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Abstract: The concept of a 3D circular right cylinder is generalized to a real pre-
Hilbert space. The surface S of such a cylinder has two pieces: the wall and the
septum (or cap), whose intersection is the cylinder’s edge. We study the intrinsic
metric of S and discuss the existence, the nature and [non]uniqueness of shortest
paths between two points in the cylinder’s wall. The main problem addressed here
is to determine the pairs of points in the wall for which there exist shortest paths
going across the septum and shortest paths that do not cross the septum. We solve
this problem in case one of the points lies in the edge, and show that this multiple
shortest path problem is in essence a 3D riddle. Our methods involve the geometry
of the traditional cycloid curve, its evolute and its negative pedal with respect to
the cycloid cusp.
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1. Introduction

Figure 1

A cylinder in a real inner product space is a nat-
ural generalization of a three dimensional cylinder
surface. Let us briefly discuss in the 3D case the
problems to be addressed in this paper. Figure 1
represents a (right circular) ‘cylinder surface’ S .
This surface has two pieces: the ‘wall’, made up
of the points at distance 1 from the axis, and the
cylinder’s ‘septum’, a circular unit disk orthogo-
nal to the axis. The ‘edge’ of S is the relative
boundary of the septum. We shall be concerned with the intrinsic metric of
S in the sense of A. Aleksandrov (check [1, 2, 3]). Pick two points a, b in
the cylinder’s wall; the intrinsic distance between a and b, hereby denoted
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dS (a, b), turns out to be the length of a shortest path in S from a to b.
There are two kinds of candidates to shortest paths in S : a helicoidal short-
est path across the wall, denoted Ňab , and the ‘composite-paths’, those that
touch the septum, like the concatenation Ňar[r, s]Ňsb in figure 1, where [r, s] is
a straight line segment in the septum. Note that a helicoidal path (like Ňac )
may meet the edge. If a and b are far enough from the cylinder’s septum,
then Ňab is the unique shortest path; as a and b approach the septum, paths
of the kind Ňar[r, s]Ňsb will eventually become shorter than Ňab . So, in certain
critical positions of a, b, multiple shortest paths occur. The complete charac-
terization of the pairs (a, b) for which we have multiple shortest paths seems
to be a difficult problem that has not been solved yet, even in the 3D case.

In section 2 we treat the concept of a cylinder surface in a real pre-Hilbert
space. The cylinder’s axis is a subspace; we need completeness of the axis,
or of its orthogonal space, to ensure the existence of orthogonal projections.
Then we describe its intrinsic metric, and discuss the existence, the nature
and [non]uniqueness of shortest paths between two points in the cylinder’s
wall, with special attention to composite-paths. Some results are within ex-
pectations, so this section is often sketchy. Section 3 is devoted to the crucial
3D case; our methods are classical in nature, going through the geometry of
the traditional cycloid curve, its evolute and its negative pedal (with respect
to the cycloid cusp), a curve which seems to have no name yet. For a fixed
a in the cylinder’s edge, we completely determine the locus of those points b
in the wall from which we have multiple shortest paths to a. The case of a
not in the edge is left open. In the last section we lift the three dimensional
results to the real pre-Hilbert space case. The methods show that, in fact,
the multiple shortest path problem is in essence a 3D riddle.

2. Cylinders in real pre-Hilbert spaces
Suppose V is a real vector space with inner product 〈·, ·〉, and unit ball
B = {x : ‖x‖ 6 1}. We assume V is a pre-Hilbert space, i.e., the inner
product is positive and non-degenerate. Fix a Hilbert subspace H ⊂ V ,
such that dimH⊥ > 1. The cylinder with axis H is the set (B ∩ H⊥) +H.
The septum (or cap), the edge and the wall of the cylinder are the sets
Cap = B ∩ H⊥, Edge = {x : ‖x‖ = 1, x ⊥ H} and w = H + Edge,
respectively. The cylinder’s surface is the set S =w ∪Cap.
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The orthogonal projections of V onto H and H⊥ are denoted by h and e,
respectively; these are continuous linear mappings such that any a ∈ V is
uniquely decomposed as a = h(a) + e(a); it is well-known that h(a) [e(a)] is
the point of H [resp., H⊥] at a shortest distance from a (for the basics on
these matters, see, e.g., [4, ch.VI]). Note that if a ∈w, then e(a) ∈ Edge.
For a, b ∈w, let ω(a, b) be the angle between e(a) and e(b):

ω(a, b) = arccos 〈e(a), e(b)〉 = 2 arcsin ‖e(a−b)‖2 .

Given a set U ⊆ V , a continuous injection γ : [t0, T ] → U , where [t0, T ] is
a real interval, is called simple parametrized path in U from γ(t0) to γ(T ).
A parametrized path (shortened as par-path) is a concatenation of a finite
number of (concatenable) simple par-paths. The concatenation of par-paths
γ and ξ is denoted γξ. The image of a par-path is called path. If there is
no danger of confusion, we use the same notation for a par-path and the
corresponding path.

Paths in the Cylinder’s Wall. Given a, b ∈w define

η(a, b) =
√
ω(a, b)2 + ‖h(a− b)‖2

We let P be the set of all partitions of [t0, T ], where a partition is a finite
tuple P = (t0, t1, . . . , tn), with t0 < t1 · · · < tn = T . Given a par-path
γ : [t0, T ] → w, from a to b, define L(P, γ) =

∑n
i=1 ‖γ(ti) − γ(ti−1)‖, and

Lη(P, γ) =
∑n

i=1 η(γ(ti), γ(ti−1)); the length of γ is `(γ) = supP∈P L(P, γ),
and we let `η(γ) = supP∈P Lη(P, γ).

In case 0 < ω(a, b) < π, a natural candidate to shortest par-path is the
par-path Ňab : [0, ω(a, b)]→w given by

Ňab (t) = sin(ω(a,b)−t)
sinω(a,b) e(a) + sin t

sinω(a,b) e(b) + h
(
a+ t

ω(a,b)(b− a)
)
. (1)

Note that if v lies in the path Ňab , then v = Ňab (ω(a, v)). If ω(a, b) = 0, [a, b]
is a shortest path in S ; in such case we also denote [a, b] by Ňab .

Theorem 2.1. There exist shortest paths in w between any two points of
w. Moreover, η is the intrinsic metric on w, i.e., η = dw.

Proof. Firstly we show that for any par-path γ inw, `η(γ) = `(γ). Clearly
`η(γ) > `(γ). We may assume 0 < `(γ) < +∞. For P ∈ P as above, let
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γi = γ(ti). As
√
x2 +H2 − x is decreasing as a function of x, we get

Lη(P, γ)− L(P, γ) 6
∑n

i=1

(
ω(γi, γi−1)− ‖e(γi − γi−1)‖

)
. (2)

Now let ϕ(x) = 2 arcsin x
2 − x. Clearly ϕ(x) = x3g(x), with g analytic

in ] − 2, 2[; let M = max{g(x) : 0 6 x 6 1}. Pick ε ∈]0, 1[, such that
εM`(γ) < 1. There exists P ∈P such that ‖γi − γi−1‖ < ε for all i. From
(2) we get

Lη(P, γ)− L(P, γ) 6
∑n

i=1 ϕ(‖e(γi − γi−1)‖) 6M
∑n

i=1 ‖γi − γi−1‖3 < ε.

Therefore `η(γ) = `(γ), as desired. The existence of shortest paths from a
to b inw is split into three cases. The case ω(a, b) = 0 is clear. In case 0 <
ω(a, b) < π, the par-path (1) satisfies, for any P ∈ P, ω(Ňab (ti),Ňab (ti−1)) =
ti−ti−1 and h(Ňab (ti)−Ňab (ti−1)) = ti−ti−1

ω(a,b) h(b−a). So `(Ňab ) = η(a, b). For any

γ, Lη(P, γ) =
∑n

i=1 `( Ŕγi−1 γi) > `(Ňab ). Therefore Ňab is a shortest par-path.
Finally, the case ω(a, b) = π. For any par-path γ from a to b, chose c ∈ Im γ

such that 0 < ω(a, c) < π. Then γ is the concatenation of par-paths γac, from
a to c, and γcb, from c to b. We have `(γ) = `(γac) + `(γcb) > η(a, b). Now
pick p ∈ Edge∩ e(a)⊥, and let m = p+ 1

2(a+ b); the concatenation ŊamŊmb
has length η(a, b), and is therefore a shortest path. �

Lemma 2.2. Suppose a, b, v ∈ w, ω(a, b) < π, ω(a, v) < π, ω(v, b) < π.
Then η(a, b) = η(a, v) + η(v, b) implies that v is on the path Ňab .

Proof. As the case ω(a, b) = 0 is easy to handle, assume ω(a, b) > 0. There
exist p, q ∈ H⊥ such that ‖p‖ = ω(a, v), ‖q‖ = ω(v, b) and ‖p+ q‖ = ω(a, b).
Our assumption reads ‖p+q+h(a−b)‖ = ‖p+h(a−v)‖+‖q+h(v−b)‖; this
is equivalent to the existence of real nonnegative λ, µ, not both zero, such
that λ(p+h(a−v)) = µ(q+h(v−b)), i.e.: λp = µq and λh(a−v) = µh(v−b).
Therefore, ω(a, b) = ω(a, v)+ω(v, b) and ω(a, v)h(v−b) = ω(v, b)h(a−v). By
3D trigonometry applied to the spherical triangle with vertices e(a), e(b), e(v),
we get e(v) ∈ Ŕe(a)e(b). Let t∗ = ω(a, v); we have e(v) = Ŕe(a)e(b)(t∗), and

h(v) = h
(
a+ t∗

ω(a,b)(b− a)
)

. Therefore v = Ňab (t∗). �

Theorem 2.3.
(i) If 0 6 ω(a, b) < π, Ňab is the only shortest path in w from a to b.
(ii) If ω(a, b) = π, for any m ∈ 1

2(a+ b) + Edge∩ e(a)⊥, the concatenation

Ŋam Ŋmb is a shortest path in w from a to b, and all shortest paths in w
from a to b are of this kind.
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Proof. (i) is a trivial application of lemma 2.2. Concerning (ii), clearly
Ŋam Ŋmb is a shortest path. Let γ : [t0, T ] → w be any shortest par-path
from a to b; there exists t∗ ∈]t0, T [ such that ω(a, γ(t∗)) = π

2 ; let m = γ(t∗).

From (i), γ([t0, t
∗]) = Im Ŋam and γ([t∗, T ]) = Im Ŋmb ; thus γ and Ŋam Ŋmb

determine the same path. It remains to prove that h(m) = 1
2(a+ b). In fact,

the identity η(a, b) = η(a,m) + η(m, b) holds; expanding it and arguing as
in the proof of lemma 2.2 we get h(a−m) = 1

2h(a− b). �

Composite-Paths. Given a, b ∈ w, a composite-path from a to b is a
path in w ∪ Cap having at least one point in the cap. Concatenations of
the kind Ňar[r, s]Ňsb , with r, s ∈ Edge, are composite-paths, and a shortest
composite-path must be a path like this. Note that

dS (a, b) = inf{`(Ňab ), inf
r,s∈Edge

`(Ňar[r, s]Ňsb )}.

Theorem 2.4. Suppose that ω(a, b) > 0, and S := ‖h(a)‖ + ‖h(b)‖ > 0.
There exists a shortest composite-path from a to b and, if Ňar[r, s]Ňsb is a
shortest composite-path, then Span(r, s, e(a), e(b)) has dimension 6 2. More-
over:

(i) Case ω(a, b) < π. There exist one or two shortest composite-paths
from a to b. If there are two, one of them is of type Φ1 = Ňar[r, s]Ňsb ,
with r 6= s, and the other is of type Φ2 = ŇauŇub , where u ∈ Edge

is uniquely determined by he conditions ω(a, u) = ‖h(a)‖
S ω(a, b) and

ω(b, u) = ‖h(b)‖
S ω(a, b); if there is only one, then it is of one of the

types Φ1 or Φ2 just described.

(ii) Case ω(a, b) = π. Let Hπ = π2

4 − 1, and θ = ‖h(a)‖
S π. We have:

α) If S < Hπ there is a unique shortest composite-path from a to b,
namely the polygonal line [a, e(a),−e(a), b].

β) If S > Hπ the shortest composite-paths are those of the form
ŇarŇrb , where r runs over the set cos θ e(a) + sin θ

(
Edge∩ e(a)⊥

)
.

γ) If S = Hπ the shortest composite-paths are those in α)-β).

Proof. Our task is to minimize F (r, s) = `(Ňar[r, s]Ňsb ), with r, s ∈ Edge.
We have

F (r, s) = α(‖e(a)− r‖) + β(‖e(b)− s‖) + ‖s− r‖,

with α(x) =
√(

2 arcsin x
2

)2
+ ‖h(a)‖2 and β(x) =

√(
2 arcsin x

2

)2
+ ‖h(b)‖2.
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The introductory part of the theorem is proven separately in cases (i)-(ii).
Case (i). Let Σ be any finite dimensional subspace of H⊥ which contains

Span(e(a), e(b)). Let us firstly treat the case when one of h(a), h(b) is 0;
assume, e.g., that h(a) = 0, (i.e., a = e(a)). By compactness, there exists
(r, s) minimizing F (r, s) for r, s ∈ Σ ∩ Edge. Then we must have r = e(a),
and so s minimizes β(‖s− e(b)‖)+‖s− e(a)‖, for s ∈ Σ, under the constraint
‖s‖ = 1. We obtain a contradiction from s 6∈ Span(e(a), e(b)). Introduce
the functional Φ(s, λ) = F (e(a), s)−λ‖s‖, where λ is a Lagrange multiplier;
then s satisfies the first order conditions on Φ, namely

β′(‖s−e(b)‖)
‖s−e(b)‖ (s− e(b)) + 1

‖s−e(a)‖ (s− e(a))− λs = 0. (3)

Our assumption s 6∈ Span(e(a), e(b)) implies 0 < ‖s− e(a)‖ < 2 and 0 < ‖s−
e(b)‖ < 2; thus all terms of (3) are well defined, and (3) is a linear combination
of s, e(a), e(b), with nonzero coefficients in e(a) and e(b). This contradicts the
linear independence of {s, e(a), e(b)}; therefore s ∈ Span(e(a), e(b)).

Now suppose h(a), h(b) are both nonzero. There exists r which mini-
mizes F (r, r) for r ∈ Σ ∩ Edge. We obtain a contradiction from r 6∈
Span(e(a), e(b)); arguing as above, and omitting details, r satisfies the first
order conditions on the functional Ψ(r, λ) = F (r, r)− λ‖r‖, namely

α′(‖r−e(a)‖)
‖r−e(a)‖ (r − e(a)) + β′(‖r−e(b)‖)

‖r−e(b)‖ (r − e(b))− λr = 0.

As this goes against the linear independence of {r, e(a), e(b)}, we must have
r ∈ Span(e(a), e(b)). A similar argument shows that all minimizers of F (r,−r),
for r ∈ Σ ∩Edge, lie in Span(e(a), e(b)).

Now assume (r∗, s∗) minimizes F (r, s), for r, s ∈ Σ ∩ Edge. If r∗ = ±s∗
the previous argument shows that r∗, s∗ ∈ Span(e(a), e(b)); if r∗ 6= ±s∗,
the argument produced about (3) shows that r∗ ∈ Span(e(a), s∗) and s∗ ∈
Span(r∗, e(b)); therefore r∗, s∗ ∈ Span(e(a), e(b)).

This establishes, in case (i), the existence of a global minimum of F (r, s) in
Edge2, and that all minimizing r, s lie in the unit circle Edge∩Span(e(a), e(b)).
An elementary 2D argument shows that a minimizing (r, s) must satisfy r, s ∈
Ŕe(a)e(b) and r ∈ Ŕe(a) s ; in other words, ω(a, b) = ω(a, r) + ω(r, s) + ω(s, b).

Using the notation x = ω(a, r), y = ω(s, b), z = ω(r, s), our problem is
minimizing

f(x, y, z) =
√
x2 + ‖h(a)‖2 +

√
y2 + ‖h(b)‖2 + 2 sin

z

2
, (4)
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subject to x+y+z = ω(a, b). Without loss of generality we assume h(a) 6= 0.
A minimizing (x, y, z) satisfies y‖h(a)‖ = x‖h(b)‖; thus (4) transforms into

f1(x) = S
‖h(a)‖

√
x2 + ‖h(a)‖2 + 2 sin 1

2

(
ω(a, b)− S

‖h(a)‖ x
)
. (5)

For x = 0 or x = ω(a, b)‖h(a)‖
S , the derivative of f1 is negative; for x in the

open interval ]0, ω(a, b)‖h(a)‖
S [ the equation f ′1(x) = 0 is equivalent to

x = ‖h(a)‖ cot 1
2

(
ω(a, b)− S

‖h(a)‖x
)

; (6)

due to the strict convexity of cot θ in ]0, π2 ], f ′1(x) = 0 has at most two solu-

tions in [0, ω(a, b)‖h(a)‖
S ]. So the minimum of f1(x) is either f1

(
ω(a, b)‖h(a)‖

S

)
,

or f(x0) for a uniquely determined x0 ∈]0, ω(a, b)‖h(a)‖
S [; the former case cor-

responds to the triple (x, y, z) =
(
ω(a, b)‖h(a)‖

S , ω(a, b)‖h(b)‖
S , 0

)
, and the latter

to a triple (x0, y0, z0) with z0 > 0. So (i) follows at once.

Case (ii). Note that e(b) = −e(a). The proof of (i) may be easily adapted
to prove that if (r′, s′) minimizes F (r, s) for r, s ∈ Σ∩Edge, then {r′, s′, e(a)}
is linearly dependent. Now take any 2-space Σ ⊆ H⊥ containing e(a); among
the composite-paths Ňar[r, s]Ňsb whose e-projected images fall inside Σ, short-
est composite-paths exist; obviously the lengths of these paths do not depend
on Σ; therefore shortest composite-paths exist.

Pick p ∈ Edge ∩ e(a)⊥, let Σp = Span(p, e(a)) and seek for shortest
composite-paths Ňar[r, s]Ňsb with r, s ∈ Σp ∩Edge. Obviously, at a minimum
of F (r, s), 〈r, p〉 and 〈s, p〉 cannot have opposite signs; we choose the case
where these numbers are both nonnegative (the non-positive case is handled
with p replaced by−p). Moreover, we must have ω(a, r)+ω(r, s)+ω(s, b) = π.
So we may argue as in (i) till the point of minimizing f1(x), as in (5), in the
interval [0, θ]. In the current case, the minimum of f1(x) is the minimum of
f1(0) = S + 2 and f1(θ) =

√
π2 + S2. Note that x = 0 corresponds to the

polygonal line [a, e(a),−e(a), b], and x = θ corresponds to the composite-path
ŇarŇrb , with r = cos θ e(a) + sin θ p. The rest is obvious. �

We present a nice, expected geometrical characteristic of a shortest composite-
path Ňar[r, s]Ňsb , in case Ňar ∈]0, π[, r 6= s and e(a), e(b) are not zero. After
introducing a Lagrange multiplier, the first order conditions of (4), subject
to x+ y + z = ω(a, b), are
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x√
x2 + ‖h(a)‖2

=
y√

y2 + ‖h(b)‖2
= cos

z

2
. (7)

As x = ω(a, r), it is easy to see that u = cotx r − cscx e(a) is a unit
tangent vector to the unit circle U = Span(e(a), r) ∩ Edge, at r, oriented
in the direction from a to r; from (1) one easily gets that d

dtŇar (t) is, for

t = x = ω(a, r): w = u − 1
x h(a). Hence the left hand side of (7) equals

cosα, with α the angle between u and w, i.e., the angle the path Ňar makes
with the circle U at r. If β denotes the angle Ňsb makes with U at s, then (7)
reads: α = β = z

2 .

A

A*

R S

B

B*

x y

Α Β

z

Figure 2

In figure 2 we give a pla-
nar drawing of a composite-
path; points a, b, r, s, e(a), e(b)
have planar images labeled,
respectively, A,B,R, S,A∗, B∗;
moreover, Edge∩Span(e(a), e(b))
is represented by a unit circle
where R, S lie at an angular dis-
tance z; then A∗ is plotted so
that [A∗R] has length x and is
tangent to the circle at R; then A is such that ]AA∗R is a right angle
and AA∗ = ‖h(a)‖; points B∗, B are planted in a similar manner. Clearly
`(Ňar ) = AR, `(Ňsb ) = SB, and `(Ňrs ) = RS; moreover, α = ]ARA∗ and
β = ]BSB∗. So the polygonal line [ARSB] is a nice image of the composite
path `(Ňar[r, s]Ňsb ). Note that the cylinder’s wall is not unfolded as usual, but
rather in a deformed manner to show in the same “cubist view” the contacts
septum-wall in both R and S. The punch line to this is that the first order
conditions, α = β = z

2 , mean that A,R, S,B are colinear.

3. A critical 3D problem
In case (i) of theorem 2.4 some more information can be extracted from the

proof. For S > 2, equation (6) has no roots (in the interval ]0, ω(a, b)‖h(a)‖
S [);

for S 6 2, a unique, double root exists iff ω(a, b) = 2 arcsin
√

S
2 +
√
S(2− S);

in all these cases, a unique shortest composite-path exists and it is of type
Φ2. So shortest composite-paths of type Φ1 may only exist in case S < 2
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and ω(a, b) > 2 arcsin
√

S
2 +

√
S(2− S); in this case there exist two distinct

solutions of f ′1(x) = 0, say x0 < x1; then f1 has a local minimum at x0, and a
maximum at x1. The critical situation where two shortest composite-paths
exist is characterized by the following three conditions:

f ′1(x) = 0, f ′′1 (x) > 0, f1(x) = f1

(
ω(a, b)

‖h(a)‖
S

)
,

a system numerically tractable, but from which interesting theoretical infor-
mation seems to be difficult to extract. However, in case one of a, b lies in
Edge, a geometrical approach may be used to handle the critical situation.

The problem will be treated in the 3D case, on a conspicuous cylinder
surface as in figure 1. As we are going to fix a in te cylinder’s edge, we may
eliminate the upper part of the wall, so that the circular septum is now more
like a cap.

Points of the cylinder will be identified by cylindrical coordinates. Denote
by c the center of the cap, so that c = (0, 0, 0); the z-axis is the cylinder’s
axis with top-to-down orientation. To measure angles we fix a point o in the
edge. Any point v in the cylinder’s wall has an orthogonal projection v∗ on
the cap’s plane; clearly v∗ = e(v). The distance of v to the cap is denoted
by hv (so hv = ‖h(v)‖), and the polar angle of v, denoted by ωv, is the angle
the half-line ċv∗ makes with ċo, counted positively counter-clockwise, when
the upper cap is viewed from top-to-down. Note that 0 6 ωv < 2π, and
ωv = ω(o, v) if ωv 6 π.

3.1. The cycloid approach. From now on, a is in the edge, and we choose
o = a. So ha = ωa = 0. We consider points b such that hb > 0 and ωb ∈]0, π].
Clearly shortest paths from a to b have the form [a, s]Ňsb , with s ∈ Ŋab∗.
For each choice of s, we unfold the cylinder in a traditional way as figure 3
shows; the 2D-image of a 3D point is labeled by the same capitalized letter;
point O, the planar image of o = a, is the origin of our 2D reference system.
The cylinder’s edge is mapped into a horizontal Ox-axis where angles ‘ω’ are
marked, oriented from left to right; the Oy-axis has down-to-top orientation;
the planar image of b is B = (ωb,−hb) also denoted by B = (ωB,−hB). The
edge point s has planar image St = (t, 0), where t is the polar angle of s.
The cylinder’s cap is represented by a unit circle touching the Ox axis at St.

The unfolding depends on the choice of s, i.e., on its polar angle t, and
therefore the unfolded image of any point of the cylinder’s cap depends on t;
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accordingly, the images of c and a are denoted with a subindex t. As t varies,

Π

1

2

O A2Π

B W

At

St

Ct

Figure 3. The bat-shaped curve is the critical curve.

the circle of figure 3 rolls on the Ox axis without slipping, and At describes
the cycloid arc A with parametric representation

A : At =
(
t− sin t, 1− cos t

)
, with 0 6 t 6 2π. (8)

This arc has three prominent points: the left cusp A = O, the right cusp
A2π = (2π, 0), and the top point (π, 2).

Definition 3.1. For each t ∈ [0, 2π], define pt as the composite-path from
a = o to b whose planar image is the polygonal line [AtStB]. For a point u
in the cylinder’s wall and its planar image U , denote by Zu or ZU the circle
with center U and radius dist(U,A).

Note that p0 and p2π are helicoidal paths on the wall, whose planar images
are the segments [BO] and [BA2π] (dashed in figure 3).

Theorem 3.2. The distance from b to a in the intrinsic metric of S is the
Euclidean distance from B to the cycloid A. The shortest paths from a to b
are the pµ such that Aµ is a point of contact of ZB with A.

Proof. For any t ∈ [0, 2π], we have `(pt) = `[AtStB]. Therefore `(pt) >
‖B − At‖, and so dS (B,A) > dist(B,A).

Now let Aµ ∈ A∩ZB. Then Aµ−B is normal to A at Aµ; by a well-known
property of the cycloid (due to R. Descartes, cf. [6, p. 135]), Aµ − Sµ is also
normal to A at Aµ, and so Sµ lies in [BAµ]. (All this trivially holds if Aµ is
a cusp, because then Sµ = Aµ, and any vector is orthogonal to A at a cusp.)
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This proves dS (b, a) = dist(B,A), and also that pµ is a shortest path. The
proof that pt is a shortest path implies At ∈ A ∩ ZB is now obvious. �

Part of the following theorem can be obtained from theorem 2.4. However,
we give an independent treatment based on the functional

f(t, ω, h) = (t− sin t− ω)2 + (1− cos t+ h)2 − ω2 − h2. (9)

Clearly, f(t, ωB, hB) = 0 means that At and the left cusp of A are equidistant
from the point B.

Theorem 3.3. ZB∩A consists of one, two or three points. More specifically,
there exists a function H :]0, π]→ R, such that H(π) = π2

4 − 1 and:

(α) Case 0 < ωb < π:
α1) If hb < H(ωb), then ZB ∩ A is a singleton, namely a point At0,

such that 0 < t0 < π.
α2) If hb > H(ωb), then ZB ∩ A is a singleton, namely A’s left cusp.
α3) If hb = H(ωb), then ZB has a double contact with A, namely the

left cusp of A, and a regular point as in α1).
(β) Case ωb = π:

β1) If hb < H(π), ZB ∩ A is a singleton, namely the top point of A;
β2) If hb > H(π), ZB ∩A is a doubleton, namely the two cusps of A;
β3) If hb = H(π), ZB ∩A is a tripleton, namely the points in β1)-β2).

Proof. The derivative ∂tf may be given the form

∂tf(t, ω, h) = 2h(1− cos t)
[
t−ω
h + cot t

2

]
. (10)

(α) Assume Aξ ∈ ZB. We cannot have ξ > π, otherwise the point A2π−ξ,
symmetrically located with respect to the symmetry axis of A, would lie
strictly inside ZB contradicting the definition of ZB; so ξ 6 π. On the other
hand, f(t, ωb, hb) has a minimum at t = ξ, and so ∂tf(ξ, ωb, hb) = 0; this
implies ξ 6= π. Therefore, 0 6 ξ < π.

The function cot t
2 is strictly convex and strictly decreasing in ]0, π[, and

goes to +∞ as t→ 0+. As a consequence, there exists a positive ε such that
∂tf(t, ωb, hb) > 0 for 0 < t < ε. Moreover, the equation

t−ωb

hb
+ cot t

2 = 0 (11)

represents the intersection of the straight line L with equation y = ωb−t
hb

, with

the graph G of cot t
2 ; therefore (11), and a fortiori ∂tf(t, ωb, hb) = 0, has at

most two roots in the interval ]0, π[. The line L passes in (ωb, 0); when the
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slope of L is such that L is tangent to G (i.e., (11) has a double root) easy
computations show that the value θ of t in the contact point of L and G is
implicitly given by θ + sin θ = ωb; there is a unique such θ, which is positive
and independent of hb, and we have

When (11) has two roots in ]0, π[, the largest root is > θ. (12)

Suppose f(t, ωB, hB) has a minimum at t = ξ > 0; then it must have a local
maximum at a positive t′ < ξ; therefore, ξ is the largest root of (11) in ]0, π[.

For a given 0 < ω 6 π, define H(ω) as the infimum of the set

{h > 0 : f(t, ω, h) > 0, for all t ∈]0, π]}. (13)

Note that, for ω = ωB, hB lies in (13) iff the left cusp of A lies in ZB. As

∂tf(t, ω, 0) = 4(t− ω) sin2 t
2

is negative for 0 < t < ω, we have H(ω) > 0. The set (13) is obviously
closed; to see it is nonempty, note that the derivative of cot t

2 is −1
2 at t = 0;

so, if h > 2, no t ∈]0, π[ zeroes out ∂tf(t, ω, h); therefore any h > 2 lies in
(13).

As ∂hf(t, ω, h) = 2(1 − cos t), f(t, ω, h) is strictly increasing with h; from
this fact, α1) and α2) follow at once.

To prove α3), let hB = H(ωB), and consider a sequence of points (Bk) such
that hBk

< H(ωB), ωBk
= ωB and (hBk

) converges to H(ωB). By α1), let Atk

be the unique point of ZBk
∩ A. By continuity (Atk) converges to the point

Aτ of ZB ∩A, where τ = limk tk; by (12), tk > θ for all k; this implies τ > 0,
and so Aτ is not the left cusp.

(β) Let ωB = π. The equation ∂tf(t, π, hB) = 0 has 5 roots in [0, 2π], sym-
metrically placed with respect to π, namely, in increasing order, 0, t1, π, t2, 2π,
where t1 + t2 = 2π. Arguing as in (α), we now get: if f(t, π, hB) has a min-
imum at ξ ∈]0, 2π[, then ξ = π. So the two cusps and the top point of
A are the only candidates to points of contact of ZB with A. The value
H(π) = π2

4 − 1 arises naturally, because the circle with center (π,−H(π))
and radius H(π) + 2 is the only one passing in the cusps and the top point
of A. The conclusion is left to the reader. �

3.2. The critical curve. The graph of the function ω 7→ −H(ω), called
the critical curve, is the unfolded representation of the set of points b in the
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cylinder’s wall having multiple shortest paths to a = o. That curve arises
from the solutions of the following non-linear system{

f(t, ω, h) = 0
∂tf(t, ω, h) = 0 0 < t, ω 6 π and h > 0,

(14)

where f(t, ω, h) is the functional introduced in (9). As a matter of fact, a
solution (t, ω, h) of (14), with positive t, ω, h and ω < π, has the following
interpretation; the equation f(t, ω, h) = 0 says that the circle Z centered at
(ω,−h) and passing in the left cusp of A passes in At; on the other hand,
∂tf(t, ω, h) = 0 asserts that the circle Z is tangent to A at At. Therefore
H(ω) = h, which means that (ω,−h) is a point of the critical curve.

Theorem 3.3 has a symmetric counterpart with respect to the symmetry axis of A.
That twin theorem handles the case of points B with π 6 ωB < 2π; these points
are, so to speak, under the jurisdiction of the right hand side cusp of A; in fact,
if ωB > π, B is closer to the right cusp than to the left cusp. The role of the
function H :]0, π] → R is then played by a reflected twin Hr : [π, 2π[→ R given by
Hr(ω) = H(2π − ω).

In figure 3 the join of these two critical curves is represented with junction point
W = (π,−Hπ); the bat-shaped darkened area is made up of those B for which some
regular point of A is a closest point of A from B.

Theorem 3.4. The function ω 7→ H(ω) is analytic at any ω ∈]0, π].

Proof. The functional f(t, ω, h) is analytic, so we only need to prove that
its Jacobian determinant with respect to the variables t, h is nonzero at any
solution (t, ω, h), with positive t, ω, h and ω 6 π (check, e.g., [4, X§2]). A
straightforward calculation leads to the value of the Jacobian

J(t, ω, h) :=

∣∣∣∣ ∂tf ∂hf
∂t∂tf ∂h∂tf

∣∣∣∣ = 8(h+ cos t− 1) sin2 t

2
.

The case ω = π is easy to handle, because the (unique) solution is explicitly

known: (t, ω, h) = (π, π, π
2

4 − 1).
We now consider the case ω < π. We have to show that, if (t, ω, h) is a

solution of (14), then h 6= 1 − cos t. For this purpose we go back to what
has been said about (11)-(12). As (t, ω, h) is a solution, t is the largest root
of t−ω

h + cot t
2 = 0 in the interval ]0, π[. We now get a contradiction from

h = 1 − cos t; in fact, this hypothesis combined with the previous equation
gives us t−ω

1−cos t + cot t
2 = 0, which may be transformed into

1
2(t+ sin t− ω) csc2 t

2 = 0.
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Thus we get t+ sin t = ω. However, this contradicts what (12) says, namely,
that t > θ, where θ is the unique such that θ + sin θ = ω. �

The fact that H is analytic at π means, obviously, that H can be analytically
extended to an open neighborhood of π. Note, however, that we don’t need that
definition of H(ω) for ω > π; the planar images of cylinder points with ω beyond π
fall into the jurisdiction of the right cusp of A.

We now sketch an alternative approach that will produce an explicit parametriza-
tion of the critical curve. Define P = {1

2At : 0 < t 6 π}; this is the left half
of the cycloid arc A reduced by a scale factor 1/2, with the origin O dropped
out. For each point P ∈ P , let LP be the straight line through P orthog-
onal to OP ; we denote by N the envelope of the family {LP : P ∈ P}. In
the literature (for general curves), P is known as the pedal of N , and N as
the negative pedal (or orthocaustic) of P with respect to O (cf. [6, vol. III,
pp. 250-252], [5, pp.157-9], [7, pp.153,182]).

Theorem 3.5. N is the critical curve.

O

At

Pt

Qt Ft

N t

P

N

F

Figure 4

Proof. The argument is sketched in figure
4, showing the main cycloid where At runs,
the halved cycloid arc P where Pt = 1

2At

runs, and the negative pedal N . PtNt is the
mediatrix of [OAt], and is tangent to N at
Nt. The point Qt := Nt − Pt completes a
rectangle [OPtNtQt]; while Pt describes the
pedal of N , Qt describes the so-called con-
trapedal of N (with respect to O). Theorem
II of [7, p. 151] says that PtQt is normal to
P at Pt, and so NtAt is normal to A at At.
Therefore the circle centered at Nt and pass-
ing through O is tangent to A at At. This is
known in a much more general setting. The
peculiarity of the cycloid, and punch line of the proof is that the referred
circle centered at Nt is the ZNt

of definition 3.1; the details to show this are
more or less the same as expanded around (11)-(12). So Nt lies in the critical
curve. �

In figure 4, the thin curve F is an arc of the evolute of A, which is a
translate of A (see, e.g., [6, vol. II, p. 135]). The figure shows that F lies
bellow N , more precisely, Nt ∈]AtFt[, where Ft is the center of curvature of



SHORTEST PATHS ON CYLINDERS 15

A at At (recall that AtFt is tangent to F at Ft). A short proof of Nt ∈]AtFt[
may go as follows: ‖At−Ft‖, the radius of curvature at At, equals the length
of the cycloid arc ŊOFt; so O lies strictly inside the osculating circle of A at
At; the radius of ZNt

is then strictly less than the radius of curvature at At.

To parametrizeN , write the equation of the line PtNt in the form g(X, Y, t) =
0, more explicitly[

Y − 1
2(1− cos t)

]
(1− cos t) +

[
X − 1

2(t− sin t)
]

(t− sin t) = 0;

then solve the system {g(X, Y, t) = 0, ∂tg(X, Y, t) = 0}, to determine X and
Y as functions of the parameter t. After some computations we get the
required parametric equations that have been used in some of our figures:

N :

{
X(t) = 4t(1−cos t)−(2+t2) sin t+sin 2t

4(1−cos t)−2t sin t

Y (t) = (1−cos t)(2−t2−2 cos t)
4(1−cos t)−2t sin t .
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