypersymplectic structures with torsion on
Lie algebroids with HKT structures, we look at hypersymplectic structures
with torsion on Lie algebroids from a different perspective, by presenting an
alternative definition that uses bivectors instead of 2-forms (Theorem 2.2).
These bivectors are twisted Poisson, also known as Poisson with a 3-form
background [20]. Moreover, we prove that the almost complex morphisms
N1, N2 and N3, that are constructed out of the 2-forms and the twisted
Poisson bivectors, are in fact Nijenhuis morphisms (Theorem 7.1). In other
words, a hypersymplectic structure with torsion on a Lie algebroid A deter-
mines three Nijenhuis morphisms and three twisted Poisson bivectors. It is
well known that if (A, µ) is a Lie algebroid and N is a Nijenhuis morphism,
the deformation (in a certain sense) of µ by N yields a new Lie algebroid
structure on A, that we denote by µN . On the other hand, if a Lie algebroid
(A, µ) is equipped with a twisted Poisson bivector π, the dual vector bundle
A∗ inherits a Lie algebroid structure given by µπ +

1
2 {ω, [π, π]} (Proposition

7.6). So, two natural questions arise.

1. If (ω1, ω2, ω3) is a hypersymplectic structure with torsion on a Lie al-
gebroid (A, µ), does it remain a hypersymplectic structure with torsion
on the Lie algebroid (A, µNi

), for i = 1, 2, 3?
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In Theorem 7.5 we answer this question, actually showing that
(ω1, ω2, ω3) is a hypersymplectic structure with torsion on (A, µ) if
and only if it is a hypersymplectic structure with torsion on (A, µNi

),
for i = 1, 2, 3.

2. Does a hypersymplectic structure with torsion on a Lie algebroid A
induce a hypersymplectic structure with torsion on the Lie algebroid
A∗?

The answer is given in Theorem 7.8, where we prove that (ω1, ω2, ω3)
is a hypersymplectic structure with torsion on (A, µ) if and only if
(π1, π2, π3) is a hypersymplectic structure with torsion on
(

A∗,−µπi − 1
2 {ωi, [πi, πi]}

)

, i = 1, 2, 3, where πi is the inverse of ωi.

Question 2 was answered in [4] for the case of hypersymplectic structures
(without torsion) on Lie algebroids.
As we already mentioned, we have studied hypersymplectic structures on

pre-Courant algebroids in our previous paper [5]. The results of [5] turned
out to be essential in the current paper, since they are extensively used to
prove the theorems in Section 7. The proof of Theorem 7.1 requires some
properties of the Nijenhuis torsion on pre-Courant and Lie algebroids. We
have obtained several results on this topic which are collected at the end of
Section 6.
The paper includes, besides the Introduction, seven sections and one ap-

pendix. In Section 1 we define ε-hypersymplectic structures with torsion on
a Lie algebroid and present some of their properties. In Section 2 we give
the equivalent definition in terms of twisted Poisson bivectors. The struc-
ture induced on the base manifold of a Lie algebroid with a hypersymplectic
structure with torsion is described in Section 3. In Section 4 we introduce the
notion of hyperkähler structure with torsion on a Lie algebroid and prove the
existence of a one-to-one correspondence between hypersymplectic structures
with torsion and hyperkähler structures with torsion on a Lie algebroid (The-
orem 4.5). Section 5 contains three examples of hypersymplectic structures
with torsion on R

8, on su(3) and on the tangent bundle of S3× (S1)5, respec-
tively. In Section 6 we start by recalling the definition and main properties
of an ε-hypersymplectic structure on a pre-Courant algebroid. Then, we
concentrate on pre-Courant structures on the vector bundle A⊕A∗, to study
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the Nijenhuis torsion of an endomorphism of A⊕ A∗ of type TN = N ⊕N∗,
with N : A→ A. Namely, we establish some relations between the Nijenhuis
torsion of TN and the Nijenhuis torsion of N (Propositions 6.8 and 6.10).
Section 6 also includes a formula taken from [1], that expresses the Frölicher-
Nijenhuis bracket in terms of big bracket (Theorem 6.11). This formula is
used to show how the Frölicher-Nijenhuis bracket on a Lie algebroid can
be seen in the pre-Courant algebroid setting (Proposition 6.12). Section 7
contains the most important results of the paper. We prove that the tran-
sition morphisms N1, N2 and N3 are Nijenhuis (Theorem 7.1) and pairwise
compatible with respect to the Frölicher-Nijenhuis bracket (Proposition 7.2),
and that the twisted Poisson bivectors are compatible with respect to the
Schouten-Nijenhuis bracket of the Lie algebroid (Proposition 7.3). Theorems
7.5 and 7.8, mentioned previously, are also included in this section. Since
most of the computations along the paper are done using the big bracket,
we include in Appendix A a review of Lie and pre-Courant algebroids in the
supergeometric setting.

Notation: We consider 1, 2 and 3 as the representative elements of the equiv-
alence classes of Z3, i.e., Z3 := {[1], [2], [3]}. Along the paper, although we
omit the brackets, and write i instead of [i], the indices (and corresponding
computations) must be thought in Z3 := Z/3Z.

1. Hypersymplectic structures with torsion

Let (A, µ) be a Lie algebroid and take three non-degenerate 2-forms ω1, ω2

and ω3 ∈ Γ(∧2A∗) with inverse π1, π2 and π3 ∈ Γ(∧2A), respectively. We
define the transition morphisms N1, N2 and N3 : A→ A, by setting

Ni := π♯i−1 ◦ ω♭i+1, i ∈ Z3. (1)

In (1), we consider the usual vector bundle maps π# : A∗ → A and ω♭ :
A → A∗, associated to a bivector π ∈ Γ(

∧2A) and a 2-form ω ∈ Γ(
∧2A∗),

respectively, which are given by 〈β, π#(α)〉 = π(α, β) and 〈ω♭(X), Y 〉 =
ω(X, Y ), for all α, β ∈ Γ(A∗) and X, Y ∈ Γ(A).
In what follows we shall consider the parameters εi = ±1, i = 1, 2, 3, and

the triplet ε= (ε1, ε2, ε3).
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Definition 1.1. A triplet (ω1, ω2, ω3) of non-degenerate 2-forms on a Lie
algebroid (A, µ) is an ε-hypersymplectic structure with torsion if

Ni
2 = εiidA, i = 1, 2, 3, and ε2N1dω1 = ε3N2dω2 = ε1N3dω3, (2)

where Nidωi(X, Y, Z) = dωi(NiX,NiY,NiZ), for all X, Y, Z ∈ Γ(A), and Ni

is given by (1), i = 1, 2, 3.

When the non-degenerate 2-forms ω1, ω2 and ω3 are closed, so that they
are symplectic forms and the right hand side of (2) is trivially satisfied, the
triplet (ω1, ω2, ω3) is an ε-hypersymplectic structure on (A, µ) [3].
Having an ε-hypersymplectic structure with torsion (ω1, ω2, ω3) on a Lie

algebroid A over M , we define a map

g : A×A −→ R, g(X, Y ) = 〈g♭(X), Y 〉, (3)

where g♭ : A −→ A∗ is a vector bundle morphism given by

g♭ := ε3ε2 ω3
♭ ◦ π1♯ ◦ ω2

♭. (4)

The definition of g♭ is not affected by a circular permutation of the indices
in (4), that is,

g♭ = εi−1εi+1 ωi−1
♭ ◦ πi♯ ◦ ωi+1

♭, i ∈ Z3. (5)

Moreover,

(g♭)∗ = −ε1ε2ε3 g♭, (6)

which means that g is symmetric or skew-symmetric, depending on the sign
of ε1ε2ε3. An important property of g is the following one:

g(NiX,NiY ) = εi−1εi+1 g(X, Y ), X, Y ∈ Γ(A). (7)

Notice that g♭ is invertible and, using its inverse, we may define a map
g−1 : A∗ × A∗ −→ R, by setting

g−1(α, β) := 〈β, (g♭)−1(α)〉, (8)

for all α, β ∈ Γ(A∗).

All the algebraic properties of ε-hypersymplectic structures proved in [3]
hold in the case of ε-hypersymplectic structures with torsion. We quote some
of them in the next proposition.
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Proposition 1.2. Let ω1, ω2 and ω3 be non-degenerate 2-forms on a vector
bundle A → M with inverses π1, π2 and π3, respectively. Let N1, N2 and N3

be the transition morphisms given by (1), such that N2
i = εiidA, and g be the

morphism defined by (4). Then,

i) ω♭i ◦Ni = ε1ε2ε3Ni
∗ ◦ ω♭i = εi−1g

♭,

ii) π♯i ◦Ni
∗ = ε1ε2ε3Ni ◦ π♯i = εi+1(g

−1)♯,

iii) g♭ ◦Ni = ε1ε2ε3Ni
∗ ◦ g♭ = εiεi−1ω

♭
i ,

for all indices in Z3. Moreover, for i, j ∈ Z3, i 6= j,

iv) ω♭i ◦Nj = Nj
∗ ◦ ω♭i =

{

ω♭i−1 , j = i+ 1
εi−1ω

♭
i+1 , j = i− 1;

v) π♯i ◦Nj
∗ = Nj ◦ π♯i =

{

εi+1π
♯
i−1 , j = i+ 1

π♯i+1 , j = i− 1;

vi) Ni ◦Nj = ε1ε2ε3Nj ◦Ni =

{

εiεi+1Ni−1 , j = i+ 1
εi+1Ni+1 , j = i− 1.

Proof : See the proofs of Propositions 3.7 and 3.9 in [3]. Notice that these
proofs only use algebraic properties of the morphisms and do not use the Lie
algebroid structure of A→M .

2. The contravariant perspective

In this section we give a contravariant characterization of an ε-hypersym-
plectic structure with torsion on a Lie algebroid.
We shall need the next lemma, that can be easily proved.

Lemma 2.1. Let ω be a non-degenerate 2-form on a Lie algebroid (A, µ),
with inverse π. Then,

[π, π] = 2dω
(

π♯(·), π♯(·), π♯(·)
)

(9)

or, equivalently,

dω =
1

2
[π, π]

(

ω♭(·), ω♭(·), ω♭(·)
)

, (10)

where [·, ·] stands for the Schouten-Nijenhuis bracket of multivectors on (A, µ).

Equation (9) means that π is a twisted-Poisson bivector on (A, µ), also
known as Poisson bivector with the 3-form background dω [20].
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Let (ω1, ω2, ω3) be an ε-hypersymplectic structure with torsion on (A, µ)
and let us denote by H the 3-form

H := ε2N1dω1 = ε3N2dω2 = ε1N3dω3.

So, for all X, Y, Z ∈ Γ(A),

H(X, Y, Z) = εi+1dωi(NiX,NiY,NiZ), i = 1, 2, 3, (11)

or, equivalently,

dωi(X, Y, Z) = εiεi+1H(NiX,NiY,NiZ), i = 1, 2, 3. (12)

Now we prove the main result of this section, that can be seen as a new
definition of ε-hypersymplectic structure with torsion on a Lie algebroid.

Theorem 2.2. A triplet (ω1, ω2, ω3) of non-degenerate 2-forms on a Lie alge-
broid (A, µ) with inverses π1, π2 and π3, respectively, is an ε-hypersymplectic
structure with torsion on A if and only if

Ni
2 = εiidA, i = 1, 2, 3, and ε1[π1, π1] = ε2[π2, π2] = ε3[π3, π3],

with Ni given by (1).

Proof : It is enough to prove that ε2N1dω1 = ε3N2dω2 = ε1N3dω3 is equiva-
lent to ε1[π1, π1] = ε2[π2, π2] = ε3[π3, π3].
Assume that ε2N1dω1 = ε3N2dω2 = ε1N3dω3. From (9), (12) and Proposi-

tion 1.2 ii), we have

εi[πi, πi] = 2εidωi

(

π♯i(·), π
♯
i(·), π

♯
i(·)

)

= 2εi+1H
(

Ni ◦ π♯i(·), Ni ◦ π♯i(·), Ni ◦ π♯i(·)
)

= 2ε1ε2ε3H
(

(g−1)♯(·), (g−1)♯(·), (g−1)♯(·)
)

,

for i ∈ Z3; thus,
ε1[π1, π1] = ε2[π2, π2] = ε3[π3, π3].

Conversely, assume that ε1[π1, π1] = ε2[π2, π2] = ε3[π3, π3] and let us set
ψ := 1

2εi[πi, πi]. Then, using (10) and Proposition 1.2 i), we get

εi+1dωi (Ni(·), Ni(·), Ni(·)) =
1

2
εi+1[πi, πi]

(

ω♭i ◦Ni(·), ω♭i ◦Ni(·), ω♭i ◦Ni(·)
)

=
1

2
εi+1εi−1[πi, πi]

(

g♭(·), g♭(·), g♭(·)
)

= ε1ε2ε3ψ
(

g♭(·), g♭(·), g♭(·)
)

.
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Therefore, we conclude

ε2N1dω1 = ε3N2dω2 = ε1N3dω3.

Remark 2.3. When we have an ε-hypersymplectic structure with torsion on a
Lie algebroid (A, µ), this Lie algebroid is equipped with a triplet (π1, π2, π3)
of twisted-Poisson bivectors that share, eventually up to a sign, the same
obstruction to be Poisson. This obstruction is denoted by 2ψ in the proof of
Theorem 2.2.

3. Structures induced on the base manifold

It is well known that a symplectic structure ω on a Lie algebroid A → M
induces a Poisson structure on the base manifold M . The Poisson bivector
π

M
on M is defined by

π♯
M
= ρ ◦ π♯ ◦ ρ∗, (13)

where ρ is the anchor map and π ∈ Γ(∧2A) is the Poisson bivector on A which
is the inverse of ω. In the case where ω is non-degenerate but not necessarily
closed, so that π defines a Poisson structure with the 3-form background
dω on the Lie algebroid A (see (9)), the base manifold M has an induced
Poisson structure with a 3-form background, provided that dω ∈ Γ(∧3A∗) is
the pull-back by ρ of a closed 3-form φ

M
∈ Ω3(M). In fact, if dω = ρ∗(φ

M
)

then, a straightforward computation gives

[π, π] = 2dω
(

π♯(·), π♯(·), π♯(·)
)

⇒ [π
M
, π

M
]
M
= 2φ

M

(

π♯
M
(·), π♯

M
(·), π♯

M
(·)

)

,
(14)

where π
M
is given by (13) and [·, ·]

M
stands for the Schouten-Nijenhuis bracket

of multivectors on M .
The next proposition is now immediate.

Proposition 3.1. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure with tor-
sion on a Lie algebroid (A, µ) overM with inverses π1, π2 and π3, respectively.
Let ρ be the anchor map of A. If dωi = ρ∗(φi

M
), i = 1, 2, 3, with φi

M
a closed

3-form on the manifold M , then M is equipped with three Poisson structures
π1

M
, π2

M
and π3

M
, defined by (13), with the 3-forms background, φ1

M
, φ2

M
and

φ3
M
, respectively. Moreover, the three bivectors on M share, eventually up to

a sign, the same obstruction to be Poisson.
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We should stress that if ωi = ρ∗(ωi
M
) for some 2-forms ωi

M
on M , i =

1, 2, 3, then dωi = ρ∗(δωi
M
) with δ the De Rham differential on M . So, the

assumptions of Proposition 3.1 are satisfied and

[πi
M
, πi

M
]
M
= 2δωi

M

(

(πi
M
)♯(·), (πi

M
)♯(·), (πi

M
)♯(·)

)

,

i = 1, 2, 3. However, although the bivectors π1
M
, π2

M
and π3

M
on M satisfy

ε1[π
1
M
, π1

M
]
M
= ε2[π

2
M
, π2

M
]
M
= ε3[π

3
M
, π3

M
]
M
, in general, the triplet (ω1

M
, ω2

M
, ω3

M
)

does not define an ε-hypersymplectic structure with torsion on M , because
ωi

M
is not the inverse of πi

M
.

4. Hypersymplectic structures with torsion versus hy-

perkähler structures with torsion

In this section we consider ε-hypersymplectic structures with torsion such
that ε1ε2ε3 = −1 and we prove that these structures are in one-to-one corre-
spondence with (para-)hyperkähler structures with torsion, a notion we shall
define later. First, let us consider two different cases of an ε-hypersymplectic
structure with torsion such that ε1ε2ε3 = −1.

Definition 4.1. Let (ω1, ω2, ω3) be an ε-hypersymplectic structure with tor-
sion on a Lie algebroid (A, µ), such that ε1ε2ε3 = −1.

• If ε1 = ε2 = ε3 = −1, then (ω1, ω2, ω3) is said to be a hypersymplectic
structure with torsion on A.

• Otherwise, (ω1, ω2, ω3) is said to be a para-hypersymplectic structure
with torsion on A.

For a (para-)hypersymplectic structure with torsion on a Lie algebroid
(A, µ), the morphism g♭ defined by (4) determines a pseudo-metric on (A, µ)
[3].

Hyperkähler structures with torsion on manifolds were introduced in [10]
and studied in [9] and in [7]. The definition extends to the Lie algebroid
setting in a natural way. Let (A, µ) be a Lie algebroid and consider a map
g : A×A→ R and endomorphisms I1, I2, I3 : A→ A such that, for all i ∈ Z3
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and X, Y ∈ Γ(A),

i) g is a pseudo-metric;

ii) I2i = εiidA, where εi = ±1 and ε1ε2ε3 = −1;

iii) I3 = ε1ε2I1 ◦ I2; (15)

iv) g(IiX, IiY ) = εi−1εi+1g(X, Y );

v) ε2I1dω1 = ε3I2dω2 = ε1I3dω3,

where the 2-forms ωi, i = 1, 2, 3, which are called the Kähler forms, are
defined by

ω♭i = εiεi−1g
♭ ◦ Ii. (16)

Definition 4.2. A quadruple (g, I1, I2, I3) satisfying (15)i) − v), on a Lie
algebroid (A, µ), is a

• hyperkähler structure with torsion on A if ε1 = ε2 = ε3 = −1;
• para-hyperkähler structure with torsion on A, otherwise.

Remark 4.3. Most authors consider that a (para-)hyperkähler structure, with
or without torsion, is equipped with a positive definite metric, while for us
g : A× A→ R is a pseudo-metric, i.e., it is symmetric and non-degenerate.

Note that, because ε1ε2ε3 = −1, on a (para-)hyperkähler structure with
torsion (g, I1, I2, I3), we always have Ii◦Ij = −Ij◦Ii, for all i, j ∈ {1, 2, 3}, i 6=
j.
The next lemma establishes a relation between the pseudo-metric and the

Kähler forms of a (para-)hyperkähler structure with torsion on a Lie al-
gebroid. Namely, it is shown that the pseudo-metric satisfies an equation
similar to (5).

Lemma 4.4. Let (g, I1, I2, I3) be a (para-)hyperkähler structure with torsion
on a Lie algebroid with associated Kähler forms ω1, ω2 and ω3. Then,

g
♭ = εi−1εi+1ωi−1

♭ ◦ πi♯ ◦ ωi+1
♭, i ∈ Z3,

where πi is the inverse of ωi.

Proof : It is enough to prove that g♭ = ε1ε3ω1
♭◦π2♯◦ω3

♭. From ω♭i = εiεi−1g
♭◦Ii

in Definition 4.2 we have, on one hand,

g
♭ = ε2ω

♭
3 ◦ I3 = ε1ω

♭
3 ◦ I1 ◦ I2 (17)
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and, on the other hand,

g
♭ = ε1ω

♭
2 ◦ I2. (18)

From (17) and (18), we get

ω♭3 ◦ I1 = ω♭2 ⇔ I1 = π♯3 ◦ ω♭2 ⇔ I1 = ε1π
♯
2 ◦ ω♭3,

where we used (I1)
−1 = ε1I1, and so, g♭ = ε3ω

♭
1 ◦ I1 yields

g
♭ = ε1ε3ω1

♭ ◦ π2♯ ◦ ω3
♭.

At this point, we shall see that (para-)hypersymplectic structures with
torsion and (para-)hyperkähler structures with torsion on a Lie algebroid are
in one-to-one correspondence.

Theorem 4.5. Let (A, µ) be a Lie algebroid. There exists a one-to-one corre-
spondence between (para-)hypersymplectic structures with torsion and (para-
)hyperkähler structures with torsion on (A, µ).

Proof : Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure with torsion on
A and consider the endomorphisms N1, N2, N3 and g♭ given by (1) and (4),
respectively. From Proposition 1.2 vi), the equalities N1 ◦ N2 = ε1ε2N3 =
−N2◦N1 hold, while Proposition 1.2 i) shows that g satisfies ω

♭
i = εiεi−1g

♭◦Ni.
Thus, (g,N1, N2, N3) is a (para-)hyperkähler structure with torsion on (A, µ)
and its Kähler forms are ω1, ω2 and ω3.
Conversely, let us take a (para-)hyperkähler structure with torsion

(g, I1, I2, I3) on A and consider the associated Kähler forms ω1, ω2 and ω3,
given by (16). We claim that (ω1, ω2, ω3) is a (para-)hypersymplectic struc-
ture with torsion on A. To prove this, it is enough to show that I1, I2
and I3 are the transition morphisms of (ω1, ω2, ω3), defined by (1). From
ω♭i = εiεi−1g

♭ ◦ Ii (definition of the Kähler forms), we get g♭ = εi−1ω
♭
i ◦ Ii or,

using Lemma 4.4,

εiω
♭
i ◦ π♯i+1 ◦ ω♭i−1 = ω♭i ◦ Ii,

which is equivalent to

Ii = εiπ
♯
i+1 ◦ ω♭i−1 = π♯i−1 ◦ ω♭i+1.
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As a consequence of Theorem 4.5, if we pick a (para-)hypersymplectic struc-
ture with torsion (ω1, ω2, ω3) on (A, µ) and consider the (para-)hyperkähler
structure with torsion (g,N1, N2, N3) given by Theorem 4.5 then, the (para-
)hypersymplectic structure with torsion that corresponds to (g,N1, N2, N3)
via Theorem 4.5, is the initial one, i.e., (ω1, ω2, ω3).

5. Examples

We present, in this section, three examples of hypersymplectic structures
with torsion. The first two examples are on Lie algebras, viewed as Lie
algebroids over a point, and the third is on the tangent Lie algebroid to a
manifold.
The first example is inspired from [9]. Let {A1, A2, B1, B2, Z, C1, C2, C3}

be a basis for R8 and let us consider the Lie algebra structure defined by

[A1, B1] = Z, [A2, B2] = −Z
and the remaining brackets vanish. We denote by {a1, a2, b1, b2, z, c1, c2, c3}
the dual basis and we define a triplet (ω1, ω2, ω3) of 2-forms on R

8 by setting

ω1 = a1b1 + a2b2 + zc1 + c2c3;

ω2 = −a1a2 + b1b2 − zc2 + c1c3;

ω3 = −a1b2 + a2b1 − zc3 − c1c2.

Their matrix representation on the basis {A1, A2, B1, B2, Z, C1, C2, C3} and
its dual is the following:

Mω1
=























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0























,Mω2
=























0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0























and

Mω3
=























0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0























.
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The 2-forms ω1, ω2 and ω3 are non-degenerate and since

dω1 = −a1b1c1+a2b2c1, dω2 = a1b1c2−a2b2c2, dω3 = a1b1c3−a2b2c3, (19)

they are not closed. The transition morphisms N1, N2 and N3, given by (1),
correspond to the following matrices in the considered basis:

MN1
= −Mω1

, MN2
= −Mω2

, MN3
= −Mω3

.

Using (19), we have

dω1(N1(·), N1(·), N1(·)) = dω2(N2(·), N2(·), N2(·))
= dω3(N3(·), N3(·), N3(·)) = a1b1z − a2b2z,

so that the triplet (ω1, ω2, ω3) is a hypersymplectic structure with torsion on
R

8. The pseudo-metric g determined by (ω1, ω2, ω3), defined by (4), is simply
g = −idR8.
Next, we address an explicit example [16] of an hypersymplectic structure

with torsion on the Lie algebra su(3) of the Lie group SU(3).
We write Epq for the elementary 3× 3-matrix with 1 at position (p, q) and

consider the basis of su(3) consisting of eight complex matrices:

A1 = i(E11 − E22), A2 = i(E22 − E33),
Bpq = Epq − Eqp, Cpq = i(Epq + Eqp),

where p, q ∈ {1, 2, 3} such that p < q. We denote by {a1, a2, . . . , c23} the
dual basis and define a triplet of 2-forms on SU(3) by setting

ω1 = −
√
3

2
a1a2 + b12c12 + b13c13 − b23c23;

ω2 =

√
3

2
a2b12 − a1c12 +

1

2
a2c12 − b13b23 + c13c23;

ω3 =

√
3

2
a2c12 + a1b12 −

1

2
a2b12 + b13c23 + b23c13.
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The 2-forms have a matrix representation, on the basis
(A1, A2, B12, B13, B23, C12, C13, C23) and its dual, given by

Mω1
=

























0 −
√
3

2
0 0 0 0 0 0√

3

2
0 0 0 0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0

























,Mω2
=

























0 0 0 0 0 −1 0 0

0 0
√
3

2
0 0 1

2
0 0

0 −
√
3

2
0 0 0 0 0 0

0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
1 −1

2
0 0 0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

























and

Mω3
=

























0 0 1 0 0 0 0 0

0 0 −1

2
0 0

√
3

2
0 0

−1 1

2
0 0 0 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

0 −
√
3

2
0 0 0 0 0 0

0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0

























.

These 2-forms are not closed; for example, we have

dω1 = −
√
3a1(b13c13 + b23c23) +

√
3a2(b12c12

+ b13c13)− b12b13c23 − b12b23c13 − b13b23c12 − c12c13c23.

The transition morphisms N1, N2 and N3, given by (1), correspond to the
following matrices in the considered basis:

MN1
=

























− 1√
3

2√
3

0 0 0 0 0 0

− 2√
3

1√
3

0 0 0 0 0 0

0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0

























,MN2
=

























0 0 − 1√
3

0 0 1 0 0

0 0 − 2√
3

0 0 0 0 0

0
√
3

2
0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
−1 1

2
0 0 0 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
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and

MN3
=

























0 0 −1 0 0 − 1√
3

0 0

0 0 0 0 0 − 2√
3

0 0

1 −1

2
0 0 0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1

0
√
3

2
0 0 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0

























.

An easy computation gives

dω1(N1(·), N1(·), N1(·)) = dω2(N2(·), N2(·), N2(·)) = dω3(N3(·), N3(·), N3(·))
= −a1b13c13 + a1b23c23 − 2a1b12c12 − a2b13c13 − 2a2b23c23

+ a2b12c12 + b23c12c13 + b13c12c23 + b12c13c23 + b12b13b23,

which shows that the triplet (ω1, ω2, ω3) is a hypersymplectic structure with
torsion on su(3). Finally, the pseudo-metric is given by

Mg =























−1 1

2
0 0 0 0 0 0

1

2
−1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1























.

In the third example, which is taken form [7], we describe a hypersymplectic
structure on the Lie algebroid tangent to the manifoldM = S3× (S1)5. The
sphere S3 is identified with the Lie group Sp(1). In its Lie algebra sp(1) we
consider a basis {A2, A3, A4} and the brackets

[A2, A3] = 2A4, [A3, A4] = 2A2, [A4, A2] = 2A3.

Let {a2, a3, a4} be the dual basis and let us consider a basis {a1, a5, a6, a7, a8}
of 1-forms on (S1)5. We define a triplet (ω1, ω2, ω3) of 2-forms on M by
setting, on the basis {a2, a3, a4, a1, a5, a6, a7, a8},

ω1 = a2a1 + a4a3 + a6a5 + a8a7;

ω2 = a3a1 + a2a4 + a7a5 + a6a8;

ω3 = a4a1 + a3a2 + a8a5 + a7a6.
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Their matrix representation on the considered basis is given by

Mω1
=























0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0























,Mω2
=























0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0























and

Mω3
=























0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0























.

The 2-forms are non-degenerate and not closed:

dω1 = −2a1a3a4, dω2 = −2a1a4a2, dω3 = −2a1a2a3.

The transition morphisms N1, N2 and N3, given by (1), correspond to the
following matrices:

MN1
= Mω1

, MN2
= Mω2

, MN3
= Mω3

.

Moreover,

dω1(N1(·), N1(·), N1(·)) = dω2(N2(·), N2(·), N2(·))
= dω3(N3(·), N3(·), N3(·)) = 2a2a3a4,

which shows that the triplet (ω1, ω2, ω3) is a hypersymplectic structure with
torsion on the Lie algebroid TM . Regarding the pseudo-metric, we have
g = idTM .

6. The pre-Courant algebroid case

In this section we firstly recall the notion of ε-hypersymplectic structure on
a pre-Courant algebroid, introduced in [5], as well as its main properties that
we use in the sequel. Then, we prove some results involving the Nijenhuis
torsions of morphisms on A and on A⊕A∗.
In order to simplify the notation, when I and J are endomorphisms of

a pre-Courant algebroid, the composition I ◦ J will be denoted by IJ .
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Definitions and basic properties on pre-Courant algebroids are recalled in
Apppendix A.

Definition 6.1. An ε-hypersymplectic structure on a pre-Courant algebroid
(E,Θ) is a triplet (S1,S2,S3) of skew-symmetric endomorphisms Si : E → E,
i = 1, 2, 3, such that

i) Si2 = εi idE,
ii) SiSj = ε1ε2ε3SjSi, i, j ∈ {1, 2, 3}, i 6= j
iii) ΘSi,Si

= εiΘ,

where the parameters εi = ±1 form the triplet ε = (ε1, ε2, ε3).
∗

Proposition 6.2. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-
Courant algebroid (E,Θ). Then, S1,S2 and S3 are Nijenhuis morphisms.

Given an ε-hypersymplectic structure (S1,S2,S3) on (E,Θ), the transition
morphisms are the endomorphisms T1, T2 and T3 of E defined as

Ti := εi−1Si−1Si+1, i ∈ Z3. (20)

The parameter ε1ε2ε3 = ±1 is determinant for some basic properties of the
morphisms Ti, and Sj , i, j ∈ {1, 2, 3}, and for the relations between them.
We shall now focus on the case ε1ε2ε3 = −1.

Definition 6.3. Let (S1,S2,S3) be an ε-hypersymplectic structure on a pre-
Courant algebroid (E,Θ), such that ε1ε2ε3 = −1.

• If ε1 = ε2 = ε3 = −1, then (S1,S2,S3) is said to be a hypersymplectic
structure on (E,Θ).

• Otherwise, (S1,S2,S3) is said to be a para-hypersymplectic structure
on (E,Θ).

Theorem 6.4. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a
pre-Courant algebroid (E,Θ). Then, for each i = 1, 2, 3, the transition mor-
phism Ti is a Nijenhuis morphism.

Concomitants of the morphisms Si and Ti associated to a (para-)hyper-
symplectic structure on a pre-Courant algebroid vanish, as stated in the
next proposition.

∗As it is mentioned in Appendix A, we use the following notation: ΘI = {I,Θ} and ΘI,J =
{J , {I,Θ}}, with I,J skew-symmetric endomorphisms of E.
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Proposition 6.5. Let (S1,S2,S3) be a (para-)hypersymplectic structure on a
pre-Courant algebroid (E,Θ). Then, CΘ(Si,Sj) = CΘ(Ti, Tj) = CΘ(Si, Tj) =
0, for all i, j ∈ {1, 2, 3}, i 6= j.

Theorem 6.6. Let (E,Θ) be a pre-Courant algebroid. The following asser-
tions are equivalent:

i) (S1,S2,S3) is a (para-)hypersymplectic structure on (E,Θ);
ii) (S1,S2,S3) is a (para-)hypersymplectic structure on (E,ΘSi

);
iii) (S1,S2,S3) is a (para-)hypersymplectic structure on (E,ΘTj),

i, j ∈ {1, 2, 3}, where Tj is defined by (20).

Among the pre-Courant algebroid structures, we shall be interested in those
defined on vector bundles of type A ⊕ A∗, since these can be related to
structures on A.
If we take a triplet (ω1, ω2, ω3) of 2-forms and a triplet (π1, π2, π3) of bivec-

tors on A, we may define the skew-symmetric endomorphisms
Si : A⊕ A∗ → A⊕ A∗, i = 1, 2, 3,

Si :=
[

0 εi π
♯
i

ω♭i 0

]

. (21)

In the supergeometric setting (see Appendix A), we have

Si(X + α) = {X + α, ωi + εiπi},

for all X + α ∈ A⊕ A∗.
The next proposition was proved in [5] for the hypersymplectic case. The

para-hypersymplectic case has an analogous proof.

Proposition 6.7. Let (ω1, ω2, ω3) be a triplet of 2-forms and (π1, π2, π3) be a
triplet of bivectors on a Lie algebroid (A, µ). Consider the triplet (S1,S2,S3)
of endomorphisms of A⊕A∗, with Si given by (21). The following assertions
are equivalent:

i) (ω1, ω2, ω3) is a (para-)hypersymplectic structure with torsion on the
Lie algebroid (A, µ) and πi is the inverse of ωi, i = 1, 2, 3;

ii) (S1,S2,S3) is a (para-)hypersymplectic structure on the pre-Courant
algebroid (A⊕ A∗, µ+ ψ), for some ψ ∈ Γ(∧3A).
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Notice that in the assertion ii) of Proposition 6.7, since (S1,S2,S3) is a
hypersymplectic structure, condition (µ + ψ)Sk,Sk

= εk(µ + ψ) holds and
implies that ψ has to be of the form εk

2 [πk, πk], for any k ∈ {1, 2, 3}.
Under the conditions of Proposition 6.7, the transition morphisms of the

(para-)hypersymplectic structure (S1,S2,S3) on (A⊕ A∗, µ+ ψ), defined by
(20), are given by

Ti =
[

Ni 0
0 −Ni

∗

]

, i = 1, 2, 3, (22)

where Ni is defined by (1).
Recall that the Nijenhuis torsion TµN of an endomorphism N on a pre-Lie

algebroid † (A, µ) is given by

TµN(X, Y ) = [NX,NY ]−N([NX, Y ] + [X,NY ]−N [X, Y ]), (23)

for all X, Y ∈ Γ(A). The next proposition addresses a relation between TµN
and the Nijenhuis torsion of the skew-symmetric morphism T

N
= N ⊕ (−N∗)

on the pre-Courant algebroid (A⊕ A∗, µ) (see (45)).

Proposition 6.8. Let N : A → A be a bundle morphism and define T
N
:

A⊕A∗ → A⊕A∗ by setting T
N
=

(

N 0
0 −N∗

)

. Let µ ∈ F1,2(A⊕A∗) be a pre-

Courant algebroid structure on A⊕A∗. Then, for all X+α, Y+β ∈ Γ(A⊕A∗),

TµTN (X + α, Y + β) =
[[

X + α, Y + β
]]

TµN

+ (N∗)2
[[

X, β
]]

−
[[

X, (N∗)2β
]]

+ (N∗)2
[[

α, Y
]]

−
[[

(N∗)2α, Y
]]

, (24)

where
[[

·, ·
]]

and
[[

·, ·
]]

TµN
stand for the Dorfman bracket determined by µ ∈

F1,2(A⊕ A∗) and by TµN ∈ F1,2(A⊕ A∗), respectively, according to (43).

Proof : Using the R-bilinearity of TµTN we have

TµTN (X + α, Y + β) = TµTN (X, Y ) + TµTN (X, β)
+ TµTN (α, Y ) + TµTN (α, β), (25)

for all X, Y ∈ Γ(A) and α, β ∈ Γ(A∗), where we identify X + 0 ∈ Γ(A⊕A∗)
withX and 0+α ∈ Γ(A⊕A∗) with α. In what follows, we explicit each of the
summands of the r.h.s. of Equation (25). For the first summand, denoting

†A pre-Lie algebroid is a pair (A,µ) that satisfies the axioms of the Lie algebroid definition
except, eventually, the Jacobi identity. In other words, we may have {µ, µ} 6= 0.
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by
[[

·, ·
]]

TN the deformation of the Dorfman bracket
[[

·, ·
]]

by TN (see (44)),
we have

TµTN (X, Y ) =
[[

T
N
X, T

N
Y
]]

− T
N

(

[[

X, Y
]]

T
N

)

=
[[

T
N
X, T

N
Y
]]

− T
N

[[

T
N
X, Y

]]

− T
N

[[

X, T
N
Y
]]

+ T 2
N

[[

X, Y
]]

= [NX,NY ]−N [NX, Y ]−N [X,NY ] +N2[X, Y ]

= TµN(X, Y ), (26)

where we used (45) and (23) and the fact that, when restricted to sections of
A, T

N
coincides with N . In the supergeometric setting, (26) may be written

as

TµTN (X, Y ) =
1

2
{{X, µN,N − µN2} , Y } . (27)

The second summand of the r.h.s. of (25) can be written as (see (45))

TµTN (X, β) =
1

2

(

[[

X, β
]]

T
N
,T
N

−
[[

X, β
]]

T 2

N

)

. (28)

The key argument of this proof is the relation between morphisms T 2
N

=
TN ◦ TN and T

N2
. In fact

T 2
N
(X + α) = N2(X) +N∗2(α), while T

N2
(X + α) = N2(X)−N∗2(α).

Thus, Equation (28) becomes

TµTN (X, β) =
1

2

(

[[

X, β
]]

T
N
,T
N

−
[[

X, β
]]

T
N2

)

−
[[

X,N∗2β
]]

+N∗2[[X, β
]]

=
1

2
{{X, µN,N − µN2} , β} −

[[

X,N∗2β
]]

+N∗2[[X, β
]]

. (29)

Analogously, the third summand of the r.h.s. of Equation (25) is given by

TµTN (α, Y ) =
1

2
{{α, µN,N − µN2} , Y } −

[[

N∗2α, Y
]]

+N∗2[[α, Y
]]

. (30)
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Finally, the fourth summand vanishes because the Dorfman bracket vanishes
when restricted to sections of Γ(A∗). Thus, using (27), (29) and (30), Equa-
tion (25) becomes

TµTN (X + α, Y + β) =

{{

X + α,
1

2
(µN,N − µN2)

}

, Y + β

}

−
[[

X,N∗2β
]]

+N∗2[[X, β
]]

−
[[

N∗2α, Y
]]

+N∗2[[α, Y
]]

=
[[

X + α, Y + β
]]

TµN

−
[[

X,N∗2β
]]

+N∗2[[X, β
]]

−
[[

N∗2α, Y
]]

+N∗2[[α, Y
]]

.

Corollary 6.9. If T
N
is a Nijenhuis morphism on a pre-Courant algebroid

(A⊕A∗, µ), then N is a Nijenhuis morphism on the pre-Lie algebroid (A, µ).

Proof : It suffices to evaluate (24) on pairs of type (X + 0, Y + 0).

The next proposition, that already appears in [15], is a direct consequence
of (24). The notations used are the same as in Proposition 6.8.

Proposition 6.10. Let N : A → A be a bundle morphism such that N2 =
λidA, for some λ ∈ R. Then, the skew-symmetric morphism T

N
= N⊕(−N∗)

satisfies T 2
N

= λidA⊕A∗ and, in this case, TµTN = 0 if and only if TµN = 0.

The next proposition establishes a relation between the Frölicher-Nijenhuis
bracket [I, J ]FN of two endomorphisms on a Lie algebroid (A, µ) and the con-
comitant Cµ(TI , TJ) of the induced morphisms on (A⊕A∗, µ). But beforehand
we need to recall a result from [1].

Theorem 6.11. [1] Let (A, µ) be a Lie algebroid. For all vector-valued forms

K ∈ Γ(
∧k A∗ ⊗ A) and L ∈ Γ(

∧lA∗ ⊗ A), we have

[K,L]FN = {{K, µ} , L}+ (−1)k(l+1) {iLK, µ} , (31)

where iLK is the interior product of K by L (see section 8 in [11]).

Proposition 6.12. Let (A, µ) be a Lie algebroid and I, J : A → A two

anticommuting endomorphisms of A. Then, T
I
:=

(

I 0
0 −I∗

)

and T
J
:=

(

J 0
0 −J∗

)

are anticommuting skew-symmetric endomorphisms of A ⊕ A∗

and
Cµ(TI , TJ)(X + 0, Y + 0) = −2[I, J ]FN(X, Y ),
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for all X, Y ∈ Γ(A). In particular, if Cµ(TI , TJ) vanishes then so does
[I, J ]FN .

Proof : The fact that T
I
and T

J
are anticommuting skew-symmetric endomor-

phisms of A⊕A∗ is immediate to check. Moreover, using (31), we have

[I, J ]FN = {{I, µ} , J}+ {I ◦ J, µ} . (32)

Because I and J anticommute, I ◦ J = 1
2 {J, I} and (32) becomes

[I, J ]FN = {{I, µ} , J}+ 1

2
{{J, I} , µ} . (33)

Using the Jacobi identity in the last term of (33) we get

[I, J ]FN = −1

2

(

{J, {I, µ}}+ {I, {J, µ}}
)

= −1

2
Cµ(TI , TJ).

7. Compatibilities and deformations

It was proved in [7] that, when ε1 = ε2 = ε3 = −1, condition (15)v) in
Definition 4.2 implies that the Nijenhuis torsion of the endomorphisms I1, I2
and I3 vanishes, so that they are in fact complex structures on (A, µ). Taking
into account Theorem 4.5, the next theorem can be seen as a generalization
of the mentioned result in [7].

Theorem 7.1. Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure with
torsion on a Lie algebroid (A, µ). The endomorphisms N1, N2 and N3 given
by (1) are Nijenhuis morphisms.

Proof : As a consequence of Proposition 6.7, the triplet (S1,S2,S3), with Si
given by (21), is a (para-)hypersymplectic structure on the pre-Courant alge-
broid (A⊕A∗, µ+ψ), with ψ = εk

2
[πk, πk], for any k ∈ {1, 2, 3}. By Theorem

6.4, the endomorphisms Ti, i = 1, 2, 3, given by (22) are Nijenhuis morphisms
on (A⊕ A∗, µ+ ψ). This means that

{

T 2
i = εiidA⊕A∗

(µ+ ψ)Ti,Ti = εi(µ+ ψ).

Splitting up the equality (µ+ψ)Ti,Ti = εi(µ+ψ) in terms of bidegree, we get,
on bidegree (1, 2):

µTi,Ti = εiµ.

Thus, Ti is Nijenhuis on (A ⊕ A∗, µ) and Corollary 6.9 yields that Ni is
Nijenhuis on (A, µ).
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Next, we prove that a (para-)hypersymplectic structure with torsion on
a Lie algebroid (A, µ) determines some compatibility properties among the
Ni’s, the πi’s and the ωi’s.

Proposition 7.2. Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure with
torsion on (A, µ). The Nijenhuis morphisms N1, N2 and N3 given by (1) are
pairwise compatible in the sense that [Ni, Nj]FN = 0, i, j ∈ {1, 2, 3}.
Proof : First, notice that [Ni, Ni]FN = −2 TµNi, thus, when i = j, the state-
ment was proved in Theorem 7.1. Let us consider now i, j ∈ {1, 2, 3}, with i 6=
j. From Proposition 6.7, the triplet (S1,S2,S3) is a (para-)hypersymplectic
structure on the pre-Courant algebroid (A⊕A∗, µ+ ψ), with ψ = εk

2
[πk, πk],

for any k ∈ {1, 2, 3}. Using Proposition 6.5, we have Cµ+ψ(Ti, Tj) = 0, with
Ti given by (22), i.e.,

{Ni, {Nj, µ+ ψ}}+ {Nj, {Ni, µ+ ψ}} = 0.

Splitting up this equality in terms of bidegrees, we get, on bidegree (1, 2),

{Ni, {Nj, µ}}+ {Nj, {Ni, µ}} = 0,

which can be written as Cµ(Ti, Tj) = 0. Applying Proposition 6.12, the
statement is proved.

Proposition 7.3. Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure with
torsion on (A, µ) and πk be the inverse of ωk, k = 1, 2, 3. Then, [πi, πj] = 0,
i, j ∈ {1, 2, 3}, i 6= j.

Proof : We can assume, without loss of generality, that j = i − 1 and prove
[πi, πi−1] = 0, for i ∈ Z3. From Proposition 6.7, the triplet (S1,S2,S3) is a
(para-)hypersymplectic structure on the pre-Courant algebroid (A⊕A∗, µ+
ψ), with ψ = εk

2
[πk, πk], for any k ∈ {1, 2, 3}. Using Proposition 6.5, we have

Cµ+ψ(Si,Si−1) = 0, i.e.,

{ωi + εiπi, {ωi−1 + εi−1πi−1, µ+ ψ}}+{ωi−1 + εi−1πi−1, {ωi + εiπi, µ+ ψ}} = 0.

Splitting up this equality in terms of bidegrees, we get, on bidegree (3, 0),

εiεi−1 {πi, {πi−1, µ}}+ εi {πi, {ωi−1, ψ}}+	i,i−1 = 0,

where 	i,i−1 stands for the permutation on indices i and i − 1. Using the
Jacobi identity of the big bracket, we get

2εiεi−1 {πi, {πi−1, µ}}+ εi {{πi, ωi−1} , ψ}+ εi−1 {{πi−1, ωi} , ψ} = 0. (34)
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Noticing that the transition morphisms Ni+1 given by (1) can be equivalently
defined as Ni+1 = −{πi, ωi−1} = −εi+1 {πi−1, ωi} (see [3]), (34) becomes

2εiεi−1 {πi, {πi−1, µ}} − (εi + εi−1εi+1) {Ni+1, ψ} = 0. (35)

Because ε1ε2ε3 = −1, we have εi + εi−1εi+1 = 0, for all i ∈ Z3, so that (35)
simplifies to {πi, {πi−1, µ}} = 0, which is equivalent to [πi, πi−1] = 0.

Proposition 7.4. Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure with
torsion on (A, µ) and consider the endomorphisms N1, N2, N3 given by (1).
Then, Cµ(ωi, Nj) = 0, i, j ∈ {1, 2, 3}, i 6= j.

Proof : The triplet (S1,S2,S3) is, by Proposition 6.7, a (para-)hypersymplectic
structure on (A ⊕ A∗, µ + ψ). Proposition 6.5 yields that Cµ+ψ(Si, Tj) = 0,
i 6= j. Considering the part of bidegree (0, 3) in equation Cµ+ψ(Si, Tj) = 0,
we get

{ωi, {Nj, µ}}+ {Nj, {ωi, µ}} = 0.

Recall [12] that if N is a Nijenhuis morphism on a Lie algebroid (A, µ) then
µN = {N, µ} is a Lie algebroid structure on A. The Lie bracket on Γ(A) will
be denoted by [·, ·]N .
Theorem 7.5. A triplet (ω1, ω2, ω3) is a (para-)hypersymplectic structure
with torsion on (A, µ) if and only if (ω1, ω2, ω3) is a (para-)hypersymplectic
structure with torsion on (A, µNi

), i = 1, 2, 3.

Proof : Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure with torsion on
(A, µ) and fix i ∈ {1, 2, 3}. From Proposition 6.7 and Theorem 6.6 we get
that (S1,S2,S3) is a (para-)hypersymplectic structure on the pre-Courant
algebroid (A ⊕ A∗, (µ + ψ)Ti), with ψ = εk

2 [πk, πk], for any k ∈ {1, 2, 3}. In
the computation that follows we consider k = i. The pre-Courant structure
(µ+ ψ)Ti is given by {Ni, µ+ ψ} and we have

{Ni, µ+ ψ} = µNi
+
{

Ni,−
εi
2
{πi, {πi, µ}}

}

= µNi
− εi

2
{{Ni, πi} , {πi, µ}} −

εi
2
{πi, {{Ni, πi} , µ}}

− εi
2
{πi, {πi, {Ni, µ}}}

= µNi
+
εi
2
[πi, πi]Ni

,
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where we used, in the last equality, the fact that {Ni, πi} = 0 (which is a con-
sequence of Proposition 1.2 ii)). Applying Proposition 6.7 we conclude that
(ω1, ω2, ω3) is a (para-)hypersymplectic structure with torsion on (A, µNi

).
The converse holds because the statements of Theorem 6.6 and Proposi-

tion 6.7 are equivalences.

The proof of Theorem 7.5 can be summarized in the diagram:

(ω1, ω2, ω3) (para-)HST
on (A, µ)

ks Thm 7.5 +3

KS

Prop 6.7

��

(ω1, ω2, ω3) (para-)HST
on (A, µNi

)KS

Prop 6.7

��
(S1,S2,S3) (para-)HS
on (A⊕ A∗, µ+ ψ)

ks Thm 6.6 +3
(S1,S2,S3) (para-)HS
on (A⊕ A∗, (µ+ ψ)Ti)

where we used the abbreviations HS and HST for hypersymplectic and hy-
persymplectic with torsion, respectively.

Proposition 7.6. Let (A, µ) be a Lie algebroid and π a non-degenerate bivec-
tor on A with inverse ω. Then, γπ := µπ +

1
2 {ω, [π, π]} is a Lie algebroid

structure on A∗.

Proof : Aiming to prove that {γπ, γπ} = 0, we compute

{γπ, γπ} =

{

µπ +
1

2
{ω, [π, π]} , µπ +

1

2
{ω, [π, π]}

}

= {µπ, µπ}+ {µπ, {ω, [π, π]}}+
1

4
{{ω, [π, π]} , {ω, [π, π]}}

= {µπ, µπ}+ {µπ, {ω, [π, π]}}+
1

4
{{{ω, [π, π]} , ω} , [π, π]} (36)

+
1

4
{ω, {{ω, [π, π]} , [π, π]}} ,

where we used the Jacobi identity in the last equality. Using again the Jacobi
identity and taking into account the bidegree, we get {{ω, [π, π]} , [π, π]} =
0. Furthermore, a straightforward computation leads to {{ω, [π, π]} , ω} =
4 {π, {ω, µ}}. Therefore, equality (36) becomes

{γπ, γπ} = {µπ, µπ}+ {µπ, {ω, [π, π]}}+ {{π, {ω, µ}} , [π, π]} . (37)
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A simple computation shows that {µπ, µπ} = {µ, [π, π]} and the Jacobi iden-
tity applied to the last two terms of (37) yields

{γπ, γπ} = {µ, [π, π]}+ {{µπ, ω} , [π, π]}+ {ω, {µπ, [π, π]}}
+ {{−idA, µ} , [π, π]}+ {{ω, {π, µ}} , [π, π]} .

Since {idA, µ} = µ and {µπ, ω} = {{π, µ} , ω} = −{ω, {π, µ}}, we obtain

{γπ, γπ} = {ω, {µπ, [π, π]}} .
Finally, a cumbersome computation shows that {µπ, [π, π]} = 0 and com-
pletes the proof.

Remark 7.7. In the proof of Proposition 7.6 we only use the properties of the
big bracket. However, the proof can be done using the operation of twisting
by a bivector and by a 2-form that was introduced in [19]. Let us briefly
explain this, using the notation of [19]. The twisting of (µ, 0, 0, 0) by −ω
yields the quasi-Lie bialgebroid structure (µ, 0, 0, {µ, ω}) on (A,A∗) and the
twisting of (µ, 0, 0, {µ, ω}) by π gives

(

µ+ {π, {µ, ω}}, {µ, π}+ 1

2
{ω, [π, π]}, 0, {µ, ω}

)

. (38)

From Lemma 2.1, the twisted Maurer-Cartan equation

[π, π] = 2dω
(

π♯(·), π♯(·), π♯(·)
)

holds, so that (38) is a quasi-Lie bialgebroid structure on (A,A∗), as it is
proved in [19]. This, in turn, implies that the term of bidegree (2, 1) in (38),

{µ, π}+ 1

2
{ω, [π, π]}, (39)

is a Lie algebroid structure on A∗.

In the next theorem we show that there is a one-to-one correspondence
between (para-)hypersymplectic structures with torsion on A and on A∗.

Theorem 7.8. The triplet (ω1, ω2, ω3) is a (para-)hypersymplectic structure
with torsion on (A, µ) if and only if (π1, π2, π3) is a (para-)hypersymplectic
structure with torsion on (A∗, εiγπi), where γπi := µπi +

1
2
{ωi, [πi, πi]} , i =

1, 2, 3, and πi is the inverse of ωi.

Under the conditions of Theorem 7.8, the Lie algebroid structures on A∗

can be written as εiµπi + {ωi, ψ} , i = 1, 2, 3, with ψ = εk
2 [πk, πk], for any

k ∈ {1, 2, 3}.
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Proof of Theorem 7.8: Let (ω1, ω2, ω3) be a (para-)hypersymplectic structure
with torsion on (A, µ) and fix i ∈ {1, 2, 3}. From Proposition 6.7 and The-
orem 6.6 we have that (S1,S2,S3) is a (para-)hypersymplectic structure on
the pre-Courant algebroid (A ⊕ A∗, (µ + ψ)Si

), with ψ = εk
2 [πk, πk], for any

k ∈ {1, 2, 3}. In the computation that follows we consider k = i. The
pre-Courant structure (µ+ ψ)Si

is given by

(µ+ ψ)Si
= εiγ

πi + µωi
.

A direct computation shows that µωi
= εi

2 [ωi, ωi]γπi , where [·, ·]γπi stands
for the Schouten-Nijenhuis bracket of the Lie algebroid structure γπi on A∗.
Then,

(µ+ ψ)Si
= εiγ

πi +
εi
2
[ωi, ωi]γπi = εiγ

πi +
1

2
[ωi, ωi]εiγπi

and, using Proposition 6.7, the result follows.
The converse holds because the statements of Theorem 6.6 and Proposi-

tion 6.7 are equivalences.

The proof of Theorem 7.8 can be summarized in the diagram:

(ω1, ω2, ω3) (para-)HST
on (A, µ)

ks Thm 7.8 +3

KS

Prop 6.7

��

(π1, π2, π3) (para-)HST
on (A∗, εiγπi)KS

Prop 6.7

��
(S1,S2,S3) (para-)HS
on (A⊕A∗, µ+ ψ)

ks Thm 6.6 +3
(S1,S2,S3) (para-)HS
on (A⊕A∗, (µ+ ψ)Si

)

Appendix A.Preliminaries on pre-Courant algebroids.

The supergeometric setting and Nijenhuis

torsion.

We introduce the supergeometric setting following the approach in [17, 18,
22]. Given a vector bundle A→M , we denote by A[n] the graded manifold
obtained by shifting the degree of coordinates on the fiber by n. The graded
manifold T ∗[2]A[1] is equipped with a canonical symplectic structure which
induces a Poisson bracket on its algebra of functions F := C∞(T ∗[2]A[1]).
This Poisson bracket is called the big bracket (see [13], [14]).
In local coordinates xi, pi, ξ

a, θa, i ∈ {1, . . . , n}, a ∈ {1, . . . , d}, in T ∗[2]A[1],
where xi, ξa are local coordinates on A[1] and pi, θa are the the conjugate
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coordinates, the Poisson bracket is given by

{pi, xi} = {θa, ξa} = 1, i = 1, . . . , n, a = 1, . . . , d,

while the remaining brackets vanish.
The Poisson algebra of functions F is endowed with an (N × N)-valued

bidegree. We define this bidegree (locally but it is well defined globally,
see [23, 17]) as follows: the coordinates on the base manifold M , xi, i ∈
{1, . . . , n}, have bidegree (0, 0), while the coordinates on the fibres, ξa, a ∈
{1, . . . , d}, have bidegree (0, 1) and their associated moment coordinates, pi
and θa, have bidegrees (1, 1) and (1, 0), respectively. We denote by Fk,l the
space of functions of bidegree (k, l). The total degree of a function f ∈ Fk,l

is equal to k + l and the subset of functions of total degree t is denoted by
F t. We can verify that the big bracket has bidegree (−1,−1), i.e.,

{Fk1,l1,Fk2,l2} ⊂ Fk1+k2−1,l1+l2−1.

Thus, the big bracket on functions of lowest degrees, {F0,F0} and {F0,F1},
vanish. For X + α, Y + β ∈ F1 = Γ(A⊕ A∗), {X + α, Y + β} is an element
of F0 = C∞(M) and is given by

{X + α, Y + β} = 〈X + α, Y + β〉,

where 〈·, ·〉 is the usual fiberwise symmetric bilinear form on A⊕ A∗:

〈X + α, Y + β〉 = α(Y ) + β(X), ∀X, Y ∈ Γ(A), α, β ∈ Γ(A∗). (40)

This construction is a particular case of a more general one [18] in which
we consider a vector bundle E equipped with a fibrewise non-degenerate
symmetric bilinear form 〈·, ·〉. In this more general setting, we consider the
graded symplectic manifold E := p∗(T ∗[2]E[1]), which is the pull-back of
T ∗[2]E[1] by the map p : E[1] → E[1]⊕ E∗[1] defined by X 7→ (X, 12〈X, .〉).
We denote by FE the graded algebra of functions on E , i.e., FE := C∞(E).
The algebra FE is equipped with the canonical Poisson bracket, denoted by
{·, ·}, which has degree −2. Notice that F0

E = C∞(M) and F1
E = Γ(E).

Under these identifications, the Poisson bracket of functions of degrees 0 and
1 is given by

{f, g} = 0, {f,X} = 0 and {X, Y } = 〈X, Y 〉,

for all X, Y ∈ Γ(E) and f, g ∈ C∞(M).
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When E := A⊕A∗ (with A a vector bundle over M) and when 〈·, ·〉 is the
usual symmetric bilinear form given by (40), the algebras F = C∞(T ∗[2]A[1])
and FA⊕A∗ are isomorphic Poisson algebras [18].

Definition A.1. [2] A pre-Courant structure on (E, 〈·, ·〉) is a pair (ρ,
[[

·, ·
]]

),
where ρ : E → TM is a morphism of vector bundles called the anchor, and
[[

·, ·
]]

: Γ(E)×Γ(E) → Γ(E) is a R-bilinear (non necessarily skew-symmetric)
bracket, called the Dorfman bracket, satisfying the relations

ρ(X) · 〈Y, Z〉 = 〈
[[

X, Y
]]

, Z〉+ 〈Y,
[[

X,Z
]]

〉 (41)

and

ρ(X) · 〈Y, Z〉 = 〈X,
[[

Y, Z
]]

+
[[

Z, Y
]]

〉, (42)

for all X, Y, Z ∈ Γ(E).

From (41) and (42), we obtain the Leibniz rule [14]
[[

X, fY
]]

= f
[[

X, Y
]]

+ (ρ(X).f)Y,

for all X, Y ∈ Γ(E) and f ∈ C∞(M).
If a pre-Courant structure (ρ,

[[

·, ·
]]

) satisfies the Jacobi identity,
[[

X,
[[

Y, Z
]]]]

=
[[[[

X, Y
]]

, Z
]]

+
[[

Y,
[[

X,Z
]]]]

,

for all X, Y, Z ∈ Γ(E), then the pair (ρ,
[[

·, ·
]]

) is called a Courant structure
on (E, 〈·, ·〉).
There is a one-to-one correspondence between pre-Courant structures on

(E, 〈·, ·〉) and elements in F3
E. The anchor and Dorfman bracket associated

to a given Θ ∈ F3
E are defined, for all X, Y ∈ Γ(E) and f ∈ C∞(M), by the

derived bracket expressions

ρ(X) · f = {{X,Θ}, f} and
[[

X, Y
]]

= {{X,Θ}, Y }. (43)

A function Θ ∈ F3
E determines a Courant structure on (E, 〈·, ·〉) if and

only if {Θ,Θ} = 0 ([18]). If Θ is a (pre-)Courant structure on (E, 〈·, ·〉),
then the triple (E, 〈·, ·〉,Θ) is called a (pre-)Courant algebroid. For the sake
of simplicity, we often denote a (pre-)Courant algebroid by the pair (E,Θ)
instead of the triple (E, 〈·, ·〉,Θ).
When E = A ⊕ A∗ and 〈·, ·〉 is the usual symmetric bilinear form (40), a

pre-Courant structure Θ ∈ F3
E can be decomposed using the bidegrees:

Θ = µ+ γ + φ+ ψ,
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with µ ∈ F1,2
A⊕A∗, γ ∈ F2,1

A⊕A∗, φ ∈ F0,3
A⊕A∗ = Γ(∧3A∗) and ψ ∈ F3,0

A⊕A∗ =
Γ(∧3A). We recall from [14] that, when γ = φ = ψ = 0, Θ is a Courant
structure on (A⊕A∗, 〈·, ·〉) if and only if (A, µ) is a Lie algebroid; the anchor
and the bracket of the Lie algebroid (A, µ) are given by (43), where a section
X of A is identified with X + 0 ∈ Γ(A ⊕ A∗). When φ = ψ = 0, Θ is a
Courant structure on (A ⊕ A∗, 〈·, ·〉) if and only if ((A,A∗), µ, γ) is a Lie
bialgebroid and when φ = 0 (resp. ψ = 0), Θ is a Courant structure on
(A ⊕ A∗, 〈·, ·〉) if and only if ((A,A∗), µ, γ, ψ) (resp. ((A,A∗), µ, γ, φ)) is a
quasi-Lie bialgebroid. In the more general case, Θ = µ+γ+φ+ψ is a Courant
structure if and only if ((A,A∗), µ, γ, ψ, φ) is a proto-Lie bialgebroid.

Let (E, 〈·, ·〉,Θ) be a pre-Courant algebroid with anchor and Dorfman
bracket defined by (43). Given an endomorphism I : E → E, we define
a deformed pre-Courant algebroid structure (ρI ,

[[

·, ·
]]

I) on E by setting
{

ρI = ρ ◦ I
[[

X, Y
]]

I =
[[

IX, Y
]]

+
[[

X, IY
]]

− I
[[

X, Y
]]

, ∀X, Y ∈ Γ(E).
(44)

The deformation of (ρI ,
[[

·, ·
]]

I) by an endomorphism J of E is denoted by

(ρI,J ,
[[

·, ·
]]

I,J ). The concomitant CΘ(I,J ) of two endomorphisms I and J ,

on a pre-Courant algebroid (E, 〈·, ·〉,Θ), is a R-bilinear map Γ(E)×Γ(E) →
Γ(E) defined, for all sections X, Y of E, by

CΘ(I,J )(X, Y ) :=
[[

X, Y
]]

I,J +
[[

X, Y
]]

J ,I .

Recall that an endomorphism I : E → E on a pre-Courant algebroid
(E, 〈·, ·〉,Θ) is a Nijenhuis morphism if its Nijenhuis torsion TΘI vanishes,
where

TΘI(X, Y ) =
[[

IX, IY
]]

− I
([[

X, Y
]]

I
)

=
1

2

(

[[

X, Y
]]

I,I −
[[

X, Y
]]

I2

)

, (45)

for all X, Y ∈ Γ(E).
Given an endomorphism I : E → E, the transpose morphism I∗ : E∗ ≃

E → E∗ ≃ E is defined by 〈I∗u, v〉 = 〈u, Iv〉 for all u, v ∈ E. If I = −I∗ the
morphism I is said to be skew-symmetric and, in this case, the deformed pre-
Courant structure (ρI ,

[[

·, ·
]]

I) corresponds to the function ΘI := {I,Θ} ∈
F3
E, (via (43)). The deformation of ΘI by a skew-symmetric morphism J

is denoted by ΘI,J , i.e. ΘI,J = {J , {I,Θ}}. When I and J are skew-
symmetric endomorphisms of E, the concomitant CΘ(I,J ) may be defined
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as an element of F3
E by setting [2]:

CΘ(I,J ) = ΘI,J +ΘJ ,I . (46)

When I is skew-symmetric and satisfies I2 = λ idE, for some λ ∈ R, we
have [8, 1]

TΘI =
1

2
(ΘI,I − λΘ). (47)

If I2 = −idE (resp. I2 = idE) then I is said to be an almost complex (resp.
almost para-complex ) structure. If moreover TΘI = 0, then I is a complex
(resp. para-complex ) structure.
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[20] P. Ševera, A. Weinstein, Poisson geometry with a 3-form background, in Noncommutative

geometry and string theory Prog. Theor. Phys., Suppl. 144 (2001), 145–154.
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