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TRUST-REGION METHODS WITHOUT USING
DERIVATIVES: WORST CASE COMPLEXITY

AND THE NON-SMOOTH CASE

R. GARMANJANI, D. JÚDICE AND L. N. VICENTE

Abstract: Trust-region methods are a broad class of methods for continuous opti-
mization that found application in a variety of problems and contexts. In particular,
they have been studied and applied for problems without using derivatives.

The analysis of trust-region derivative-free methods has focused on global con-
vergence, and they have been proved to generate a sequence of iterates converging
to stationarity independently of the starting point. Most of such an analysis is car-
ried out in the smooth case, and, moreover, little is known about the complexity or
global rate of these methods.

In this paper, we start by analyzing the worst case complexity of general trust-
region derivative-free methods for smooth functions. For the non-smooth case, we
propose a smoothing approach, for which we prove global convergence and bound
the worst case complexity effort. For the special case of non-smooth functions that
result of the composition of smooth and non-smooth/convex components, we show
how to improve the existing results of the literature and make them applicable to
the general methodology.

Keywords: Trust-region methods, derivative-free optimization, worst case com-
plexity, non-smoothness, smoothing, composite functions.
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1. Introduction
1.1. Trust-region methods for DFO. Trust-region methods are iterative
methods for the optimization of a function in a continuous space, possibly
subject to constraints. In these methods, to obtain a trial point, one typ-
ically considers the minimization of a quadratic model in a region around
the current iterate and measured by a certain radius. The model serves as
a local approximation of the function, in particular of its curvature (see the
extensive monograph by Conn, Gould, and Toint [8] and the recent survey
paper by Yuan [31]).
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This paper concerns trust-region methods for unconstrained derivative-free
optimization (DFO), where it is assumed that there is only access to the
function values. Derivatives, if they exist, are unavailable or little reliable to
be used. DFO problems are common in Engineering Optimization where the
evaluation of the functions may be the output of a numerical solution. DFO
has also been relatively well studied (see the book by Conn, Scheinberg, and
Vicente [12]). In DFO trust-region methods, the models are frequently built
by fitting a sample set using interpolation or regression, and their quality
is measured by the accuracy they provide relatively to a Taylor expansion.
In particular, fully linear models [10] are those as smooth and accurate as
first-order Taylor ones.

Accepting the trial point as the new iterate and updating the trust-region
radius depend on how much the function was reduced relatively to the model.
If the current iterate is non-stationary and the model has good quality, the
algorithms succeed in accepting a trial point as a new iterate in a finite
number of reductions of the trust-region radius. These methods have been
shown to be convergent to first-order stationary points by Conn, Scheinberg,
Toint, and Vicente (in the papers [9, 12]) under the condition that fully
linear models are available when necessary. The strict need of controlling
geometry or considering model-improvement steps was questioned in [17],
where good numerical results were reported for an interpolation-based trust-
region method which ignores the geometry of the sample sets. Scheinberg and
Toint [28] gave an example showing that geometry cannot be totally ignored
and that some form of model improvement is necessary, at least when the size
of the model gradient becomes small (a procedure known as the ‘criticality
step’, which then ensures that the trust-region radius converges to zero).

1.2. Worst case complexity in DFO. For a long while, DFO meth-
ods have been analyzed by establishing their global convergence properties,
meaning their asymptotic convergence to stationary regardless of the starting
point (see [12, 22]). More recently, there has been some interest in establish-
ing their global rates of convergence or, similarly, bounds on the number of
iterations (and of function evaluations) required in the worst case to achieve
a certain threshold of stationarity.

In part, such a recent effort follows a similar trend occurred for the uncon-
strained, derivative-based optimization of smooth functions (where the gra-
dient exists and is Lipschitz continuous). Nesterov [24] started by showing
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that the gradient or steepest descent method takes at most O(ε−2) (O(ε−1)
in the presence of convexity) iterations to drive the norm of the gradient
of the objective function below ε. It is known that such a bound is sharp
or tight (see the example of Cartis, Gould, and Toint [3]). A similar worst
case complexity bound of O(ε−2) has been proved by Gratton, Toint, and
Sartenaer [21] for trust-region methods. The worst case complexity (WCC)
bound on the number of iterations can be reduced to O(ε−1.5) for cubic over-
estimation methods (see Nesterov and Polyak [26] and Cartis, Gould, and
Toint [2]).

In the context of DFO, most of the WCC analysis has been carried out
for direct-search methods of directional type based on a sufficient decrease
condition. The first worst-case complexity bound, of O(ε−2), was derived by
Vicente [29] for smooth functions, and later refined to O(ε−1) when the func-
tion is convex by Dodangeh and Vicente [14]. Garmanjani and Vicente [18],
using a smoothing approach, have shown a WCC bound of O(| log ε|ε−3) in
the non-smooth case. Similar WCC bounds were derived, in expectation, by
Nesterov [25] for his random Gaussian smoothing approach. Cartis, Gould,
and Toint [5] have derived a WCC bound of O(ε−1.5) for their derivative-
free adaptive cubic overestimation algorithm, but using finite differences to
approximate derivatives.

1.3. The contribution of this paper. In this paper we address the worst
case complexity of trust-region methods for unconstrained DFO. Our contri-
bution is threefold.

First we consider the smooth case and, not surprisingly, derive a WCC
bound of O(ε−2) for the number of iterations and O(n2ε−2) for the number of
function evaluations. Although this may seem as an advanced exercise in the
eyes of an expert on WCC of gradient based methods, there were a number of
delicate issues to overcome, one of which being how to appropriately measure
the effort of the criticality step to avoid worsening the power ε−2. It is also non
trivial to appropriately count the number of iterations that are acceptable
(the function is decreased, the trial point is accepted as the new iterate, and
the radius is reduced) or of model-improvement type (the iterate and the
radius are maintained), under the general setting in [11].

Secondly, we address the general non-smooth case, and develop a smoothing
trust-region approach in the same vein as for direct search [18]. The number
of iterations required to drive the smoothing parameter and the norm of the
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smoothing gradient below ε will be shown to be of O(| log ε|ε−3) (for function
evaluations, O(n2| log ε|ε−3)). Again, such a task may seem as an advanced
exercise given the contribution in [18] but assembling all components is far
from trivial and required building all necessary blocks first in the smooth
case.

The third contribution addresses the analysis of WCC of derivative-free
trust-region methods for composite functions of the type h(F ) where h is
real, non-smooth, and convex and F is vectorial and smooth (but for which
derivatives are unavailable). This task was already attempted by Grapiglia,
Yuan, and Yuan [20] but under a restrictive setting (relatively to the general
scenario in [11]) and with sub-optimal results. Their complexity result is
of the form O(| log ε|ε−2), where ours will be just O(ε−2). We were able to
remove the factor | log ε| precisely from the way we count iterations in the
criticality step. Further, contrary to [20], we do not impose a reduction
of the trust-region radius on model-improvement iterations. In terms of
function evaluations, our bound looks like O(`n2ε−2), where ` is the number
of functions components in F .

We organized our paper as follows. We start by reviewing the concept of
fully linear models in Section 2. Then our three contributions are described
in the following sections: Section 3 for the smooth case, Section 4 for the
non-smooth case using a smoothing approch, and Section 5 for the non-
smooth composite case. We provide a numerical illustration of the latter
two approaches for the case ‖F‖1 in Section 6 and end the paper with some
conclusions in Section 7.

The notation O(A) will mean a scalar times A, where the scalar does not
depend on the iteration counter of the method under analysis (thus depending
only on the problem or on algorithmic constants). The dependence of A on
the dimension n of the problem (or on a Lipschitz constant) will be made
explicit whenever appropriated. The notation stands B(x; ∆) for {y ∈ Rn :
‖y − x‖ ≤ ∆} and by default all norms are the Euclidean ones.

2. Fully linear models
Let x0 ∈ Rn be a starting point for the trust-region methods considered in

this paper. Let F = (f1, . . . , f`) : Rn → R` be a function for which one build
models to be used in such methods. When imposing a certain smoothness
on F , one needs to consider only the region where these methods generate
new iterates and trial points. Given that trust-region methods impose some
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form of decrease on the acceptance of new iterates, such points are always
confined to an initial level set L(x0). Such a level set is left undefined for the
moment since it will take different forms in this paper depending of the type
of problem and problem smoothness.

At each iteration of such methods, the function is sampled at the trial
point xk + sk and possibly at a certain number of sampling points in the ball
B(xk; ∆k), where xk is the current iterate and ∆k the current trust-region
radius. It might happen, however, that some of such points fall outside of
the level set L(x0), and thus the set in which the function is sampled is taken
as:

Lenl(x0) =
⋃

x∈L(x0)

B(x; ∆max), (1)

where ∆max is chosen such that ∆max ≥ ∆k, for all k ≥ 0. It is in Lenl(x0)
that F is assumed smooth to later derive the convergence and complexity
properties for these methods.

Assumption 2.1. Suppose x0 and ∆max are given. Assume that F is contin-
uously differentiable with Lipschitz continuous Jacobian (with constant LJF )
in an open domain containing the set Lenl(x0).

To establish global convergence to first-order stationary points (and the
corresponding rates or complexity bounds), certain models of F need to be
assumed as accurate as first-order Taylor models, in the sense of Point 1 of
the definition below. It is further assumed that such models can be made
first-order accurate or fully linear in a finite number of model-improvement
steps. We reproduce below Definition 10.3 in [12] of fully linear models,
adapting it for the case of vectorial functions, where ` can be greater than 1.

Definition 2.1. Let a function F = (f1, . . . , f`) : Rn → R`, that satisfies As-
sumption 2.1, be given. A set of model functions M = {m = (m1, . . . ,m`) :
Rn → R`, m ∈ C1} is called a fully linear class of models if:

(1) There exist positive constants κef , κeg, and νm1 such that for any x ∈
L(x0) and ∆ ∈ (0,∆max] there exists a model function m(x + s) in
M, with Lipschitz continuous Jacobian and corresponding Lipschitz
constant bounded by νm1 , and such that
• the error between the gradient of the model components and the

gradient of the function components satisfies

max
1≤i≤`

‖∇fi(x+ s)−∇mi(x+ s)‖ ≤ κeg ∆, ∀s ∈ B(0; ∆), (2)
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and
• the error between the model and function components satisfies

max
1≤i≤`

|fi(x+ s)−mi(x+ s)| ≤ κef ∆2, ∀s ∈ B(0; ∆). (3)

Such a model m is called fully linear on B(x; ∆).
(2) For this classM there exists an algorithm, which we will call a ‘model-

improvement’ algorithm, that in a finite, uniformly bounded (with re-
spect to x and ∆) number of steps can
• either establish that a given model m ∈ M is fully linear on
B(x; ∆) (we will say that a certificate has been provided),
• or find a model m ∈M that is fully linear on B(x; ∆).

Note that when ` = 1, Definition 2.1 coincides with [12, Definition 10.3].
Fully linear models are not necessarily linear, in fact they are typically qua-
dratic in practice (see [12] for a comprehensive coverage of the topic).

3. WCC in the smooth case
This section is devoted to establishing the worst-case complexity analysis

of derivative-free trust-region methods for the unconstrained minimization
of smooth functions f : Rn → R. At each iteration k of these methods, a
quadratic model is form around the current iterate xk

mk(xk + s) = fk + g>k s+
1

2
s>Hks,

where fk ∈ R (not necessarily equal to f(xk)), gk ∈ Rn, and Hk ∈ Rn×n. The
model is then minimized (possibly approximately) in a trust region, typically
defined by a ball B(xk; ∆k) centered at xk and of radius ∆k. The difference
relatively to derivative-based trust-region methods is that the models are
computed based on sample values of f , and thus gk is not necessarily the
gradient of f at xk, although it is a good approximation thereof is the model
is fully linear. The matrix Hk provides an approximation to the curvature
of f .

3.1. The algorithm. For the derivation of the WCC bounds we intro-
duce two modifications in the presentation of the derivative-free trust-region
method stated in Algorithm 4.1 in [11] (see also [12, Algorithm 10.1]).

The first modification concerns how the so-called criticality step is incorpo-
rated (see Algorithm 4.2 in [11] or the presentation in [11, Algorithm 10.2]).
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One knows from the counter example in [28] that such a step is indeed neces-
sary. What the criticality step does is to improve the accuracy of the models
when the model gradient gk becomes small, ensuring that at the end of the
process one has a fully linear model in a ball B(xk; ∆k) where ∆k is of the
order of ‖gk‖. In this paper, for the purpose of measuring the overall effort
of the trust-region method, we consider each inner iteration of the criticality
step as a regular trust-region iteration. By doing so we avoid the use of in-
cumbent models (as done in [11]), which had to be used when the criticality
step was invoked and changed the models coming from the previous iteration.

The second modification generalizes [11] by subtracting to the actual de-
crease f(xk) − f(xk + sk) a multiple of a power of the trust-region radius.
The idea is that if an iteration is successful, then the actual decrease is larger
than the predicted decrease plus a term of the form c1∆

p
k, where c1 ≥ 0 and

p > 1. When c1 = 0 we recover the traditional scenario. When c1 > 0, the
additional term will allow us to derive complexity bounds dependant of p. In
particular, the choice p = 3/2 will ask more from successful steps and lead to
a worse WCC bound of O(ε−3), but such a choice will be instrumental in the
analysis of complexity of the smoothing trust-region approach of Section 4.

Algorithm 3.1. Derivative-free trust-region method (for smooth
functions)

Initialization: Choose an initial point x0 and an initial trust-region
radius ∆0 ∈ (0,∆max] for some ∆max > 0. Choose an initial model
m0(x0+s). The constants η0, η1, γ, γinc, λ, and β are given and satisfy
the conditions 0 ≤ η0 ≤ η1 < 1 (with η1 6= 0), γ ∈ (0, 1), γinc > 1, and
λ > β > 0. Let c1 ≥ 0 and p > 1. Set k = 0.

Step 1 (one step of the criticality step): If ∆k > λ‖gk‖, then set
xk+1 = xk. Apply the model-improvement algorithm to compute
a fully linear model mk+1 in B(xk+1; γ∆k). If the next iteration
skips the criticality step (meaning γ∆k ≤ λ‖gk+1‖), set ∆k+1 =
max{γ∆k, β‖gk+1‖}. If not, set ∆k+1 = γ∆k. Increment k by one
and return to Step 1. Otherwise (∆k ≤ λ‖gk‖) continue.

Step 2 (step calculation): Compute a step sk that sufficiently re-
duces the model mk, in the sense of

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

,∆k

}
(4)

(with κfcd ∈ (0, 1]), and such that xk + sk ∈ B(xk; ∆k).
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Step 3 (acceptance of the trial point): Compute f(xk+sk) and de-
fine

ρk =
f(xk)− f(xk + sk)− c1∆

p
k

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if ρk ≥ η0 and mk is fully linear, then xk+1 = xk + sk
and the model is updated to take into consideration the new iterate,
resulting in a new model mk+1(xk+1 + s). Otherwise the model and
the iterate remain unchanged (mk+1 = mk and xk+1 = xk).

Step 4 (model improvement): If ρk < η1 use a model-improvement
algorithm to
• attempt to certify that mk is fully linear on B(xk; ∆k),
• if such a certificate is not obtained, we say that mk is not cer-

tifiably fully linear and make one or more suitable improvement
steps.

Define mk+1(xk + s) to be the improved model.
Step 5 (trust-region radius update): Set

∆k+1 ∈


[∆k,min{γinc∆k,∆max}] if ρk ≥ η1,
{γ∆k} if ρk < η1 and mk is fully linear,
{∆k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to Step 1.

There are essentially five types of trust-region iterations resulting from Al-
gorithm 3.1 (critical, successful, acceptable, unsuccessful, model-improvement)
but we will split the critical iterations in two types depending on whether
the trust-region radius is reduced or not. Below is a description of these
iterations and the symbols used to define their indices.

(1) Critical iterations (Cr), taken at Step 1 and where the trust-region
radius is reduced.

(2) Critical iterations (Cnr), taken at Step 1 and where the trust-region
radius is not reduced.

(3) Successful iterations (S), taken at Step 3 when ρk ≥ η1 (the trial
point is accepted and the trust-region radius is kept or increased).

(4) Acceptable iterations (A), taken at Step 3 when ρk ≥ η0 and the
model is fully linear (the trial point is accepted and the trust-region
radius is decreased).
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(5) Unsuccessful iterations (U), taken at Step 3 when ρk < η0 and
mk is fully linear (the iterate is kept and the trust-region radius is
reduced).

(6) Model-improving (M), taken at Step 4 when ρk < η1 and mk is
not certifiably fully linear (the iterate and the trust-radius are kept
but the model is improved).

Whenever there are (more than one) consecutive model-improvement steps,
we count the whole series of them as one model-improvement iteration. We
know that the cost in function evaluations of such an iteration inM (or any
iteration in C) is of the order of n for a single function (see [12, Chapter 2]).

For analyzing the algorithm, we gather all iterations that are not successful
in N = C ∪ A ∪ U ∪M, where C = Cr ∪ Cnr, and all iterations where ∆k is
reduced in R = Cr ∪ A ∪ U .

The two modifications described above do not restrict the general setting
of [11]. However, a careful reader would notice that in [11] the criticality step
is only applied when ‖gk‖ ≤ εc, with εc > 0. In our algorithmic presentation
this would mean that a series of critical iterations is only started under the
same condition. Doing this however does not affect our theory. It certainly
does not have any impact on the analysis of global convergence. Selecting εc
appropriately, e.g., εc ≥ ε when p = 1, where ε is the threshold of stationarity,
would not change the analysis of WCC too. We will explain this in due course.

3.2. Global convergence. Given that substantial modifications in the pre-
sentation of the algorithm are made relatively to the original description
in [11], it becomes necessary to redo the global convergence theory. Part of
it would have to be done anyhow for the sole purpose of analyzing the worst
case complexity.

As in the convergence of most trust-region methods, we need to assume that
the objective function is bounded from below in the initial level set L(x0)
and the model Hessians are uniformly bounded. The function f is assumed
to satisfy Assumption 2.1 (with f = F , L∇f = LJF , and ` = 1)

Assumption 3.1. Assume f is bounded below on L(x0) = {x ∈ Rn : f(x) ≤
f(x0)}, that is there exists a constant flow such that, for all x ∈ L(x0),
f(x) ≥ flow.
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Assumption 3.2. There exists a constant κbhm > 0 such that, for all xk
generated by the algorithm,

‖Hk‖ ≤ κbhm.

We will first show that the trust-region radius converges to zero. The proof
is a modification of the proof of Lemma 5.5 in [11] (see also [12, Lemma 10.9]).

Lemma 3.1. Let Assumptions 3.1 and 3.2 hold. Then

lim
k→+∞

∆k = 0.

Proof : First we assume that the number of successful iterations is finite.
Suppose that the number of iterations in R = Cr ∪A∪U is also finite. Then
we would have an infinite number of iterations either in Cnr or inM. In the
first case, a contradiction would be reached since after each iteration in Cnr
(the last in a series of critical ones) the model is fully linear and we would
either have an iteration in S, A, or in U . In the second case, since after
a model-improvement iteration we have an iteration of different type, this
would imply an infinite number of iterations in Cr, Cnr, S, A, or U , which is
not possible. Thus, there is an infinite number of iterations inR = Cr∪A∪U .
Hence, ∆k is decreased an infinite number of times by a factor of γ, which
leads to the convergence of ∆k to zero.

Let us assume now that S is infinite. When k is in S,

f(xk)− f(xk+1) ≥ η1[mk(xk)−mk(xk + sk)] + c1∆
p
k.

By using the bound on the fraction of Cauchy decrease (4) and Assump-
tion 3.2, we have that

f(xk)− f(xk+1) ≥ η1
κfcd

2
‖gk‖min

{
‖gk‖
κbhm

,∆k

}
+ c1∆

p
k.

Since the iteration is not critical, ‖gk‖ ≥ ∆k/λ, and thus

f(xk)− f(xk+1) ≥
η1κfcd

2λ
∆k min

{
∆k

κbhmλ
,∆k

}
+ c1∆

p
k. (5)

Given that S is considered infinite and f is assumed bounded from below, the
right-hand side of (5) has to converge to zero for k ∈ S. Hence limk∈S ∆k = 0,
and the proof is completed when there are only successful iterations.

Now, if there exists an iteration k that is not successful then, due to the
way in which the radii are updated at Step 5 of Algorithm 3.1, we have ∆k ≤



TR METHODS WITHOUT USING DERIVATIVES: WCC AND THE NON-SMOOTH CASE 11

γinc∆sk, where sk is the last successful iteration before k. Since limsk∈S ∆sk =
0, the proof is completed in this case as well.

Having in mind the complexity results and the smoothing trust-region ap-
proach of Section 4, global convergence is established by proving now that
the gradient of the objective function is of the order of the trust-region radius
whenever this one is reduced.

Lemma 3.2. Let Assumptions 2.1 and 3.2 hold. If k is an iteration for
which ∆k is reduced, then

‖∇f(xk)‖ ≤ C1∆k + C2∆
p−1
k ,

where

C1 = κeg + C0, C0 =
1

min
{
β, 1

κbhm
,
κfcd(1−η1)

4κef

} , and C2 =
2c1

κfcd(1− η1)
.

(6)

Proof : By assumption we have that k ∈ R = Cr ∪ A ∪ U .
Let us suppose that k ∈ A ∪ U . We will show first that

‖gk‖ ≤ C0∆k + C2∆
p−1
k . (7)

Assume by contradiction that (7) is false. Given that C0 ≥ 4κef
κfcd(1−η1) , we then

obtain

‖gk‖ >
4κef

κfcd(1− η1)
∆k +

2c1

κfcd(1− η1)
∆p−1
k .

On the other hand, using (4) and C0 ≥ κbhm, one has

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
κbhm

,∆k

}
≥ κfcd

2
‖gk‖∆k. (8)
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Hence, we have

1− η1 >
4κef∆k

κfcd‖gk‖
+

c1∆
p−1
k

κfcd
2 ‖gk‖

≥
∣∣∣∣f(xk + sk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

∣∣∣∣+

∣∣∣∣ f(xk)−mk(xk)

mk(xk)−mk(xk + sk)

∣∣∣∣
+

∣∣∣∣ c1∆
p
k

mk(xk)−mk(xk + sk)

∣∣∣∣
≥
∣∣∣∣f(xk)− f(xk + sk)− c1∆

p
k −mk(xk) +mk(xk + sk)

mk(xk)−mk(xk + sk)

∣∣∣∣
=

∣∣∣∣f(xk)− f(xk + sk)− c1∆
p
k

mk(xk)−mk(xk + sk)
− 1

∣∣∣∣
= |ρk − 1|,

where the second inequality holds because of the fully linearity of the model (3)
and of inequality (8). Therefore, we have ρk > η1, implying that the itera-
tion is successful and contradicting the fact that k ∈ A ∪ U . We have thus
proved (7). To establish the result of the lemma when k ∈ A∪U , it remains
to use (2) and write

‖∇f(xk)‖ ≤ ‖∇f(xk)− gk‖+ ‖gk‖ ≤ κeg∆k + C0∆k + C2∆
p−1
k

= C1∆k + C2∆
p−1
k .

Let us now suppose that k ∈ Cr. If k is not the last critical iteration in a
series of them, then ∆k+1 = γ∆k and ∆k+1 > λ‖gk+1‖. Thus,

‖∇f(xk)‖ = ‖∇f(xk+1)‖ ≤ ‖∇f(xk+1)− gk+1‖+ ‖gk+1‖

≤ κeg∆k+1 + ‖gk+1‖ ≤ κegγ∆k +
γ∆k

λ
≤
(
κeg +

1

β

)
γ∆k

≤ C1∆k + C2∆
p−1
k .

If k is the last critical iteration in a series of them, then due to ∆k+1 =
max{γ∆k, β‖gk+1‖}, either ∆k+1 = γ∆k or ∆k+1 = β‖gk+1‖ < ∆k. In the
first case we have ‖gk+1‖ ≤ γ∆k/β ≤ ∆k/β and in the second case we have
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‖gk+1‖ ≤ ∆k/β. Thus,

‖∇f(xk)‖ = ‖∇f(xk+1)‖ ≤ ‖∇f(xk+1)− gk+1‖+ ‖gk+1‖

≤ κeg∆k+1 +
∆k+1

β
≤ κeg∆k +

∆k

β
=

(
κeg +

1

β

)
∆k

≤ C1∆k + C2∆
p−1
k ,

and we establish the result of the lemma also for k ∈ Cr.

A global convergence results follows directly from Lemma 3.2 and the as-
ymptotic behavior of the trust-region radius.

Theorem 3.1. Let Assumptions 2.1, 3.1, and 3.2 hold. Then

lim inf
k→+∞

‖∇f(xk)‖ = 0.

Proof : By Lemma 3.1, there is an infinite subsequence of iterations where the
trust-region radius is reduced, to which then we can apply Lemma 3.2.

3.3. Worst case complexity. In this subsection, we derive the worst-case
complexity analysis of Algorithm 3.1. We first need the following technical
lemma establishing a lower bound on the trust-region radius when the size
of the gradient (of the objective function) is larger than a given threshold.

Lemma 3.3. Let Assumptions 2.1 and 3.2 hold. Let ε ∈ (0, 1). Let k0 be
the first iteration where ∆k is reduced. For every iteration k ≥ k0 of the
algorithm, if ‖∇f(xk)‖ > ε then

∆k ≥ γC3ε
1

min(p−1,1) ,

where
C3 = min

(
1, (C1 + C2)

− 1
min(p−1,1)

)
, (9)

with C1 and C2 given in (6).

Proof : Let k ≥ k0 be an iteration where ∆k is reduced. When ∆k < 1, by
applying Lemma 3.2,

ε < (C1 + C2) max{∆k,∆
p−1
k } ≤ (C1 + C2)∆

min(p−1,1)
k .

If ∆k ≥ 1, then ∆k ≥ ε. Hence, considering both cases of ∆k < 1 and ∆k ≥ 1,
and the fact that ε < 1, we have

∆k ≥ C3ε
1

min(p−1,1) .
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The lemma is proved for all iterations k ∈ R such that k ≥ k0.
At iterations in R = Cr ∪A∪ U , ∆k is decreased by a factor of at most γ.

At iterations in Cnr ∪ S ∪M, ∆k is not decreased. Thus, we can backtrack
from any iteration k in Cnr ∪ S ∪M, to the previous iteration in R, say k1

(possibly k1 = k0), and obtain ∆k ≥ γ∆k1
.

We are now ready to count the number of successful iterations.

Theorem 3.2. Let Assumptions 2.1, 3.1, and 3.2 hold. Let k0 be the index of
the first iteration where ∆k is reduced (which must exist from Lemma 3.1).
Given any ε ∈ (0, 1), assume that ‖∇f(xk0

)‖ > ε and let k̄ be the first
iteration after k0 such that ‖∇f(xk̄)‖ ≤ ε. Then, to achieve ‖∇f(xk̄)‖ ≤ ε,
starting from k0, Algorithm 3.1 takes at most |S(k0, k̄)| successful iterations,
where

|S(k0, k̄)| ≤ f(xk0
)− flow
L

ε−
max(p,2)

min(p−1,1)

where

L =
η1κfcdγ

2C2
3

2λ
min

{
1

κbhmλ
, 1

}
+ c1γ

pCp
3 ,

with C3 given in (9).

Proof : When k ∈ S, using (4) and ‖gk‖ ≥ ∆k/λ, we have

f(xk)− f(xk+1) ≥
η1κfcd

2λ
min

{
1

κbhmλ
, 1

}
∆2
k + c1∆

p
k.

Hence, by applying Lemma 3.3,

f(xk)− f(xk+1) ≥
η1κfcdγ

2C2
3

2λ
min

{
1

κbhmλ
, 1

}
ε

2
min(p−1,1) + c1γ

pCp
3ε

p
min(p−1,1) .

We then obtain by summing up all the successful iterations starting at k0

that

f(xk0
)− f(xk̄) ≥ |S(k0, k̄)|Lε

max(p,2)
min(p−1,1) ,

and the proof is completed.

It is in the counting of successful iterations that performing a series of
criticality steps only when ‖gk‖ ≤ εc could have an impact. In fact, one
would have instead ‖gk‖ ≥ min{εc,∆k/λ} when k ∈ S. One possibility to fix
the situation would be to select

εc ≥ O(ε
1

min(p−1,1) )
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and that would only impact the constants in the result. An alternative
would be too pick εc constant and consider ∆k sufficiently small so that
min{εc,∆k/λ} = ∆k/λ. Such a procedure would conflict, however, with a
proper WCC analysis since we would not know how many iterations would
be required for ∆k to be below εcλ.

The next step of the analysis is to count all iterations after k0 which are
not successful.

Theorem 3.3. Under the conditions of Theorem 3.2, to achieve ‖∇f(xk̄)‖ ≤
ε, starting from k0, Algorithm 3.1 takes at most |N (k0, k̄)| other (not suc-
cessful) iterations, where

|N (k0, k̄)| ≤ (3 + 4L1)|S(k0, k̄)|+ 4
(
L2 − logγ(e)ε

− 1
min(p−1,1)

)
,

where C3 is given in (9),

L1 = − logγ(γinc), and L2 = logγ

(
γC3e

∆k0

)
.

Proof : For iterations k in R = Cr∪A∪U where ∆k is reduced, ∆k+1 ≤ γ∆k.
For successful iterations k ∈ S, ∆k+1 ≤ γinc∆k. For the others (k ∈ Cnr∪M),
∆k+1 ≤ ∆k. Thus, we obtain by induction

∆k̄ ≤ ∆k0
γ
|S(k0,k̄)|
inc γ|R(k0,k̄)|.

As log(γ) < 0, one can then write

|R(k0, k̄)| ≤ − log(γinc)

log(γ)
|S(k0, k̄)| − log(∆k0

)

log(γ)
+

log(∆k̄)

log(γ)
.

By Lemma 3.3, we have

|R(k0, k̄)| ≤ L1|S(k0, k̄)|+ logγ

(
γC3

∆k0

)
− log(ε−

1
min(p−1,1) )

log(γ)
,

and thus, using log(x) ≤ x− 1,

|R(k0, k̄)| ≤ L1|S(k0, k̄)|+ L2 − logγ(e)ε
− 1

min(p−1,1) . (10)

It remains to count the iterations that are in Cnr and in M. After an
iteration in Cnr (the last critical iteration in a series of them), the model is
fully linear, and thus the next iteration is either successful, acceptable, or
unsuccessful, giving

|Cnr| ≤ |S|+ |A|+ |U| ≤ |S|+ |R|.
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After an iteration in M, the next one is of one of the other types, and thus

|M| ≤ |S|+ |R|+ |Cnr| ≤ 2(|S|+ |R|).

Thus,

|N | = |R ∪ Cnr ∪M| ≤ |R|+ |Cnr|+ |M| ≤ 3|S|+ 4|R|,

which combined with (10) completes the proof.

The two last theorems show that the number of iterations, after the first
iteration k0 where the trust-region radius is reduced, that are needed to drive
the norm of the gradient below ε is

O
(
ε−

max(p,2)
min(p−1,1)

)
.

It can be easily shown that k0 is also bounded by such a quantity. From
what we have seen in the proof of Theorem 3.3, since there are no iterations
in R until k0, one has k0 ≤ 4|S(0, k0−1)|. To count the number of successful
iterations up to k0 − 1, we write, as in the proof of Theorem 3.2, for such
iterations k,

f(xk)− f(xk+1) ≥
η1κfcd

2λ
min

{
1

κbhmλ
, 1

}
∆2
k + c1∆

p
k.

Summing up all these iterations up to k0, and considering ∆k ≥ ∆0 and
ε < 1, we obtain

k0 ≤ 4|S(0, k0 − 1)| ≤ 4
f(x0)− f(xk0

)

min{∆2
0,∆

p
0}L0

≤ 4
f(x0)− f(xk0

)

min{∆2
0,∆

p
0}L0

ε−
max(p,2)

min(p−1,1) ,

(11)
with

L0 =
η1κfcd

2λ
min

{
1

κbhmλ
, 1

}
+ c1.

To state our final complexity result, one needs to make explicit the depen-
dence of the constants appearing so far in terms of the problem dimension n
and the Lipschitz constant of the gradient. It is known that the constants
κef and κeg in the definition of fully linear models can meet the following
assumption (see, e.g., [12, Chapter 2]).

Assumption 3.3. The constants κef and κeg in the definition of fully lin-
ear models satisfy κef = O(

√
nL∇f) and κeg = O(

√
nL∇f), where n is the
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problem dimension and L∇f is the Lipschitz constant of the gradient of the
objective function f .

Theorems 3.2 and 3.3 and the bound on k0 given above, together with
Assumption 3.3, lead to the following result

Theorem 3.4. Let Assumptions 2.1, 3.1, 3.2, and 3.3 hold. To drive the
norm of the gradient below ε ∈ (0, 1), Algorithm 3.1 takes at most

O
(

(L∇f
√
n)

max(p,2)
min(p−1,1)ε−

max(p,2)
min(p−1,1)

)
iterations. When p = 2, this number is of O(L2

∇fnε
−2).

Proof : It suffices to observe that for the constant L appearing in Theorem 3.2
we have

1

L
= O

(
C
−max(p,2)
3

)
= O

(
(C1 + C2)

max(p,2)
min(p−1,1)

)
= O

(
κ

max(p,2)
min(p−1,1)

)
,

with κ = max{κef , κeg} and then to apply Assumption 3.3.

Algorithm 3.1 takes at most O(n) function evaluations at critical and
model-improving iterations and only one function evaluation at all other
iterations. It is then possible to measure the worst case effort also in terms
of function evaluations.

Corollary 3.1. Let Assumptions 2.1, 3.1, 3.2, and 3.3 hold. To drive the
norm of the gradient below ε ∈ (0, 1), Algorithm 3.1 takes at most

O
(
n(L∇f

√
n)

max(p,2)
min(p−1,1)ε−

max(p,2)
min(p−1,1)

)
function evaluations. When p = 2, this number is of O(L2

∇fn
2ε−2).

4. Smoothing trust-region methods
In this section we consider the unconstrained minimization of functions

f : Rn → R that are locally Lipschitz continuous, but not necessarily differ-
entiable or convex.

4.1. Smoothing functions. Given our objective function f we will assume,
however, the existence and knowledge of a smoothing function (see [6, 32]):
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Definition 4.1. Let f : Rn → R be a locally Lipschitz continuous function.
We call f̃ : Rn×R+ → R a smoothing function of f if, for any µ > 0, f̃(·, µ)
is continuously differentiable in Rn and, for any x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).

Under reasonable assumptions, the smoothing trust-region methods de-
rived in this section will generate a sequence of points and a sequence of
smoothing parameters (converging to zero) for which the gradient of the
smoothing function tends to zero. In other words, we will show that any
limit point x∗ of that sequence of points is a stationary point of the smooth-
ing function f̃ , in the sense that 0 ∈ Gf̃(x∗), with

Gf̃(x∗) = {v : ∃N ∈ N∞, (x, µ) −→
N

(x∗, 0) with ∇f̃(x, µ) −→
N

v},

where N∞ represents the set of infinite sequences. It is known that for
certain types of objective functions and corresponding smoothing functions,
Gf̃(x∗) ⊆ ∂f(x∗), where ∂f(x∗) denotes the Clarke subdifferential of f at x∗
(a result that follows from [27, Theorem 9.67]; see more details in [18]). Thus,
in those cases, the smoothing trust-region methods are capable of generating
a sequence of iterates converging to Clarke stationary points.

The method developed in this section could be used for minimizing com-
posite functions of the type f = g + h(F ), where h : R` → R is non-smooth
with a known smoothing function and g : Rn → R and F : Rn → R` are
assumed smooth (continuously differentiable). The functions g and F can be
a black box or a zero-order oracle, in the sense that one does not access to
derivative information, only function values can be evaluated.

4.2. The algorithm. Following what has been done in [18] for direct search,
we introduce a smoothing trust-region algorithm for the unconstrained min-
imization of a locally Lipschitz continuous objective function f for which a
smoothing function f̃ is known. The idea is simple and consists of the ap-
plication of Algorithm 3.1 to the smoothing function for decreasing values
of the smoothing parameter µ. Each outer or main iteration (Algorithm 3.1
applied to f̃ for a fixed value of µ) is stopped when the trust-region radius
becomes smaller than a function r(µ) of the smoothing parameter.
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Algorithm 4.1 (Smoothing trust-region method).
Initialization

Choose x0 with f(x0) < +∞, ∆0 > 0, µ0 > 0, and σ ∈ (0, 1).

For k = 0, 1, 2, . . .

(1) Trust-region method for a fixed smoothing parameter:
Apply Algorithm 3.1 to f̃(·, µk) (starting from y0,k = xk) gener-
ating points y0,k, . . . , yjk,k until ∆jk+1,k < r(µk).

(2) Update of the smoothing parameter: Set xk+1 = yjk,k and
decrease the smoothing parameter: µk+1 = σµk.

As we will see next, each outer iteration is well defined (in the sense of
stopping in a finite number of inner iterations) and, moreover, Algorithm 4.1
will stop under a criterion of the form µk ≤ µtol, where µtol ∈ (0, µ0).

4.3. Global convergence. We will analyze the global convergence of the
smoothing trust-region method (Algorithm 4.1) under the following assump-
tions, which are the natural counterparts, for the smoothing function, of the
ones assumed in the smooth case of Section 3.

Assumption 4.1. For all k: f̃(·, µk) has a Lipschitz continuous gradient
with constant L∇f̃(µk) on an open set containing Lenl(y0,k), see (1), with

L(y0,k) = {y ∈ Rn : f̃(y, µk) ≤ f̃(y0,k, µk)}.

Assumption 4.2. For all k: the functions f̃(·, µk) are bounded below in L(y0,k).

Each inner iteration of Algorithm 4.1 consists of one iteration of Algo-
rithm 3.1 using a quadratic model now written as

m̃j,k(yj,k + s, µk) = f̃j,k + g̃>j,ks+
1

2
s>H̃j,ks.

As in Section 3, we will require all these model Hessians to be uniformly
bounded.

Assumption 4.3. There exists a constant κ̃bhm > 0 such that, for all j, k,

‖H̃j,k‖ ≤ κ̃bhm.

One can immediately deduce that the smoothing parameter converges to
zero.
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Theorem 4.1. Let Assumptions 4.2 and 4.3 hold. Then the smoothing pa-
rameter goes to zero:

lim
k→∞

µk = 0.

Proof : For each k, one knows, from Lemma 3.1, that limj→+∞∆j,k = 0.
Thus, one always reaches the stopping criterion for every k and µk is reduced
an infinite number of times, which completes the proof.

The above result triggers the following one. Note that r(µ) is part of the
algorithmic design and can be chosen in whatever most appropriate way.

Theorem 4.2. Let Assumptions 4.2 and 4.3 hold. If limµ↓0 r(µ) = 0, then

lim
k→+∞

∆jk,k = 0.

Proof : The proof results from Theorem 4.1 and the fact that r(µk) ≥ ∆jk+1,k >
∆jk,k.

Global convergence of Algorithm 4.1 requires that r(µ) goes to zero faster
than the way that the Lipschitz constant L∇f̃(µ) of the gradient of the

smoothing function goes to infinity (see the theorem below). Later we will see
that the optimal complexity bound asks for a Lipschitz constant L∇f̃(µ) that

does not go to infinity faster than 1/µ, in other words that L∇f̃(µ) = O(1/µ).
There are smoothing functions satisfying this property as well as gradient
consistency, such as the smoothing function for the absolute value defined
by Chen and Zhou [7] and composite functions of the type ‖F‖1 where F is
smooth [18].

Theorem 4.3. Consider the application of Algorithm 4.1 and suppose that
f̃ is a smoothing function for f . Let Assumptions 4.1, 4.2, and 4.3 hold.
Under these conditions, if limµ↓0 r(µ) = 0 and limµ↓0 L∇f̃(µ)r(µ) = 0, then

lim
k→+∞

‖∇f̃(xk, µk)‖ = 0 (12)

and any limit point x∗ of {xk} is a stationary point associated with the
smoothing function f̃ .

Proof : For each k, xk+1 = yjk,k, where jk is an iteration such that the trust-
region radius is reduced. Thus, in view of Lemma 3.2, we have

‖∇f̃(xk, µk)‖ ≤ C1(µk)∆jk,k + C2∆
p−1
jk,k
,
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where now C1 = C1(µk) depends on µk through the dependence of L∇f̃(µk).

Since C1(µk) = O(κ̃eg) = O(L∇f̃(µk)), where κ̃eg is the constant in the error

bound (2) for the gradient of the model of the smoothing function f̃ , and
r(µk) ≥ ∆jk+1,k > ∆jk,k, one obtains

‖∇f̃(xk, µk)‖ ≤ O(L∇f̃(µk))r(µk) + C2∆
p−1
jk,k
.

Then, due to Theorems 4.1 and 4.2, we obtain (12) and the proof is com-
pleted.

If one considers a smoothing function f̃ for which L∇f̃(µ) = O(1/µ), it

suffices to choose r(µ) = µq, with q > 1, to successfully apply Theorem 4.3.
As a consequence of the above result, when the smoothing function of f

satisfies the gradient consistent property at a limit point x∗, i.e., Gf̃(x∗) =

∂f(x∗), x∗ is a Clarke stationary point of the function f .

4.4. Worst case complexity. We also follow here the same steps as in [18]
and start by first counting the number of inner iterations of Algorithm 4.1
to drive the smoothing parameter below a given threshold.

Theorem 4.4. Consider the application of Algorithm 4.1 using the term
c1∆

p when calling Algorithm 3.1 and r(t) = c2t
q, with p, q > 1 and c1, c2 > 0.

Suppose that f̃ is a smoothing function for f . Let Assumptions 4.1, 4.2,
and 4.3 hold.

Given any ξ ∈ (0, 1) such that ξ < µ0, let k̄ be the first outer iteration
such that µk̄+1 ≤ ξ. Under these assumptions, Algorithm 4.1 takes at most
O (| log(ξ)|ξ−pq) inner iterations to reduce the smoothing parameter below ξ,
i.e., to have µk̄+1 < ξ.

Proof : First let us consider each inner loop of Algorithm 4.1 where a trust-
region method is applied for a fixed µk > ξ. This loop is repeated until
there is an iteration (jk, k) for which the trust-region radius is reduced and
∆jk+1,k < r(µk) = c2µ

q
k.

For each k, the number of inner iterations needed to reach the first itera-
tion (j0,k, k) where the trust-region radius is reduced is of the order of one
(see (11)).

One has, for a successful iteration (j, k), that

f̃(yj,k, µk)− f̃(yj+1,k, µk) ≥ η1
κ̃fcd

2
‖gj,k‖min

{
‖gj,k‖
κ̃bhm

,∆j,k

}
+c1∆

p
j,k ≥ c1∆

p
j,k.
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Since ∆j,k ≥ c2µ
q
k,

f̃(yj,k, µk)− f̃(yj+1,k, µk) ≥ c1c
p
2µ

pq
k .

The number of inner successful iterations |Sk(j0,k, jk)| from (j0,k, k) until (jk, k)
is then bounded by

|Sk(j0,k, jk)| ≤
f̃(yj0,k,k, µk)− f̃low,k

c1c
p
2

1

µpqk
.

Similar to the first part of the proof of Theorem 3.3, the number of the
other inner iterations is bounded as follows (remember that 0 < γ < 1)

|Rk(j0,k, jk)| ≤ (3 + 4L1)|Sk(j0,k, jk)| − logγ(∆j0,k,k) + logγ(∆jk,k).

The initial trust-region radii ∆j0,k,k are considered constants. To bound
the third term, recall that ∆jk,k ≥ c2r(µk) > c2ξ

q, and thus, since p > 1,
logγ(∆jk,k) = O (ξ−pq). We conclude that the maximum number of iterations
needed in each inner loop minimization is O (ξ−pq).

Finally, let us count the number of outer loops. From the updating scheme
of the smoothing parameter, one has µk+1 ≤ σkµ0. Thus, the number of
outer iterations required to reach µk̄+1 < ξ satisfies

k̄ ≥ log(ξ)− log(µ0)

log(σ)
,

and the proof is completed.

There are situations where the Lipschitz constant of the gradient of the
smoothing function is of the order of 1/µ: see [7] for the absolute value | · |,
[18] for the composite function ‖F‖1 with F smooth, and [25] for smoothing
using Gaussian densities. Under such an assumption on L∇f̃(µ) it is possible

to bound the gradient of f̃ at the end of the last outer loop.

Theorem 4.5. Consider all assumptions of Theorem 3.2 and assume also
that L∇f̃(µk) = O(1/µk). Suppose also that the constant κ̃ = max{κ̃ef , κ̃eg}
in the bounds of the fully linear models of f̃ satisfies Assumption 3.3.

Given any ξ ∈ (0, 1) such that ξ < µ0, let k̄ be the first iteration such that
µk̄+1 ≤ ξ. Under these conditions, one has

‖∇f̃(xk̄, µk̄)‖ = O
(√

nξq−1 + ξ(p−1)q
)
.
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Proof : From Lemma 3.2 and ∆jk,k = ∆jk+1,k/γ < (c2/γ)µqk, one has

‖∇f̃(xk̄, µk̄)‖ ≤ C1∆jk̄ + C2∆
p−1
jk̄

≤ C1(c2/γ)µq
k̄

+ C2(c2/γ)p−1µ
(p−1)q

k̄
.

The proof is completed by noting that C1 = O(κ̃) = O(
√
nL∇f̃) = O(

√
n/µ)

and that, from µk̄+1 = σµk̄, one has µk̄ ≤ ξ/σ.

This result suggests that p = 3/2 and q = 2 are the optimal choices in the
sense that ‖∇f̃(xk̄, µk̄)‖ becomes O(

√
nξ). We are thus finally ready to state

a worst-case complexity bound for driving both the norm of the smoothing
gradient and the smoothing parameter below a common threshold.

Corollary 4.1. Under the assumptions of Theorem 4.5 and when q = 2 and
p = 3

2, Algorithm 4.1 takes at most O
(
| log(ξ)|ξ−3

)
iterations (and at most

O
(
n| log(ξ)|ξ−3

)
function evaluations) to reduce the smoothing parameter

below ξ ∈ (0, 1), ending such process with

‖∇f̃(xk̄, µk̄)‖ = O(
√
nξ). (13)

Equivalently, the number of iterations needed to reach ‖∇f̃(xk̄, µk̄)‖ ≤ ε
and µk̄ ≤ ξ = ε/(

√
nC), where C > 0 is the constant that multiplies

√
nξ in

the right hand side of (13), is

O
(
n

3
2 [| log(ε)|+ log(n)]ε−3

)
,

leading to the following overall worst case complexity bound in terms of the
number of function evaluations

O
(
n

5
2 [| log(ε)|+ log(n)]ε−3

)
.

5. Trust-region methods for composite functions
In this section we consider the unconstrained minimization of composite

functions of the type f = h(F ), where h : R` → R is a convex, possibly non-
smooth function at least globally Lipschitz continuous (with constant Lh >
0). The vectorial function F : Rn → R` is assumed smooth (continuously
differentiable) but it is considered that only function values can be computed,
not derivatives. The setting can be easily extended to f = g + h(F ) as long
as g : Rn → R is smooth and one can build convex and fully linear models
of it.
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Given x ∈ Rn and ∆ > 0, if the Jacobian J(x) of F was known, we
could consider the trust-region subproblem min‖s‖≤∆ l(x, s), where l(x, s) is
the following linear approximation of f around x:

l(x, s) = h(F (x) + J(x)s).

The decrease predicted by the step would then be

Ψ(x,∆) = l(x, 0)− min
‖s‖≤∆

l(x, s).

Ψ(x, 1) was used in [4] as a criticality measure for f . In fact, x∗ is a criti-
cal point of f if and only if Ψ(x∗, 1) = 0 (and Ψ(x, 1) is non-negative and
continuous for all x), see [30, Lemma 2.1].

In this paper, since we assume that the Jacobian of F is not available,
we replace l(x, s) by a composite model of the form lm(x, s) = h(m(x + s)),
where m(x+ s) is convex and fully linear in the sense of Definition 2.1. One
possibility to compute such a model is to set m(x+s) = F (x)+Jm(x)s, where
the lines of the matrix Jm(x) are the transposes of the simplex gradients of
the components of F at x (see [12, Chapter 2]). The decrease predicted by
the solution of the trust-region subproblem min‖s‖≤∆ l

m(x, s) is then

Ψm(x,∆) = lm(x, 0)− min
‖s‖≤∆

lm(x, s),

and Ψm(x, 1) is our model of criticality measure. In practice, and when h
has a piecewise linear structure such as the one given by the `1 or `∞ norms,
the model m(x + s) will be considered linear to render easy the solution of
the trust-region subproblem.

In the following we will show that the difference between the true and
the model criticality measures is of the order of trust-region radius. This
result was proved originally in [20, Theorem 1] assuming linearity of the
model m(x+ s) in s, but it can be made simpler as we show below if we only
use the fully linearity of the models. Let t ∈ B(0; ∆), st = argmin‖s‖≤1 l(x+
t, s), and smt = argmin‖s‖≤1 l

m(x+ t, s). Consider first the case Ψm(x+ t, 1) ≤
Ψ(x+ t, 1). Since lm(x+ t, smt ) ≤ lm(x+ t, st), using (3),

Ψ(x+ t, 1)−Ψm(x+ t, 1)

≤ l(x+ t, 0)− l(x+ t, st)− [lm(x+ t, 0)− lm(x+ t, st)]

≤ h(F (x+ t))− h(m(x+ t)) + h(m(x+ t+ st))− h(F (x+ t+ st))

≤ (2Lhκef∆max) ∆.
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In the case Ψ(x+ t, 1) ≤ Ψm(x+ t, 1), it can be proved similarly that Ψm(x+
t, 1)−Ψ(x+ t, 1) ≤ (2Lhκef∆max)∆. Therefore, we have

|Ψ(x+t, 1)−Ψm(x+t, 1)| ≤ κΨ∆, ∀t ∈ B(0; ∆), with κΨ = 2Lhκef∆max.
(14)

5.1. The algorithm. A derivative-free trust region algorithm for composite
functions can be stated in the same vein as it was done in Algorithm 3.1
for smooth functions. The differences lie uniquely in the definition of the
criticality measure, in the trust-region subproblem, in the definition of the
predicted decrease, and in the fact that m models F in f = h(F ) (instead of
modeling f directly as in Algorithm 3.1). There is no need now to consider
the term c1∆

p
k in ρk, as its inclusion in Algorithm 3.1 was primarily done for

deriving the complexity bounds for the smoothing trust-region approach of
Section 4.

Algorithm 5.1. Derivative-free trust-region method (for composite
functions)

Initialization: Same as in Algorithm 3.1 but setting c1 = 0.
Step 1 (criticality step): Same as in Algorithm 3.1 but with gk re-

placed by Ψm
k .

Step 2 (step calculation): Compute the step sk by solving

min
‖s‖≤∆k

lm(xk, s).

Step 3 (acceptance of the trial point): Same as in Algorithm 3.1
with mk(xk)−mk(xk + sk) replaced by Ψm(xk,∆k).

Step 4 (model improvement): Same as in Algorithm 3.1.
Step 5 (trust-region radius update): Same as in Algorithm 3.1.

Similar to Algorithm 5.1, there are six types of iterations and we will use
the same notation as in Section 3. For the rest of the current section, we use
Ψk and Ψm

k instead of Ψ(xk, 1) and Ψm(xk, 1), respectively.

5.2. Global convergence. As we said before we will require h to satisfy
the following assumption.

Assumption 5.1. The function h : R` → R is convex, globally Lipschitz
continuous, with Lipschitz constant Lh > 0, and bounded from below.

The following lemma and its proof are an adaptation of Lemma 2.1 in [4].
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Lemma 5.1. Let Assumption 5.1 hold. Then

Ψm(xk,∆k) ≥ min{∆k, 1}Ψm
k .

Proof : When ∆k > 1, from min‖s‖≤1 l
m(xk, s) ≥ min‖s‖≤∆ l

m(xk, s), we have
Ψm(xk,∆k) ≥ Ψm

k .
When ∆k < 1, consider s∗k = argmin‖s‖≤1 l

m(xk, s). Then,

Ψm(xk,∆k) ≥ lm(xk, 0)−lm(xk,∆ks
∗
k) ≥ ∆k[l

m(xk, 0)−lm(xk, s
∗
k)] = ∆kΨ

m
k ,

where the first inequality holds due to lm(xk, sk) ≤ lm(xk,∆ks
∗
k) and the

second inequality holds due to the convexity of lm.

In our derivation of the worst-case complexity bounds we need to make
sure that there exists at least one iteration for which the corresponding trust-
region radius is reduced. This is guaranteed by the following lemma.

Lemma 5.2. Let Assumptions 3.1 and 5.1 hold. Then

lim
k→+∞

∆k = 0.

Proof : The only differences from the proof of Lemma 3.1 lie in the use of the
predicted decrease. Now, when k ∈ S, we have

f(xk)− f(xk+1) ≥ η1Ψ
m(xk,∆k),

then by using Lemma 5.1,

f(xk)− f(xk+1) ≥ η1 min{∆k, 1}Ψm
k ,

and due to Ψm
k ≥ ∆k/λ (since the iteration is not in C),

f(xk)− f(xk+1) ≥ η1 min{∆k, 1}λ−1∆k.

In the following lemma, which can be seen as a combination of Lemma 3.2
and Lemma 2.2 in [4], we bound the criticality measure by a constant multiple
of the trust-region radius.

Lemma 5.3. Let Assumptions 2.1 and 5.1 hold. If k is an iteration for
which ∆k is reduced, then

∆k ≥ min

{
1

κΨλ+ 1
min{

√
C4Ψk, C4Ψk},

1

κΨ + 1/β
Ψk

}
,
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where

C4 =
1− η1

2Lhκef
, (15)

and κΨ comes from (14).

Proof : By assumption we have that k ∈ R = Cr ∪ A ∪ U . Let us suppose
that k ∈ A ∪ U . To later arrive at a contradiction, suppose that

∆k < min{
√
C4Ψm

k , C4Ψ
m
k }. (16)

Using (3) and Lemma 5.1, we have

|ρk − 1| =
|h(F (xk))− h(m(xk)) + [h(F (xk + sk))− h(m(xk + sk))]|

Ψm(xk,∆k)

≤ (2Lhκef)∆
2
k

min{∆k, 1}Ψm
k

.

If ∆k ≤ 1, then, from ∆k ≤ C4Ψ
m
k ,

|ρk − 1| ≤ (2Lhκef)∆k

Ψm
k

≤ (2Lhκef)C4Ψ
m
k

Ψm
k

= 1− η1.

If ∆k > 1, then, from ∆k ≤
√
C4Ψm

k

|ρk − 1| ≤ (2Lhκef)∆
2
k

Ψm
k

≤ (2Lhκef)C4Ψ
m
k

Ψm
k

= 1− η1.

We then obtain ρk ≥ η1 implying k ∈ S, which contradicts k ∈ A∪U . Thus,
(16) is not true. Now, from (14) and the fact that k is not in C,

Ψk ≤ |Ψk −Ψm
k |+ Ψm

k ≤ κΨ∆k + Ψm
k ≤ (κΨλ+ 1) Ψm

k ,

and thus, Ψm
k ≥ Ψk/(κΨλ+ 1). Hence, since ∆k ≥ min{

√
C4Ψm

k , C4Ψ
m
k }, we

have

∆k ≥
min{

√
C4Ψk, C4Ψk}
κΨλ+ 1

.

If k ∈ Cr, then similarly to the last part of the proof of Lemma 3.2 (with
‖∇f(xk)‖, ‖gk‖, and κeg replaced by Ψk, Ψm

k , and κΨ, respectively), it can
be shown that ∆k ≥ Ψk/(κΨ + 1/β).

As in Theorem 3.1, a global convergence result can then be easily proved
at this point of the analysis.



28 R. GARMANJANI, D. JÚDICE AND L. N. VICENTE

Theorem 5.1. Let Assumptions 2.1 and 5.1 hold. Then

lim inf
k→+∞

Ψk = 0.

Proof : By Lemma 5.2, there is an infinite subsequence of iterations where the
trust-region radius is reduced, to which then we can apply Lemma 5.3.

5.3. Worst case complexity. We proceed by stating the analog of
Lemma 3.3.

Lemma 5.4. Let Assumptions 2.1 and 5.1 hold. Let ε ∈ (0, 1). Let k0 be
the first iteration where ∆k is reduced. For every iteration k ≥ k0 of the
algorithm, if Ψk > ε then

∆k ≥ γC5ε.

where

C5 = min

{
min{

√
C4, C4}

κΨλ+ 1
,

1

κΨ + 1/β

}
(17)

and C4 is given in (15).

Proof : When k ∈ R, it follows directly from Lemma 5.3, Ψk > ε, and ε < 1,
that ∆k ≥ C5ε. When k /∈ R, the argument is the same as in the last
paragraph of the proof of Lemma 3.3.

Again, to count the total number of iterations first we start by counting
the number of successful iterations.

Theorem 5.2. Let Assumptions 2.1 and 5.1 hold. Let k0 be the index of the
first iteration where ∆k is reduced (which must exist from Lemma 5.2). Given
any ε ∈ (0, 1), assume that Ψk0

> ε and let k̄ be the first iteration after k0

such that Ψk̄ ≤ ε. Then, to achieve Ψk̄ ≤ ε, starting from k0, Algorithm 5.1
takes at most |S(k0, k̄)| successful iterations, where

|S(k0, k̄)| ≤ λ(f(xk0
)− flow)

η1 min{γC5, 1}γC5
ε−2,

where C5 given in (17).
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Proof : Let k ≥ k0 be the index of a successful iteration. Using Lemma 5.1,
Ψm
k ≥ ∆k/λ, Lemma 5.4, and ε ∈ (0, 1), we obtain

f(xk)− f(xk+1) ≥ η1Ψ
m(xk,∆k)

≥ η1 min{∆k, 1}Ψm
k

≥ η1 min{∆k, 1}
∆k

λ

≥ η1

λ
min{γC5ε, 1}γC5ε

≥ η1

λ
min{γC5, 1}γC5ε

2.

We then obtain by summing up all the successful iterations starting at k0

that
f(xk0

)− f(xk̄) ≥ |S(k0, k̄)|η1

λ
min{γC5, 1}γC5ε

2,

and the proof is completed.

Now, we count the number of iterations after k0 that are not successful.

Theorem 5.3. Let Assumptions 2.1 and 5.1 hold. Let k0 be the index of the
first iteration where ∆k is reduced (which must exist from Lemma 5.2). Given
any ε ∈ (0, 1), assume that Ψk0

> ε and let k̄ be the first iteration after k0

such that Ψk̄ ≤ ε. Then, to achieve Ψk̄ ≤ ε, starting from k0, Algorithm 5.1
takes at most |N (k0, k̄)| other (not successful) iterations, where

|N (k0, k̄)| ≤ (3 + 4L3)|S(k0, k̄)|+ 4
(
L4 − logγ(e)ε

−1
)
,

where C5 is given in (17),

L3 = − logγ(γinc), and L4 = logγ

(
γC5e

∆k0

)
.

Proof : The proof, except using Lemma 5.4 instead of Lemma 3.3, follows
along the lines of that of Theorem 3.3.

The number of iterations necessary to achieve the first iteration k0 (where
the trust-region radius is reduced) is O(1), and thus k0 is of the order of
O
(
ε−2
)
, and the explanation is similar to the one for the smooth case dis-

cussed after Theorem 3.3. Again, as we saw in previous sections, some of
the constants appearing in the bound on the number of iterations depend
on the dimension of the problem space and on Lipschitz constants of first-
order derivatives. In the case of this section we frame this dependance in the
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following assumption, which can be easily met if the model of F is formed
by F (xk) + Jm(xk)s where the transposed rows of Jm(xk) are computed as
simplex gradients for the entries of F centered at xk.

Assumption 5.2. The constants κef and κeg in the definition of fully linear
models satisfy κef = O(

√
nLJ) and κeg = O(

√
nLJ), where n is the problem

dimension and LJF is the largest of the Lipschitz constants of fi, i = 1, . . . , `.

Theorem 5.4. Let Assumptions 2.1, 5.1, and 5.2 hold. To drive Ψ below
ε ∈ (0, 1), Algorithm 5.1 takes at most O

(
nε−2

)
iterations.

Proof : The proof is similar to that of Theorem 3.4.

The dependence of the bound on LJF was omitted but is L2
JF

as in Theo-
rem 3.4 when p = 2.

Corollary 5.1. Let Assumptions 2.1, 5.1, and 5.2 hold. To drive Ψ below
ε ∈ (0, 1), Algorithm 5.1 takes at most O

(
`n2ε−2

)
function evaluations.

It can then be seen that, in terms of ε, the bounds on both the number
of iterations and function evaluations derived in this paper are better by a
factor of | log ε| than the bound O(| log ε|ε−2) derived in [20].

6. A numerical illustration
We have compared the numerical behavior of Algorithm 4.1 (smoothing

trust-region approach) and a variant of Algorithm 5.1 (composite trust-region
approach) on a test set suggested in [23] consisting of 53 problems of the form
minx∈Rn f(x) = ‖F (x)‖1. In this test set, F varies among 22 nonlinear vector
functions of the CUTEr collection [19] with 2 ≤ n ≤ 12 and different initial
points.

In the smoothing approach (Sdfo-tr) we used the trust-region implemen-
tation described in [1] for each smooth outer iteration. Algorithm 4.1 was
run using µ0 = 104, r(µ) = min(10−5, µ2), and the update µk+1 = µk/100.
The algorithm was stopped when µk reaches 10−4, which, given the initial
value for µ0, resulted in doing five outer iterations (k = 0, 1, 2, 3, 4). The final
iterate and trust-region radius of the previous outer iteration were provided
as the starting one for the next.

The same code from [1] was then adapted as the composite approach
(Cdfo-tr), by changing the criticality measure and the trust-region subprob-
lem. We used as models of F the linear ones mk(xk + s) = F (xk) + Jm(xk)s,
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where the transposed rows of Jm(xk) were regression simplex gradients com-
puted using the 2n points xk ± ei min(10−2,∆k) (with ei the ith coordinate
vector). Since these models are always fully linear, no critical or model-
improvement iterations were considered. The trust-region ball was defined
using the `∞-norm so that the resulting trust-region subproblem was an LP
(which was solved using the routine linprog.m from the Matlab Optimiza-
tion Toolbox).

For both methods, we set the common initial parameters as ∆0,0 = 1
(Sdfo-tr), ∆0 = 1 (Cdfo-tr), η0 = 10−3, η1 = 0.25, γ = 0.5, γinc = 1 except
when ρk ≥ 0.75 where γinc = 2 and ∆max = 103. For Sdfo-tr, we set p = 1.5,
c1 = 1 and for Cdfo-tr we set c1 = 0.

A data profile [23] is given in Figure 1, indicating the percentage of prob-
lems solved by the two methods under consideration as function of a budget
of objective function evaluations (scaled by n+ 1). A problem is considered
solved when

f(x0)− f(x) ≥ (1− θ)[f(x0)− fL],

where θ ∈ (0, 1) is a level of accuracy, x0 is the initial iterate, and fL is the
best objective value found by the two methods for a budget of 1500 function
evaluations. The value of θ was set to 10−7.
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Figure 1. Data profiles computed for a set of piecewise smooth
problems, comparing the smoothing and composite trust-region
methods.
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A performance profile [15] is then given in Figure 2, depicting how well a
method performed relatively to the other in reaching the same (scale invari-
ant) convergence test [16], in our case chosen as

f(x)− f∗ ≤ θ(|f∗|+ 1|),

where θ is the accuracy level and f∗ is an approximation for the optimal
value of the problem being tested. Each method curve describes (at τ = 1)
the fraction of problems for which the method performs the best (efficiency)
and (for τ sufficiently large) the fraction of problems solved by the method
(robustness). The value of θ was set to 10−4 and the budget of function
evaluations to 1500. The value of f∗ was selected as the best value attained
by these two methods and by those also tested in [13], to ensure that we
indeed measure the real ability to solve the problems.
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Figure 2. Performance profiles computed for a set of piecewise
smooth problems, in a logarithmic scale, comparing the smooth-
ing and composite trust-region methods.

Despite the fact of exhibiting a worse WCC bound, the smoothing ap-
proach worked much better than the composite one, which does not come
as a surprise given the absence of curvature exploration in the latter one.
We then compared our smoothing trust-region approach with the smooth-
ing direct search introduced in [18], on the same set of problems. Data and
performance profiles are given in Figures 3 and 4, respectively, using the
same levels of accuracy and budget of evaluations. It can be seen that the
smoothing trust-region approach worked better, both in terms of efficiency
and robustness.
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Figure 3. Data profiles computed for a set of piecewise smooth
problems, comparing the smoothing trust-region and direct-
search methods.
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Figure 4. Performance profiles computed for a set of piecewise
smooth problems, in a logarithmic scale, comparing the smooth-
ing trust-region and direct-search methods.

7. Conclusions
This paper presented a unified coverage of the worst case complexity of

derivative-free trust-region methods for unconstrained optimization, from the
case where the function is smooth to the case where it is non-smooth. In the
non-smooth setting, we considered the general case of Lipschitz continuity
and the case of a composite type structure. The WCC bounds established
in the various cases were the expected ones, matching existent bounds for
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derivative-free or derivative-based optimization. The novelty of the paper
lied in the way under which the trust-region algorithms were analyzed, indi-
vidually and all together.

The analysis of WCC of this paper can be refined along several ways. One
possibility would be to establish a power of −1 in ε when f is convex and
smooth. Another possibility would be to measure the effort in approach-
ing second-order stationary points. Some extensions to constraints may be
doable using the methodology of this paper.
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