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WHAT IS AN IDEAL A ZERO-CLASS OF?

N. MARTINS-FERREIRA, A. MONTOLI, A. URSINI AND T. VAN DER LINDEN

Abstract: We characterise, in pointed regular categories, the ideals as the zero-
classes of surjective relations. Moreover, we study a variation of the Smith is Huq
condition: two surjective left split relations commute as soon as their zero-classes
commute.

1. Introduction
The description of congruences, and of more general compatible relations, in

terms of their zero-classes is a very classical topic in universal algebra. It led to
the study of different notions of subalgebras in pointed varieties; let us mention
here the ones of ideal [7, 11, 19] and clot [1].
Later these notions have been considered in a categorical context [9, 10, 12].

Clots were characterised as as zero-classes of internal reflexive relations, and
ideals were characterised as regular images of clots. However, a characterisation
of ideals as zero-classes of suitable relations was still missing, both in categorical
and in universal algebra.
The aim of the present paper is to fill this gap. We prove that, in every poin-

ted regular category, the ideals are the zero-classes of what we call surjective
relations. Such is any relation from an object X to an object Y where the
projection on Y is a regular epimorphism. In fact, we can always choose a left
split surjective relation to represent a given ideal, which means that moreover
the projection on X is a split epimorphism. We also show that, in general, it is
not possible to describe ideals by means of endorelations on an object X. The
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table at the end of the introduction gives an overview of the description of all
the notions mentioned above in terms of zero-classes.
This study naturally led us to consider a variation of the so-called Smith

is Huq condition, which says that two equivalence relations on the same ob-
ject commute in the Smith–Pedicchio sense [18, 17] if and only if their zero-
classes commute in the Huq sense [8]. Our condition is then the following: two
semi-split surjective relations commute if and only if their zero-classes (their
associated ideals) commute. This provides a conceptual interpretation of the
admissibility condition introduced in [13] and further explored in [6, 15]. We
consider some equivalent and some stronger conditions, and we compare them
with the standard Smith is Huq condition.
The paper is organised as follows. In Section 2 we recall the notions of ideal

and clot, both from the categorical and the universal-algebraic points of view,
and we prove some stability properties of ideals. In Section 3 we prove that
ideals are exactly zero-classes of surjective relations (or, equivalently, of semi-
split surjective relations) and we consider some concrete examples. In Section 4
we study the above-mentioned variations of the Smith is Huq condition.

any
(left split)
relation

surjective
(left split)
relation

reflexive relation equivalence relation effective
equivalence relation

monomorphism ideal clot normal monomorphism kernel

Table 1. Several types of monomorphisms in pointed regular categories

2. Ideals and clots
The notion of ideal was introduced in [7] in the context of groups with mul-

tiple operators (also called Ω-groups), and then extended in [11]—and further
studied in [19] and in subsequent papers—to varieties of algebras with a con-
stant 0. We recall here the definition in the case of pointed varieties: those
with a unique constant 0.

Definition 2.1. A term tpx1, . . . , xm, y1, . . . , ynq in a pointed variety C is
said to be an ideal term in y1, . . . , yn if tpx1, . . . , xm, 0, . . . , 0q “ 0 is an
identity in C . A subalgebra I of an algebra A in C is an ideal of A if
tpx1, . . . , xm, i1, . . . , inq belongs to I for all x1, . . . , xm P A, all i1, . . . , in P I
and every ideal term t.
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Later, as an alternative, in the paper [1] the concept of clot was introduced:

Definition 2.2. A subalgebra K of A in C is called a clot in A if

tpa1, . . . , am, 0, . . . , 0q “ 0

and k1, . . . , kn P K imply tpa1, . . . , am, k1, . . . , knq P K for all a1, . . . , am,
k1, . . . , kn in A and every pm` nq-ary term function t of A.

It was shown in [1] that clots are exactly 0-classes of semi-congruences, that
is, of those reflexive relations which are compatible with all the operations in
the variety. Thus, for any algebra A in any variety C there is an inclusion

NpAq Ď ClpAq Ď IpAq,

where NpAq is the set of normal subalgebras of A (that are the 0-classes of the
congruences on A), ClpAq is the set of clots of A and IpAq is the set of ideals.
All these notions were then studied in a categorical context (see [9, 10, 12]).

Before recalling the categorical counterparts of the definitions above, we need
to introduce some terminology. The context that we consider is the one of
pointed regular categories.

Definition 2.3. Given a span

R

d

z�

c

�$
X Y

(A)

A zero-class of it is the arrow i : I Ñ Y in the pullback

I
l ,2

i

��

R

pd,cq

��

Y
p0,1Y q

,2 X ˆ Y.

(B)

Clearly if pd, cq is a relation—when d and c are jointly monomorphic—then
its zero-class is a monomorphism, since pullbacks preserve monomorphisms.

Definition 2.4. A normalisation of (A) is the composite ck : K Ñ X, where
k : K Ñ R is a kernel of d.
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Again, pd, cq being a relation implies that the normalisation is a monomor-
phism. Of course the zero-class and the normalisation of a span are unique up
to isomorphism, so (abusing terminology) we may talk about “the” zero-class
and “the” normalisation. In fact, the two procedures give the same result:

Proposition 2.5. For any span pd, cq its zero-class coincides with its normal-
isation.

Proof : It is easily seen that the morphism l in the diagram (B) is a kernel of d.
As a consequence, i “ cl. On the other hand, any square such as (B) in which
l “ kerpdq and i “ cl is a pullback.

Definition 2.6. A normal subobject of an object A is the zero-class of an
equivalence relation on A.

We observe that this notion is a generalisation of the notion of kernel of
a morphism: indeed, kernels are exactly zero-classes of effective equivalence
relations. It is also easy to see that, in the pointed case, the definition above is
equivalent to the one introduced by Bourn in [3]: see [12] and Example 3.2.4,
Proposition 3.2.12 in [2].

Definition 2.7. A clot of A is the zero-class of a reflexive relation on A.

The original categorical definition of clot, given in [9], was different: roughly
speaking, a clot of an object A was defined as a subobject which is invariant
under the conjugation action on A. However, the two definitions are equivalent,
as already observed in [9].
The following categorical definition of ideal was proposed in [10]. It was

observed in [9] that, in the varietal case, it coincides with Definition 2.1 above.

Definition 2.8. A monomorphism i : I Ñ Y is an ideal if there exists a com-
mutative square

K
��

k

��

q
,2,2 I
��

i

��

X p
,2,2 Y

(C)

in which p and q are regular epimorphisms and k is a clot.

The following fact was already observed in [10, Corollary 3.1]:
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Proposition 2.9. Every ideal is the regular image of a kernel along a regular
epimorphism.

Proof : Proposition 2.5 tells us that the morphism k in Diagram (C) is of the
form cl for some kernel l. The claim now follows, since a composite of two
regular epimorphisms in a regular category is still a regular epimorphism.

The first aim of this paper is to characterise the ideals as the zero-classes
of suitable relations. Before doing that, we prove some stability properties of
ideals.

Proposition 2.10. Ideals are stable under:
(a) direct images;
(b) pullbacks;
(c) intersections;
(d) compositions with product inclusions.

Proof : (a) is immediate from the definition and (b) holds because, in a pointed
regular category, pullbacks preserve regular epimorphisms, normalisations and
reflexive relations.
For the proof of (c), first suppose i is an ideal as in (C) and l : LÑ Y is a

clot. We consider the commutative cube

K X L1
��

��

,2
�$

�$

I X L
��

��

�$
L1 ,2,2
��

p˚l

��

L
��

l

��

K
q

,2,2
�$

k
�$

I
�$

i

�$
X p

,2,2 Y

in which the front, left and right squares are pullbacks by construction. Hence
the back square is also a pullback, so that the dotted arrow is a regular epi-
morphism. Since the intersection K X L1 is still a clot, this proves that I X L
is an ideal (we are using the fact that clots are stable under intersections and
pullbacks).
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Now suppose that both i and l are ideals. Repeating the above, through (b)
we see that K X L1 is an ideal as the intersection of the clot k with the ideal
p˚l. The result now follows from (a).
For the proof of (d), recall that kernels compose with product inclusions: if

k : K Ñ X is the kernel of f : X Ñ X 1, then p1W , 0qk “ pk, 0q : K Ñ X ˆW
is the kernel of fˆ1W : X ˆW Ñ X 1 ˆW . If now i is an ideal as in (C), then
p1W , 0qi “ pi, 0q : I Ñ Y ˆW is the direct image of pk, 0q along the regular
epimorphism f ˆ 1W .

3. Ideals and semi-split surjective relations
In order to characterise ideals as zero-classes, we shall be interested in spans

where one of the legs is a regular or even a split epimorphism.

Definition 3.1. A left split span from X to Y is a diagram

R
d

z�

c

�$
X

e

:D

Y

(D)

where de “ 1X . A left split span pd, c, eq is called a left split relation when
the span pd, cq is jointly monomorphic.

Proposition 3.2. A morphism i : I Ñ Y is a monomorphism if and only if
it is the zero-class of a left split relation if and only if it is a zero-class of a
relation on Y .

Proof : For the first equivalence it suffices to take X “ 0, and for the second
we consider the relation p0, iq on Y .

Definition 3.3. A surjective span from X to Y is a diagram

R

d

z�

c

�$�$

X Y

where c is a regular epimorphism. A surjective span pd, cq is called a surjective
relation when the span pd, cq is jointly monomorphic.

Sometimes we consider both conditions together and talk about surjective
left split spans or relations.
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We are now ready to prove our main result.

Theorem 3.4. In any pointed regular category, for any morphism i : I Ñ Y ,
the following are equivalent:

(i) i is an ideal;
(ii) i is the zero-class of a surjective left split relation;
(iii) i is the zero-class of a surjective relation.

Proof : To prove (i) ñ (ii), suppose that i is an ideal as in (C) above, where k
is the zero-class of a reflexive relation pR, d, c, eq. We consider the commutative
cube

K
��

k

��

q
,2,2

�$

I
��

i

��

�$
R

q1
,2,2

��

pd,cq

��

S
��

pd1,c1q

��

X
p

,2,2

p0,1X q
�$

Y

p0,1Y q

�$

X ˆX
1Xˆp

,2,2 X ˆ Y

in which S is the direct image of R along 1X ˆ p and I Ñ S is induced by
functoriality of image factorisations. We have to show that the square on the
right is a pullback. Let the square on the left

P ,2

��

S
��

��

Y
p0,1Y q

,2 X ˆ Y

K
��

k

��

,2

�$

P
��

��

�$
R

q1
,2,2

��

pd,cq

��

S
��

pd1,c1q

��

X
p

,2,2

p0,1X q
�$

Y

p0,1Y q

�$

X ˆX
1Xˆp

,2,2 X ˆ Y
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be the pullback in question; then the induced arrow I Ñ P is an isomorphism,
because is both a monomorphism (since i is) and a regular epimorphism (since
the dotted arrow K Ñ P is, as a pullback of the regular epimorphism q1, the
bottom and left squares in the cube being pullbacks). Note that d1 is split
by q1e and c1 is a regular epimorphism because pc “ c1q1 is.
(ii) ñ (iii) is obvious. For the proof of (iii) ñ (i), let i : I Ñ Y be the

zero-class (B) of a surjective relation pd, cq. Consider the pullback

T ,2
��

pd1,c1q

��

R
��

pd,cq

��

R ˆR
dˆc
,2 X ˆ Y

of pd, cq and d ˆ c, which defines a reflexive relation pT, d1, c1, e1q on R where
e1 is pp1R, 1Rq, 1Rq. We prove that i is the direct image of the zero-class k of T
along the regular epimorphism c as in the square on the left.

K
��

k

��

q
,2,2 I
��

i

��

R c
,2,2 Y

K
��

k

��

q
,2

�$

I
��

i

��

�$
T ,2,2
��

pd1,c1q

��

R
��

pd,cq

��

R
c ,2,2

p0,1Rq
�$

Y

p0,1Y q

�$

R ˆR
dˆc

,2,2 X ˆ Y

Here it suffices to consider the cube on the right, noting that q is a regular
epimorphism because all vertical squares are pullbacks and c is a regular epi-
morphism by assumption.

As the following example shows, in general it is not possible to see any ideal as
a zero-class of a surjective endorelation. We are grateful to Sandra Mantovani
for suggestions concerning this example.

Example 3.5. Let C be the variety defined by a unique constant 0 and a binary
operation s satisfying just the identity sp0, 0q “ 0. In this variety, ideal terms
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are all “pure”: in any term tpx1, . . . , xm, y1, . . . , ynq which is an ideal term in y1,
. . . , yn, necessarily m “ 0. Therefore all subalgebras are ideals. Consider then
the three element algebra A “ t0, 1, au, with spa, 1q “ sp1, aq “ spa, aq “ a,
and spx, yq “ 0 otherwise. C “ t0, 1u is a subalgebra, and we have that
spa, 0q “ 0 lies in C, but spa, 1q “ a does not belong to C. Hence C is
an ideal, but not a clot. Suppose that there exists a surjective relation R
on A such that C is its zero-class. Then there should exist x P A such that
xRa. But it cannot be 0Ra, because a R C. 1Ra is impossible, too, because
otherwise 0 “ sp1, 1qRspa, aq “ a. Similarly, aRa is impossible, otherwise
0 “ sp0, aqRsp1, aq “ a. Hence such a surjective endorelation R cannot exist.

We conclude this section with the following observation. It is well known [12]
that, in any pointed exact Mal’tsev category, ideals and kernels coincide. The-
orem 3.4 provides us with the following quick argument.

Proposition 3.6. In any pointed exact Mal’tsev category, ideals and kernels
coincide.

Proof : Let i : I Ñ Y be the zero-class of a surjective left split relation pd, c, eq
as in (D). Theorem 5.7 in [5] tells us that the pushout of d and c is also a
pullback; as a consequence, i is the kernel of the pushout c˚pdq of d along c.

4. The Smith is Huq condition
From now on we work in a category which is pointed, regular and weakly

Mal’tsev [14]. We first recall the meaning of the last condition.

Definition 4.1. A finitely complete category is weakly Mal’tsev if, for any
pullback of a split epimorphism along a split epimorphism:

AˆB C

π1

��

π2
,2 C

g

��

e2lr

A

e1

LR

f
,2 B

s

LR

rlr

the morphisms e1 “ p1A, sf q and e2 “ prg, 1Cq, induced by the universal
property of the pullback, are jointly epimorphic.
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In this context, we say that two left split spans pf, α, rq and pg, γ, sq from B
to D as in

A
f

,2

α
�$

B
r

lr
s
,2 C

g
lr

γ
z�

D

(E)

centralise each other or commute when there exists a (necessarily unique)
morphism ϕ : AˆB C Ñ D, called connector from the pullback

C

e2z� g �$

γ

#+
AˆB C

π2
:D

π1 �$

B

rz�

s
Zd

β ,2 D

A

f
:D

e1
Zd

α

3;

of f and g to the object D such that ϕe1 “ α and ϕe2 “ γ. Note that,
when this happens, γs “ αr; we call this morphism β : B Ñ D. In other
words, the existence of β is a necessary condition for the given left split spans
to centralise each other. Note how this explains the admissibility condition
from [13] in conceptual terms: clearly that condition deals with a certain type
of commutativity, but without the notion of left split span we could not express
precisely what commutes.
If we take β “ 1B, we immediately recover the notion of commutativity of

reflexive graphs in the Smith–Pedicchio sense:
Proposition 4.2. Two reflexive graphs commute in the Smith–Pedicchio sense
if and only if they commute in the above sense.
We recall that the commutativity of equivalence relations was first introduced

by Smith in [18] for Mal’tsev varieties, and then extended by Pedicchio [17] to
Mal’tsev categories. However, weakly Mal’tsev categories are a suitable setting
for the definition (because the connector, as defined above, is unique), and the
commutativity can be defined, as above, just for reflexive graphs.
If, in the diagram (E), we take B “ 0, we get the definition of commu-

tativity of two morphisms in the Huq sense [8]: two morphisms α : AÑ D
and γ : C Ñ D commute when there exists a (necessarily unique) morphism
ϕ : Aˆ C Ñ D, called the cooperator of α and γ, such that

ϕp1A, 0q “ α and ϕp0, 1Cq “ γ.
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A pointed regular weakly Mal’tsev category satisfies the Smith is Huq con-
dition, shortly denoted by (SH), when a pair of equivalence relations over the
same object commutes as soon as their zero-classes do. (The converse is always
true). We observe that the (SH) condition has the following interesting con-
sequence. We recall that an object A is commutative if its identity commutes
with itself (in the Huq sense); it is abelian if it has an internal abelian group
structure.

Proposition 4.3. If (SH) is satisfied, then every commutative object is abelian.

Proof : The identity 1X of an object X is the normalisation of the indiscrete
relation ∇X . If X is commutative, then 1X commutes with itself; thanks to
the (SH) condition, the relation ∇X commutes with itself, too. This situation
is represented by the following diagram:

X ˆX ˆX

p

��

z� �$
X ˆX

:D

�$

X ˆX

Zd

z�

X.

Zd :D

The connector p : X ˆ X ˆ X Ñ X is then an internal Mal’tsev operation
on X. To conclude the proof it suffices to observe that, in a pointed category,
an object is endowed with an internal Mal’tsev operation if and only if it is
endowed with an internal abelian group structure [2, Proposition 2.3.8].

Our aim is to extend the (SH) condition to surjective left split relations and
ideals. In order to do so, we start by introducing some terminology. We call
a morphism ideal-proper when its image is an ideal; we say that a cospan is
ideal-proper when so are the morphisms of which it consists.
In a pointed finitely complete category C , given an object B, the category

PtBpC q of so-called points over B is the category whose objects are couples
pp : E Ñ B, s : B Ñ Eq where ps “ 1B, so split epimorphisms with codo-
main B and a chosen section. A morphism pp : E Ñ B, sq Ñ pp1 : E 1 Ñ B, s1q
in PtBpC q is a morphism f : E Ñ E 1 in C such that p1f “ p and fs “ s1. We
have, for any B, a functor (called the kernel functor) KerB : PtBpC q Ñ C
associating with every split epimorphism its kernel. We can now formulate the
main result of this section.
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Theorem 4.4. In any pointed, regular and weakly Mal’tsev category C , the
following are equivalent:

(i) for every object B in C , the kernel functor KerB : PtBpC q Ñ C reflects
Huq-commutativity of ideal-proper cospans;

(ii) a pair of surjective left split relations over the same objects commutes
as soon as their zero-classes do;

(iii) a pair of surjective left split spans over the same objects commutes as
soon as their zero-classes do.

Proof : The equivalence between conditions (ii) and (iii) is proved just by taking
direct images. In order to prove that (i) and (ii) are equivalent, given a pair of
surjective left split relations over the same object, we rewrite Diagram (E) in
the shape

A

f �$

pα,f q
,2 D ˆB

πB

��

C

gz�

pγ,gq
lr

B

pβ,1Bq

LR

r

Zd

s

:D

(F)

and consider it as a cospan ppα, f q, pγ, gqq in PtBpC q. Let us prove that this
cospan is ideal-proper. To do that, it suffices to notice that pα, f q is the
composite of the kernel p1A, f q : A Ñ A ˆ B with the regular epimorphism
α ˆ 1B : AˆB Ñ D ˆB. Indeed, the outer square in the diagram

A
p1A,f q

,2

f

��

f �$

AˆB

πB

z�

fˆ1B

��

B

p1B ,1Bq
�$

r

Zd

pr,1Bq

:D

B
p1B ,1Bq

,2 B ˆB

π2
Zd

is a pullback in PtBpC q. The same is true for pγ, gq. To conclude the proof
of the equivalence between (i) and (ii) it suffices then to observe that applying
the kernel functor KerB to the cospan (F) gives the normalisations of the two
surjective split relations.
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It is immediately seen that condition (i) above is equivalent to the condition
that, for every morphism p : E Ñ B in C , the pullback functor

p˚ : PtBpC q Ñ PtEpC q

—which sends every split epimorphism overB into its pullback along p—reflects
Huq-commutativity of ideal-proper cospans. In the same way as for the pre-
vious theorem, it can be shown that also the following conditions, which are
strictly stronger than (i)–(iii) above, are equivalent.

Proposition 4.5. In any pointed, regular and weakly Mal’tsev category C , the
following are equivalent:
(iv) for every object B in C , the kernel functor KerB : PtBpC q Ñ C reflects

Huq-commutativity of cospans;
(v) a pair of left split relations over the same objects commutes as soon as

their zero-classes do;
(vi) a pair of left split spans over the same objects commutes as soon as their

zero-classes do.

Again, condition (iv) can be expressed equivalently in terms of all pullback
functors p˚ : PtBpC q Ñ PtEpC q.
We conclude by observing that Theorem 4.4 and Proposition 4.5 restrict to

Propositions 2.5 and 3.1 in [16] (see also Theorem 2.1 in [4]) in the pointed exact
Mal’tsev case, because there ideals coincide with kernels (Proposition 3.6), and
the proof is based on the same ideas. In particular, then the conditions (i)–(iii)
are equivalent to (SH), while (iv)–(vi) are equivalent to the strictly stronger
condition (W)—see [16].
It is an open question whether the conditions (i)–(iii) are equivalent to (SH)

in pointed weakly Mal’tsev regular categories.
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