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ABSTRACT: The nonlinear diffusion model introduced by Perona and Malik in 1990
is well suited to preserve salient edges while restoring noisy images. This model
overcomes well-known edge smearing effects of the heat equation by using a gra-
dient dependent diffusion function. Despite providing better denoising results, the
analysis of the PM scheme is difficult due to the forward-backward nature of the
diffusion flow. We study a related adaptive forward-backward diffusion equation
which uses a mollified inverse gradient term engrafted in the diffusion term of a
general nonlinear parabolic equation. We prove a series of existence, uniqueness
and regularity results for viscosity, weak and dissipative solutions for such forward-
backward diffusion flows. In particular, we introduce a novel functional framework
for wellposedness of flows of total variation type. A set of synthetic and real im-
age processing examples are used to illustrate the properties and advantages of the
proposed adaptive forward-backward diffusion flows.
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1. Introduction

The nonlinear diffusion model, introduced in image processing by Perona
and Malik [35], involves solving the following initial-boundary value problem

’% = div (C(|Vulz, ) Vu(r,1)) in 2 x (0,T),
X aua? t) —0 on 0N x (0,7), (1.1)
L u(z,0) = ug(x) in £,

where ug : 2 — R is the observed (noisy) image, 2 C R? is a bounded domain
with Lipschitz boundary. The function C : Rj — R{ is non-increasing such
that C(0) = 1 and lim,_,,C(s) = 0. Note if C(s) = 1 then we recover
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the heat equation. The diffusion coefficient function C(-) in Eqn. (1.1) is
an edge indicator function that reduces the amount of diffusion near edges

and behaves locally as inverse heat equation. The original choices of C(+) by
Perona and Malik [35] are

Cils) = exp (~ ). Cals) = H%/K? (1.2)

where ' > 0 is a tunable parameter also known as the contrast parame-
ter [37]. The motivation for the Perona-Malik nonlinear diffusivity is that
inside the regions where the magnitude of the gradient of u is weak, equa-
tion (1.1) acts like a heat equation, resulting in isotropic smoothing, whereas
near the edges, where the magnitude of the gradient is large, the diffusion is
“stopped” and the edges are preserved.

To see the underlying details, we split the divergence term in Eqn. (1.1),

div (C(|vu\2)vu)
= 2ty + Uity + 2uguyttyy) C'(|Vul?) + C(IVul?) (s + uyy). (1.3)

Considering the tangent 7 and normal A directions of the isophote lines,
and setting

B(s) = C(s) + 2sC'(s), (1.4)
we infer
div (C(|Vu|2)Vu> = C(|Vul?) urr + B(|Val?) unn. (1.5)

We thus see that the Perona-Malik diffusion (1.1) is the sum of the tangential
diffusion weighted by the function C(-) plus the normal (transverse) diffusion
weighted by the function B(-), resp. Since smoothing with edge preservation
is of paramount importance in image processing, it is desirable to smooth
more in the tangent direction than in the normal direction. This can be
translated to the condition

!/
Sli_)rglo lg((j)) < 0, or equivalently, Sli)rglo SCC(S)

For example, in the case of the power growth functions

C(s) ~ st

< (1.6)

1
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the above limit gives that

q < —%. (1.7)
Note that for the original diffusion function C; in (1.2) we have By(s) > 0 if
s < K?, implying forward diffusion in the regions where the gradient mag-
nitude of the image function is less than K, whereas Bsy(s) < 0 if s > K?,
yielding backward diffusion in the area where absolute values of the gradient
are larger than K. The same is true for C; with the threshhold value 2-1/2K.
Thus, the PDE (1.1) promotes combined forward-backward diffusion flow,
see Figure 1 for a comparison with the heat equation. The Perona-Malik
anisotropic diffusion equation (PMADE for short) thus balances forward
and backward diffusion regimes using a tunable K, the contrast parame-
ter [29, 37]. These two competing requirements constitute a common theme
in many PDE based image restoration models [52, 11, 9, 12]. Moreover, from
Eqn. (1.5) we see that Eqn. (1.1) is a time dependent nonlinear diffusion
equation with preferential smoothing in the tangential direction 7 than nor-
mal N to edges. This property has been exploited in image processing and
in partcular in edge preserving image restoration.

Despite impressive numerical results obtained in image processing using
the Perona-Malik equation (1.1), it is known [26, 23] to be an ill-posed PDE
due to the degenerate behavior (due to C(s) =~ 1/4/s as s — 00, see Eqn. (1.6)
above). To overcome this issue, Catté et al. [10] replaced the magnitude of
the image gradient s = |Vu| used in the diffusivity functions by the spatially
regularized gradient, s = |VG, % u| where G, denotes the two dimensional
Gaussian kernel, G, (z) = (2r0) L exp (— |z|* /202) and * denotes the convo-
lution operation. By isotropic smoothing of scale o, VG, * u| might provide
a better estimate of local gradients instead of the noise prone |Vu|. Moreover,
we can relate the Gaussian smoothing G, * ug to the quadratic regulariza-
tion function via linear diffusion (heat equation). Thus, the Catté et al. [10]
Gaussian regularized anisotropic diffusion equation (GRADE for short) reads
as

ou

5 = div (C(|VGJ * u\2)Vu) . (1.8)

This modification of equation (1.1) is sufficient to prove the existence
and uniqueness of solution to the initail-boundary value problem for
GRADE (1.8). However, the space-invariant Gaussian smoothing inside the
divergent term tends to push the edges away from their original locations, see
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(a) Original
i

(c) Diffusion coefficient (left) initial (right) at (d) Flux function (left) initial (right) at itera-
iteration 20 tion 20

————————— e ——————

(e) Heat equation result (f) Perona and Malik anisotropic diffusion
equation result

Ficurg 1. Diffusion process for a simple synthetic image. (a)
Original synthetic image of size 31 x 31, a square (2x 2, gray value
= 1) at the center with uniform background (gray value = 0). (b)
Input image obtained by adding Gaussian noise o, = 30 to the
original image. This noisy image is used as the initial value wuy.
(c) Diffusion coefficient C; in (1.2), with K = 20. This acts as a
discontinuity detector and stops the diffusion spread across edges.
(d) Flux function C; (|Vu|)-|Vu|. (e) Result of heat equation with
20 iterations in (left) image (right) surface format. (f) Result of
PMADE (1.1) with 20 iterations in (left) image (right) surface
format. The white dotted lines indicate the influence region at
the center.
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FIGURE 2. Spatial regularization in the diffusion coefficient al-
ters discontinuities in a given image. (a) Original synthetic image
of size 31 x 31, a square (gray value = 160) at the bottom right
corner with uniform background (gray value = 219). (b) Input
image obtained by adding Gaussian noise o, = 30 to the original
image. This noisy image is used as the initial value v for the
nonlinear PDEs with C; diffusion coefficient and K = 20. Results
of PMADE (1.1) with 20 iterations in (left) image (right) surface
format (c), and GRADE (1.8) with 20 iterations in (left) image
(right) surface format (d). The intersection of red dotted lines
indicate the exact corner location of the square.

Figure 2 for an illustration of this effect on a synthetic corner image™ Further-
more, the use of isotropic smoothing is against the principle of anisotropic
diffusion which aims to smooth homogeneous regions without affecting edges.

The PDE models of Perona-Malik type have strong connections to varia-
tional energy minimization problems and this fact is exploited by many to
design various diffusion functions [5, 38]. Following [47], consider the next

*This effect, known as edge dislocation, can be detrimental to further image analysis. This can
also be seen via the regularity of solution to GRADE, which belongs to a higher order Sobolev
space.
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FiGURE 3. Well known functions and their qualitative shapes:
(a) Regularization (b) Flux (c¢) Diffusion coefficients. Convex
functions: Tikhonov, total variation (TV). Non-convex functions:
Perona-Malik regularization, see Eqns. (1.11). Normalized to
[0, 1] for visualization.

minimization problem for image restoration:

m@}n E(u) = g/(uo(x) —u(z))*dr + a/ o(|Vu(z)]) de. (1.9)
) )
Here a > 0 is regularization parameter, 5 > 0 fidelity parameter, and
¢ : R — R" is an even function, which is sometimes called the regqular-
1zation function. The a priori constraint on the solution is represented by
the regularizing term ¢(|Vu|), and the shape of the regularization determines
the qualitative properties of solutions [33].
The formal gradient flow associated with the functional F(u) looks like

% i (sb/‘(\vvuzr\)w) B (u— ). (1.10)

It is easy to see that this equation almost coincides with the Perona-Malik
anisotropic PDE (1.1) for ¢/(s) = C(s?)s, cf. [34], and the difference between
the two equations is the lower order term coming from the data fidelity in the
regularization functional (1.9). For edge preservation we need to work with
functions ¢ with at most linear growth at infinity, cf. (1.7). For example, the
Perona-Malik diffusion coefficients (1.2), up to multiplicative constants, cor-
respond to the following non-convex regularization functions (see Figure 3(a),
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denoted as PM1 and PM2),

41(IVu()) = 1~ exp (— (W))

oo(|Vu(x)|) = log (1 + (W) ) (1.11)

Several papers [12, 38, 7, 24] studied similar diffusion flows in the past, with
an aim to have a regularizing function that will be linear near the edges, and
quadratic away from them.

Motivated by the correspondence between the variational and PDE meth-
ods for imaging problems, in this paper we consider a Perona-Malik type
PDE with the generic diffusion function inspired by the stationary regular-
ization approach (1.9). Engrafting a mollified gradient within the diffusion
function we obtain a general forward-backward diffusion PDE. Inspired by
an adaptive regularization model [45], here we consider regularization func-
tions of the type ¢(z,|Vu|) along with a Catté et al’s [10] mollified gradient
approach. We prove a series of existence, uniqueness and regularity results
for viscosity, weak, strong and dissipative solutions for a wide class of the
proposed generalized forward-backward diffusion models. Experimental re-
sults on synthetic, noisy standard test, and biomedical images are provided
to illustrate different diffusion schemes considered here.

One of the highlights of the paper is the introduction of the concept of
partial variation, which enables us to define and employ the Banach space of
functions of bounded partial variation. Our approach appears to be relevant
in the context of evolutionary problems which involve singular diffusion of
1-Laplacian kind or gradients of linear growth functionals, and holds promise
for wide applicability.

The rest of the paper is organized as follows. Section 2 reviews some clas-
sical regularization functions, and then motivates and presents our general
forward-backward diffusion PDE. Section 3 examines the conditions needed
for wellposedness of the proposed regularization-inspired forward-backward
PDE in various scenarios. Section 4 we provide numerical experiments to
prove the effectiveness of the proposed multi-scale scheme as well as exam-
ples for various cases.
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b) Noisy

0@*@0

) PMADE, T' = 100

(e) TV-PDE, T = 100 (f) TV-PDE, T = 200

FIGURE 4. Advantages and disadvantages of TV-PDE and
PMADE (with C; as the diffusion coefficient and K = 20) mod-
els on a synthetic piecewise constant C'ircles image. Noisy im-
age is obtained by adding Gaussian noise with variance o, = 30.
|i]iiliii)iv|: We show in each sub-figure (i) gray-scale image (ii)
surface (pixel values as z values) (iii) level lines (only top 4 level
lines are shown for clarity) and (iv) contour maps to highlight
jaggedness of level lines and staircasing artifacts. Better viewed
online and zoomed in.

2. Forward and backward diffusion flows

2.1. Variational and PDE models for image restoration. We first
recall two primary choices used widely as regularization functions in various
image processing tasks.

e ¢(s) = s> This corresponds to the classical Tikhonov regularization
method [46]. In this case the Euler-Lagrange equation (written with
artificial time evolution, see also Eqn. (1.10)) is,

ou

— = alAu — G (u — ugp),

T B( 0)
which is an isotropic diffusion equation and hence does not preserve
edges, see Figure 1(e). This heat flow provides a linear scale space and
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has been widely used in various computer vision tasks such as feature
point detection and object identification.

e ¢(s) = s: To reduce the smoothing when the magnitude of the gra-
dient is high, Rudin et al., [43] introduced total variation (TV) based
scheme by setting ¢(s) = s. In this case the Euler-Lagrange equation
is written as (see Eqn. (1.10)),

ou Vu
En div (W) — B (u — up),
or 2 v | Y| = ), (2.1)

ot v/ €+ |Vl

where € > 0 is a small number added to avoid numerical instabilities
in discrete implementations. In [11], the existence and uniqueness of
the TV minimization is proved in the space of functions of bounded
variation (BV), and the corresponding gradient flow is treated in [4],
see also Remark 3.18 below. But this global TV model suffers from
staircasing and blocky effects in the restored image [33]. Also, sharp
corners will be rounded and thin features are removed under this reg-
ularization model. To see this, let xp be the indicator function of
B C RY a bounded set with Lipschitz boundary. Then the total
variation term in the regularization functional (1.9), [|Vxg| is the
perimeter of the set B. This shows that TV regularization penalizes
edge lengths of an image. Note that this TV diffusion PDE (2.1) is
a borderline case of anisotropic diffusion PMADE in Eqn. (1.1) with
C(s) = s71/2, a singular diffusion model.

Figure 4 shows an experimental analysis of PMADE (1.1) against TV
PDE (2.1) on a synthetic image which consist of various circles with con-
stant pixel values. This piecewise constant image represents a near ideal
scenario and both the PMADE (7" = 20,100) and TV-PDE (T" = 100, 200)
results indicate over-smoothing and staircasing artifacts.

Several studies [45, 38, 39, 36, 41, 40, 42] have introduced spatially adaptive
regularization functions to reduce staircasing/blocky artifacts created by the
classical TV and PMADE schemes. Such adaptive methods can be written



10 V. B. S. PRASATH, J.M. URBANO AND D.VOROTNIKOV

as an energy minimization of the following form (see, e.g., [45]),

mmE B/ up(z) — u(x))? daz—k/@ (x) |Vu(z)| dx. (2.2)

where the function af(-) self adjusts itself according to an estimate of edge
information from each pixel. Since we want to reduce the regulariza-
tion/smoothing effect of (1.9) near edges, hence a(x) is chosen to be inversely
proportional to the likelihood of the presence of an edge. For example, the
original function proposed in [45] is,

1

a(x) = T IVG, w ()] e>0. (2.3)
The term in the denominator provide an estimate of edges from the input
image ug at scale o using the Gaussian kernel G, filtered gradients. Introduc-
tion of such a spatially adaptive parameter, which self adjusts according to
the smoothed gradient of the image, reduces the TV flow in homogenous re-
gions thereby alleviating the staircasing problem. In [13], the existence and
uniqueness of the functional satisfying (2.2) is proved under the weighted
TV norm. An edge indicator function of the form (2.3) can also be intro-
duced directly in the PDE of the form (1.10). For example, using it in the
PMADE (1.1), we write adaptive PMADE as

oue,t) - (c(Vute.nP)
o aw (6 + VG, * uo(x)\vu(:[j7 t>> | .

It is advantageous to use the current estimate image u in the edge indicator
a(z) in (2.4) instead of the initial noise image ug, that is

Ou(x.t) _ . _CVu(z,DP)
ot U\ ex VG, wulz, 1))

Vu(x,t)) : (2.5)

See Figure 5 for an illustration of using adaptive weight function in the
final restoration results on a synthetic image with multiple objects. As can
be seen using an adaptive edge indicator keeps the edges through higher
iterations. Moreover, integration of two scales (|Vu| corresponds to scale

= 0 and |VG, *u| to scale o) in one term, see Eqn. (2.6) below, can
regularize the boundaries of the level set of 1y at the same time keeping more
features. Numerical experiments will support our claims about the advantage
of interaction of two scales, see Section 4. Also we use the nonlinear function
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a) Original N01sy
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(c) Non-adaptive PMADE, (d) Non-adaptive PMADE, ( =100

A[COEER0

(e) Adaptive PMADE, =20 (f) Adaptive PMADE (2.5), T'= 100

F1GURE 5. Using updated edge indicator function results in bet-
ter final restoration in PMADE (with C; diffusion coefficient and
K = 20). Shown here are the final restoration results at itera-
tions T" = 20,100 for non-adaptive PMADE (2.4) and adaptive
PMADE (2.5). |i|ii|iii|iv|: We show in each sub-figure (i) gray-
scale image (ii) edge map (heat colormap) (iii) close-up gray-scale
image and (iv) close-up edge map. Note that the smoothness pa-
rameter ¢ = 1079, is used in this example, see Eqn. (2.3). Better
viewed online and zoomed in.

¢ (see Eqn. (1.9)) to control the growth adaptively as mentioned. Thus the
general multi-scale minimization problem now reads as

¢(Vu(z))
mlnE ﬁ/ ) — up(z))? dx—'_/ge—k\VGg*u(x)\dx' (2.6)

A well known method to prove the existence and uniqueness of minimizer to

this problem (2.6) is to obtain the lower semicontinuity of the functional F
using the properties of regularizing function ¢.

Remark 2.1. The functional (2.6) with ¢(Vu) replaced by |Gy * Vul*, and
with additional quadratic regularization term (7 [, (Vu|?* dzx), which is re-
lated to robust Geman-Mclure model [21], was considered in [24]. The argu-
ments in [24] can also be extended to the general minimization problem (2.6).
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2.2. General model. Motivated by the regularization functional (2.6) and
previous discussions, we consider here a general forward-backward PDE of

the following form!,

ou , oy (z, |Vu|)Vu

— =d L : 2.7
o~ <1+Kg<!Ga*w|> 27)

Here ¢, is the partial derivative of p(z,y) with respect to the second variable
y = |Vul|. The variational problem could involve explicit dependence on
the function w in the regularization term, ¢ = ¢(z,u(z), Vu(x)), with the
corresponding changes in the evolutionary problem, but we will not study this
general case in this article. For the existence and uniqueness of a solution u,
we need additional assumptions on ¢ which will be discussed at the end of
this section and in Section 3. Observe also that, in the x- and u- independent
case, ¢ and @ are related through ¢'(s) = s¢/(s).

Remark 2.2. The parameter § in (2.6) can be adaptive to account for em-
phasize of fidelity depending on the problem at hand [22, 42], i.e,

D(u,up) = /Qﬁ(x)(u(:v) — up(x))? dx, p=1,2.

The major questions we are now concerned with are:

(1) What are the conditions on ¢ to obtain existence of solutions for the
PDE (2.7)7

(2) What are the admissible inverse mollifier g functions?
The answer to the first question depends on the answer to the second. Let
us briefly discuss this issue; more details will be given in the next section.
If g is merely continuous, then we admit power growth, e.g., o(z,y) = P,
1 < p < 400, and logarithmic growth ¢(x,y) = Iny. If g is locally Lipschitz,
then we need a sort of strong parabolicity condition involving ¢. If the
derivative of g is sublinear near zero (that is, g may be of order s, p > 2,
for small s), then ¢(x,y) enjoys a wide range of possibilities with minor
restrictions such as coercivity and weak parabolicity.

"We will omit the image fidelity term for brevity, since this lower order term does not cause any
special difficulties in the mathematical analysis of the model.
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3. Existence of various types of solutions

3.1. Viscosity solutions. Here we study the equation

ou , oy, |Vul)Vu
— =d Y 1
ot ”(HKg(\G*VuD ’ 31)

which is slightly more general than (2.7) in the sense that we admit arbitrary
space dimension n and generic convolution kernels G.

Throughout this section, we employ Einstein’s summation convention. The
inner product in R", n € N, is denoted by a dot. The symbols C(J; F),
Cuw(T; E), Ly(J; E) etc. denote the spaces of continuous, weakly continuous,
quadratically integrable etc. functions on an interval 7 C R with values in a
Banach space E. We recall that a function u : J — E is weakly continuous
if for any linear continuous functional g on E the function g(u(-)) : J — R
is continuous.

We denote
pip;
aij(x;p) = Sﬁy(% |p|)5ij + Spyy(xa \p\)ﬁ7 (3-2)
1
h(g) = ————. 3.3
D= T Rl (33)

Here 9;; is Kronecker’s delta, and z,p,q € R". As usual, for the sake of
simplification of the presentation, we consider the case of spatially periodic
boundary conditions [2] for Eq. (3.1). Namely, we assume that there is an
orthogonal basis {b;} in R" so that

u(-,x) =u(,z+b), reR" i=1... n. (3.4)
The problem is complemented with the initial condition
u(0,z) = ug(x), (3.5)

where z € R", and wy is Lipschitz and satisfies (3.4). Of course, ¢ (and thus
a) should also satisfy the same spatial periodicity restriction (with respect
to x).

We also make the following assumptions:

Dys Pyas Pyzx are continuous and bounded functions, (3.6)
Pyys Pyyx are continuous for y # 0, and satisfy (3.7
sup lim |y’(|90yy(937 y)| + |90yyx(37>y)|) = 0. (3.8)

reR"™ y%O
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a;;(z,p)6&; > C [mod (aa(x’p ))} G&, k=1,....n, £x,peR”, (39)
8xk ij

Vh e WLRY), he W2(R"), G € W3(R"). (3.10)

Here and below C stands for a generic positive constant, which can take
different values in different lines. The operator mod (see its exact defini-
tion in [42]) maps any symmetric matrix to its suitably defined “positive-
semidefinite part”.

Note that we do not assume g, h and G to be space-periodic. Observe also
that if

9 € Wit 10e(0, +00), g(s) = 0, |g'(s)| = O(s),

()] < O+ g(s), 1g"(9)) + LN < o1y g2, 3.11)

s
then the required conditions for h are satisfied.
Definition 3.1. A function u from the space

C([0,T] x R™) N Lo (0, T, WL (R™)) (3.12)

is a viscosity sub-/supersolution to (3.1), (3.4), (3.5) if, for any ¢ €
C%*([0,T] x R™) and any point (tg,z9) € (0,7] x R™ of local maxi-
mum /minimum of the function u — ¢, one has

op . wy(7,|Vo[)Ve
o v (1 —I—ng(\G*VuD

7 ) <0/ >0, (3.13)

and equalities (3.4), (3.5) hold in the classical sense. A viscosity solution is
a function which is both a subsolution and a supersolution.

Theorem 3.2. i) Problem (3.1), (3.4), (3.5) has a viscosity solution in class
(3.12) for every positive T'. Moreover,

ilélf wo < u(t,z) < supuyg. (3.14)
n Rn

ii) Assume that

‘(V a(x, p) — \/a(zvp)) ‘ < Clx—z|, z,z,p € R". (3.15)

i
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Here va is the square root of a positive-semidefinite symmetric matriz [25].

Then the solution is unique. Moreover, for any two viscosity solutions u and
v to (3.1), (3.4), the following estimate holds

Sup ‘u(tv ) - U(tv )l < (I)(t) Sup |u(07 ) - U(Ov )l (316)
R" Rn

with some non-decreasing continuous scalar function ® dependent on u and
v.

Proof: (Sketch) Note that (3.14) is a direct consequence of the definition of
viscosity solution: e.g., to get the second inequality, one can put ¢ = dt, to
derive that the function u(t, x) — 0t attains its global maximum at ¢ = 0, and
to let 6 — +0. Now, it suffices to formally establish a Bernstein estimate
for supgn |[Vul, for then we would be able to approximate our problem by a
well-posed one in the sense of [28, Chapter 5], and the results would follow
via a well-known technique [3, 2, 6, 14, 42]. Fix T. Differentiating (3.1) with
respect to each xy, k = 1, ..., n, multiplying by 2u,, , and adding the results,
we get

O|Vul? 0? 9
L(|Vul?) = e h(u* VG)a;;i(z, Vu) Fridr, |Vu|
. vc)a“”(x’ vu), |vu|2 b x V@) (e, |Vul) |Vu|2

8pl xla:] 8
— SOyyilfi('r? |VU|)U$l’U,$Z
h(ux VQ) ul
— Vh(u*x VG) - (u * 5VG> J (7, ‘VUD
&Ci
aVG Spyy(l', |vu|)u$luxl a 2

d >
. |Vul

— Vh(u*VGQG) - (u*
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= —2h(u * VG)aij(x, VU) Uy, p, Uz, 2,

+ 2Vh(ux VG) - <u * 8VG> i (2, VU)Ug,z U,
8£L"k Y
+ 2h(u * VG)MUME.U%
aZEk !
+ 29k 96) - (1 % ) oy o [Vl s
k

+ 2h(u * VG)pyaa, (2, [Vl )ug, s,

0*h

0*°G 092G
+ 28‘]]'3% (u i VG) <U * 8x28xj> (u * (%kaml) pr(ajv |VU/DU’$2U/$I€

+OVh(u VG)- (u ) g;;i) oy (s [V ittt
+ 2Vh(u*x VG) - (u * %v—xG) Oy, (T, [VU|)ug,ug,. (3.17)
This eventually yields
L(|Vu?) < C(1 4+ |Vul?), (3.18)
and
|Vul? < C. (3.19)

We omit the details and the hints for they have much in common with the
ones from [42, Section 3]. _

3.2. Dissipative solutions. The concept of dissipative solution (see [32,
31, 51, 49, 15, 20, 41] and an illustrative discussion in [48]) allows us to
significantly relax the assumptions on ¢ and g with respect to the viscosity
solution case.

In this subsection we use Neumann’s boundary condition. The Dirichlet
boundary conditions can also be treated with some technical adjustments.
Let Q be a bounded open domain in R"”, n € N, with a regular boundary 0f2.
We thus consider (3.1), (3.5) to be coupled with

ou
=0, 2 € 0. (3.20)
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The symbol || - || will stand for the Euclidean norm in Ly(£2). The corre-
sponding scalar product will be denoted by parentheses (-,-). We will also
use this notation for duality between L,(£2) and L/, 1(£2).

We assume that for every natural number N, the functions ¢, ¢, are contin-
uous and bounded on € x (1/N, N). The parabolicity conditions (3.6)—(3.9)
are replaced by a weaker one:

(y(x, Ip1))p1 — @y, |p2|)p2) - (D1 — p2) > 0, = € Q, p1,p2 € R™\{0}. (3.21)

We also put weaker assumptions on g, h and G. Namely, h is merely needed
to be Lipschitz, which holds, e.g., if ¢ is non-negative, locally Lipschitz and
1’| < C(1+ g)?, whereas G should be of class W3 (R").

We point out that G * Vu means the convolution VG * u, where u is an
appropriate linear and continuous extension’ of u onto R” which may depend
on the boundary condition (cf. [10]).

Introduce the following formal expression

_ (e, [Vu(t, 2)[)Vo(t, z)
()t w) =7 K ¢(|G* Vo[ (t,2))

Definition 3.3. Let ug € Lo(2). A function u from the class
u € Cy([0,00); Lo(2)) N L1 (0, 00; W) (3.23)

is called a dissipative solution to problem (3.1), (3.5), (3.20) if, for all regular®
functions v : [0,00) x 2 — R satisfying the Neumann boundary condition
(3.20) and all non-negative moments of time ¢, one has

(3.22)

lu(t) = w(t,-)|?
<o = v(0, )]
t o du(s, )
— [ 2y (@(v(s, ), Vu(s) — Vu(s, )) + su(s) —o(s,-) )| ds,
Jor -

(3.24)

where 7 is a certain constant depending on ¢, G, ¢ and v (in particular, y=1
provided g = 0).

'The simplest possible extension is letting 7 to be zero outside of Q. Another option is to use
Hestenes-Seeley-like extensions [1] which conserve the Sobolev class of w.

SHere “regular” means that v and Vv are uniformly bounded and sufficiently smooth, and
|Vu| # 0 a.e. in (0,00) x Q.
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Usual argument [48] shows that these dissipative solutions possess the
weak-strong uniqueness property (any regular solution is a unique dissipative
solution).

Theorem 3.4. Assume

Jim inf oy (z, y)y = +oo, (3.25)
lim sup ¢, (x, y)y = 0. (3.26)
Y0 2e

Assume also that either we have strong parabolicity, namely,

(py(, [P1))p1 — @y (@, |p2|)p2) - (p1 —p2) > Clp1 —paf*, © € Q, p1,p2 € R"\{0},
(3.27)

or better reqularity of h and G,
he W2(R"), G e Wi(R"). (3.28)

Let uy € Lo(R2). Then there exists a dissipative solution to problem (3.1),
(3.5), (3.20).

Remark 3.5. In the case when (3.28) but not (3.27) holds, the test functions
for (3.24) should additionally satisfy the condition

div (py(z,|Vo])Vv) € Lo(0, +00; La(€2)), (3.29)

which, by the way, automatically holds provided ¢ is more regular, e.g.,
satisfies the assumptions (3.6) — (3.8) of the previous subsection.

Remark 3.6. The total variation flow [4] corresponds to the case g = 0,
o(z,y) = Iny, so it satisfies (3.21) but is ruled out by (3.25) and (3.26). We
will consider this particular form of ¢ (with generic g) in the next subsec-
tion (cf. Remark 3.18). The existence of dissipative solutions for the total
variation flow is an open problem. We however believe that the hypotheses
of Theorem 3.4 may be significantly weakened.

Proof of Theorem 53./. Let us formally derive some a priori bounds and
inequality (3.24) for the solutions to problem (3.1), (3.5), (3.20). Firstly, we
formally take the Lo(€2)-scalar product of (3.1) with 2u(t), and integrate by

parts:
d, o 20y(z, |Vul)Vu
_ \V4 = 0. 3.30
dtHuH + <1+Kg(|G*Vu\)’ “ ( )
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Since the second term is non-negative due to (3.21) and (3.26), (3.30) a priori
implies that

[l 20, 400520) < [luoll (3.31)
Thus,

|G+ Vu| < [[VGl[la] < Cllu] < C. (3.32)

Consider the scalar function ¥(y) = inf,cq ¢, (z,y)y* y > 0, ¥(0) = 0. From
(3.30) and (3.32) we can conclude that

+00
//\D(\Vu])dxdtSC’HuoH. (3.33)
0

The function ¥(y) is non-negative, continuous (for y = 0 this follows from
(3.26), for positive y it can be derived from the compactness of ) and satisfies
the condition lim, . ¥(y)/y = 4+00. By the Vallée-Poussin criterion [18],
Vu a priori belongs to a certain weakly compact set in Ly(0,7; L) for any
T >0.

Fix a regular test function v : [0,00) x Q — R satisfying the Neumann
boundary condition (3.20). Adding (3.1) with the identity

v , oy(x, |Vo|)Vu , ov
7 d(v) — ——
o= 9 <1+Kg(\G*Vv|) Fdive() =

which can be understood, e.g., in the sense of distributions, and formally
multiplying by 2[u(t) — v(t)] in Ly(Q2), we find

d 2 py(2, [Vul)Vu — ¢y (2, Vo)V
ail" =l +2< T+ K g(|G * Val) ’V(“_”)>
=2 ([h(G % Vv) — h(G * Vu)]p,(z, |Vv|) Vv, V(u —v))

—2(®(v), Vu — Vo) — 2 (%, w— v) . (3.34)
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If (3.27) holds, then, due to (3.32), (3.26) and boundedness of 2, we have

2 ([h(G * Vv) — h(G * Vu)]p,(x, |Vv|) Vv, V(u —v))
py(, [Vul)Vu — ¢y (2, [Vo]) Vo
_2< 1+ K g(|G % Vu|) ,V(u—v))
< OV NG * V(u =) V(u =), = Ci[V(u = )|
< CIIVG|u = vV (u = v)]| = CLl[V(u—=v)|I* < Cllu = vl*, (3.35)

where ) is the doubled constant from (3.27).
If (3.28) and (3.29) hold, then, by virtue of (3.21), we get
2 ([A(G + Vo) = (G * Vu)py(z, Vo) Vo, V(v —v))
oy, |Vu|)Vu — ¢, (z, |Vo|) Vo
_9 _
( 1+ K (|G * Val) Vi)
< 2(div [[M(VG * @) — h(VG = 0)]py(z, |[Vv|)Vv],u — v)
=2([h(VG * 1) — h(VG * 0)] div[g,(z, |Vv|)Vu],u — v)
. [OVG . [OVG
+ 2( [Vh(VG*u) < o *u) — Vh(VG %) ( o *v)]
ov
x oy, [Vel) g u—v)
< OIVG (@ = 0) ||z [l divip, (z, [Vo[) Vol lflu — v]]
+2 ([Vh(VG x ) — VR(VG % 0)] <86va * ﬂ) oy, \Vv\)g;',u - v)

+ 2 (Vh(VG * D) (aava * (0 — 27)) oy, \Vv\)aa;}',u — v)

< CIIVG|[Idivigy(z, Vo) Vol[la = ofl[u — v]]
+ CIVGlallVGEwlla = ollllu — ol + ClIVGlwlla = ol |lu — v]]
< Cllu—v|>. (3.36)

Note that this C' can be set to be zero when g = 0.
Thus, in both cases, there is v > 0 such that

ov

%Hu — UH2 < (Inv)||u — UH2 —2(®(v),Vu— Vov) — 2 (E,u — U> . (3.37)

By Gronwall’s lemma, we infer (3.24).
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To prove the theorem, we can approximate our problem by a more regular
one, and pass to the limit in inequality (3.24) maintaining its sign (cf. [32,
48]), since, due to the observations above, without loss of generality the

sequence of corresponding solutions converges weakly in L1(0,7; W) and
weakly-* in L (0,T; Ly) for any 7' > 0. |

3.3. Weak and strong solutions. For ¢ of power and logarithmic growth,
we can show existence of weak solutions. Moreover, in the first case the so-
lutions are locally Lipschitz and their gradients are Holder continuous. We
maintain {2 to be a bounded open domain in R" with a regular boundary. We
keep the Neumann boundary condition, but generalization to the Dirichlet
case is straightforward. We assume that g : [0, +00) — [0, +00) is continu-
ous', and G € WZ(R").

Firstly, let ¢(z,y) = ciy?™t, p > 1, ¢; > 0. To simplify the presentation,
in the sequel we assume that ¢; = 1.

Definition 3.7. A function u from the class

u € Cy([0,TT; La(2)) N Ly (0, T; Wy ()W, 1 (0, T [La W, ()]) (3.38)

is called a weak solution to problem (3.1), (3.20) if, for all v € Ly(Q) x W, ()
and a.a. t € (0,7, one has

du (p — 1)|VulP~2Vu
— = 0. 3.39
<dt’v>+<1+Kg(|G*Vu\)’vv (3.39)
Theorem 3.8. Let p(z,y) =y !, p > 1, ug € La(Q). There exists a weak
solution u to (3.1), (3.20) satisfying (3.5).

Proof: (Sketch) Although the operator

: IVul[P~2Vu
—div
1+ K g(|G * Vul)

is not monotone, it is still possible to adapt the Minty-Browder technique
to prove Theorem 3.8. The key point is to pass to the limit. Let {ux} be
a sequence of approximate solutions satisfying the a priori estimates (3.31),
(3.32) and (3.33) (with T instead of +00). We have to prove that its limit
u (in the weak-* topology of L. (0,T; L)) is a solution. Estimates (3.31),
(3.32) and (3.33) imply that the solutions u; belong to a uniformly bounded
set in the space (3.38). Owing to [44, Corollary 4], without loss of generality

IThus, for weak solutions, ¢ is not needed to be locally Lipschitz.
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we may assume that u, — u in C([0,T]; [W3(2)]*). One can check that
the extension operators mentioned in the previous subsection are continuous
from [W3(Q)]* to [W3(R™)]*. Therefore, i, — @ in C([0,T]; [W3(R™)]*).
Thus, G*Vu, — G*Vu in C([0,T]; L (2)). The operator G*V : Ly(Q2) —
WL(Q) c C(Q) is continuous. This implies that G * Vu, — G * Vu in
C([0,T] x Q). Due to the continuity of the Nemytskii operator on the space
of continuous of functions [27], we conclude that h(G * Vug) — h(G * Vu)
uniformly on [0,7] x Q. Then we can manually proceed similarly to the
classical monotonicity argument [17, 19, 30] but with necessary changes. We
omit the further details. |

Remark 3.9. In a similar way, Theorem 3.8 may be generalized onto the
case of more general ¢(z,y) with growth as y — oo and decay as y — 0 of
order |y|P~ L.

We next obtain the local Lipschitz-regularity of a weak solution, as well as
the local Holder continuity of its gradient.

Theorem 3.10. Assume that h is Lipschitz and u is a weak solution to (3.1),
(3.5), (3.20), which is locally bounded, together with its gradient. Then there
exists a € (0,1) such that for any compact set K C (0,T) x Q there is M > 0
so that

utr, @) = ulte, 22)] < M (Jor =25 + VIl =l ), (01,20), (t2,22) € €

(3.40)
and
Vut, 21)—Vau(ts, 12)| < M (]xl — |+t — tgy) C(t, 1), (ta,2) € K.
(3.41)

Remark 3.11. For the degenerate case p > 2 the behaviour of solutions
is a purely local fact and the local boundedness follows for any local weak
solution. On the contrary, in the singular case 1 < p < 2, it must be derived
from global information and may require extra assumptions. Restricting the
values of p to the range (n2—J:7’2, 2) suffices though. Note that for applications
in imaging n = 2 and no extra assumption is needed.

Remark 3.12. The constant M is determined by the parabolic distance from
IC to the parabolic boundary of (0,7) x 2 and by the supremum of v and
Vu on K, cf. [16, Chapter IX]. The constant « depends exclusively on p and
dimension.
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Sketch of the proof. Equation (3.1) with o(x,y) = y?~! can be written in
the form

ou
ot
where h = (p—1) h(G*Vu). Similarly to the proof of Theorem 3.8, one shows
that G % Vu is continuous on [0, 7] x Q. Therefore h = (p — 1) h(G * Vu) is
continuous and bounded from below by a positive constant. Moreover, since

h is Lipschitz, the partial derlvatlves = (p—1)Vh(G*Vu)- (W—G * u) are

bounded. Thus, the structure condltlons of [16, Chapter VIII, pp. 217-218§]
are fulfilled. The local regularity of the solution now follows from the general
results of [16].

Concerning the optimal Lipschitz regularity of the weak solution we invoke
the results of [8], with p constant. Indeed, condition (7) on page 912 of [§]
holds since h is bounded above and below by positive constants and Lipschitz
in space. Moreover, h is Holder continuous in time because the same holds
for the nonlocal term G % Vu, due to the fact that u is Holder continuous in
time up to the lateral boundary 0f) (see [16, Chapter III]). u

Now we treat the logarithmic growth case. Again, just to simplify the
presentation, we merely consider ¢(z,y) = Iny. Let M be the Banach
space of finite Radon measures on (0,7") x €. It is the dual of the space
Co((0,T) x Q) (the space of continuous functions on (0,7") x Q that vanish
at the boundary of this cylinder). For v € M, and ® € C([0,T] xQ), ® > 0,
we define the weighted partial variation of v as

PVg(v) = sup (v, div ) v, - (3.43)
PECE((0,7) <OR"): []<®

Observe that if v € Ly (0, T; W{(Q)), then PVg(v) is equal to

fo Jo ®(t, 2)|Vu(t, z)| dz dt.
The partial variation of v is

PV (v) = PVi(v). (3.44)

= div (ib(t, x)]Vu|p_2Vu> : (3.42)

Define the “bounded partial variation space”!! BPV as
{ve M‘HUHBPV = llollw + PV (0) < +00}
Owing to lower semicontinuity of suprema, we have

IWe are not aware if anybody has introduced this space previously.
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Lemma 3.13. For any non-negative function ® € C ([0, T]xQ) and a weakly-
* converging (in M) sequence {v,,} C BPV, one has

PVg(v) < lim inf PVg(vy,,). (3.45)

m——400

Using (3.45) with ® = 1, we can show that BPV is a Banach space.

Definition 3.14. A function u from the class
u € Cyu(0,T; Ly(Q)) N BPV NWZL(0,T; Ly " WEHQ)]Y) (3.46)

is called a weak solution to problem (3.1), (3.20), (3.5) with ¢(x,y) = Iny
and uy € Lo(Q) if

i) there exists z € Loo((0,T) x Q), ||2][z (0m)x0) < 1, so that for all v €
LQ A WII(Q)J

<%,U> + (h(G * Vu)z, Vo) =0, (3.47)

a.e. on (0,7);
i) for all w € Ly(0,T; W(Q)) N W0, T; Ly(2)), one has

T

Jol) = w@I+2 [ (Gh6(s)) ds 42 Pligaus(w

< lluo = w(O)|* + [lo(T)I* = lw(0)I* + 2/ (h(G * Vu(s))z(s), Va(s)) ds;

: (3.48)

iii) (3.5) holds in the space Lo(2).

Remark 3.15. The motivation for this definition is the following one. Con-
sider, formally, a pair (u, ) of sufficiently smooth functions satisfying (3.47),
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(3.48), (3.5). Then

2/T (W(s),(u—w)(s)) ds+2/T (‘fl—f(s),u(s)> ds

Hence,

Therefore,
/(h(G*Vu(s)) Vu(s)]) ds < / (G # Vu(s))=(s), Vu(s)) ds.

On the other hand,
hG % Vu)|Vu| > h(G * Vu)z - Vu.
All this can be true if and only if

|IVu| = z - Vu,
1.e. v
u

But (3.47),(3.54) is a weak form of (3.1),(3.20).

25

. (3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

Theorem 3.16. Let p(x,y) = Iny, ug € Lo(S2). There exists a weak solution

o (3.1), (3.20),(3.5).

Proof: (Sketch) Let {(ux,zr)} be a sequence of approximate solutions to
(3.47),(3.54),(3.5) satisfying the a priori estimates (3.31), (3.32) and (3.33)
(with ¢(z,y) = Iny). The approximate solutions can be chosen to satisfy
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(3.48) with T replaced by any ¢ € [0, 7], u replaced by wuy, and PV, gevy) ()
t

replaced by [(h(G * Vug(s)), |Vug(s)|) ds. We have to prove that their limit

0
(u,z) (in the weak-* topology of L.o(0,7; Ls) X Ly(0,7T; Ly)) is a weak
solution. Estimates (3.31), (3.32) and (3.33) imply that the solutions wuy
belong to a uniformly bounded set in the space (3.38) with p = 1. Similarly
to the proof of the previous theorem, h(G*Vuy) — h(G*Vu) in C([0, T]x Q).
Now we can pass to the limit in the first term of inequality (3.48) as in the
previous subsection, cf. [32, 48], in the third term due to Lemma 3.13, and,
quite straightforwardly, in (3.47), (3.5) and the remaining terms of (3.48). =

Remark 3.17. In view of lack of monotonicity/accretivity, uniqueness of
weak solutions in Theorems 3.8 and 3.16 is an open problem.

Remark 3.18. The total variation flow equation (¢ =0, ¢(z,y) = Iny) was
treated in [4] via monotonicity/accretivity arguments such as the Crandall-
Liggett theory. Since the operator

L Vu| 1Vu
div <1+Kg(|G*vu\) (3:55)

is not accretive in any sense (for g # const), we had to use our (more straight-
forward and less elaborate) approach. The case g = 0 is not excluded from
our results: we have obtained existence of weak solutions for the total vari-
ation flow (with Dirichlet and Neumann boundary conditions) in a slightly
different setting than in [4] and by a simpler method.

4. Experimental results and discussions

In what follows, we provide some experimental results using our adaptive
forward-backward diffusion flows in image restoration. All the images are
rescaled to [0, 1] for visualization and the PDE (2.7) is discretized using
standard finite difference scheme via additive operator splitting [50] with
time step At = 0.2. We used a non-optimized MATLAB implementation
on a 2.3 GHz Intel Core i7, 8GB 1600 MHz DDR3 Mac Book pro Laptop.
The pre-smoothing parameter ¢ = 1 in (2.7) is fixed for additive Gaussian
noise levels o,, = 30 used here. Figure 6 shows the synthetic Shapes and real
Brain images (ground truth) and its corresponding noisy versions which are
utilized in our experiments.
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(a) Shapes (b) Brain

FI1GURE 6. Synthetic Shapes and real Brain images used in our
experiments. (a) Noise-free (ground-truth) images. (b) Noisy
images obtained by adding Gaussian noise level o,, = 30.

4.1. Effect of inverse mollification, contrast parameter. We first con-
sider the effect of inverse mollification function:

1
1+ K g(|Gy * Vul)

in edge detection under noise for different choices of ¢ and K. Note that
the diffusion coefficient acts like an edge detector within PDE based image
restoration thereby guiding the diffusion smoothing process in and around
edges. Figure 7 shows the computed inverse mollification function (4.1) for
different choices of K and power growth in g(-) for the noisy Shapes image
(noise standard deviation o, = 30, see Figure 6(a) right). Higher growth in
functions ¢(|G, * Vu|) = |G, * Vul?, p > 2 retains noisy edges and similarly
lower K as well. Moreover, we see that the contrast parameter K controls
the density of edges and can be chosen adaptively [37].

(4.1)

4.2. Effect of different exponent values in power growth diffu-
sion. Next, we compare restoration results using PDE (2.7) with and with-
out inverse mollification function (4.1). We consider the power growth
oy (z,|Vul|) = |Vul” for different exponent values p = 1,2,3,4,5 as the diffu-
sion function. Figure 8(a) shows restoration of noisy Brain image (noise stan-
dard deviation o, = 30, see Figure 6(b) right) without inverse mollification
function, i.e. taking g = 0, and Figure 8(b) with g(|Gy * Vu|) = |Gy * Vul*.
As can be seen, taking the non-trivial inverse mollifier function stabilizes
the final smoothing result when compared to the smoother results for higher
exponent p values.
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%ok R

(a) Power growth for the function g(|Gy * Vu|) = |Gy * Vu|’ where p = 1,2,3,4,5 and K =
10~* fixed

HHO #]O
All® All®

(b) Contrast parameter K = 1071,1072,1073,107%,107° with g¢(|Gy * Vu|) = |Gy * Vu|?
fixed

FIGURE 7. Effect of inverse mollification function 1/(1 +
Kg(|G, * Vu|)) with respect to g¢(-) and contrast parameter
K on noisy synthetic Shapes image (noise standard devia-
tion 0, = 30, see Figure 6(a) right). We show [0,1] nor-
malized 1/(1 + Kg(|Gy * Vul|)) when: (a) ¢(|G,*Vu|) =
|Gy Vul? for p = 1,2,3,4,5 with K = 1074, and (b) K =
1071,1072,1073,107*,107° with g(|Gy * Vu|) = |Gy * Vu|*. Bet-

ter viewed online and zoomed in.

4.3. GRADE vs. our approach. Finally, we provide a comparison of
Catté et al. [10] GRADE (1.8) to illustrate qualitative differences in restora-
tion with our inverse mollification term based PDE (2.7), with g(|G, * Vu|) =
Gy % Vul®, and set K = 1074 In our PDE (2.7), we consider three cases
for the diffusion function: Perona-Malik non-convex regularization functions
(1, ¢2 in (1.11)), and total variation regularization ¢(s) = s. Remem-
ber that the corresponding ¢ in (2.7) may be recovered from the relation
oy(z,y)y = ¢'(y). In Figure 9 we show restoration results for the noisy
Shapes image (noise standard deviation o,, = 30, see Figure 6(a) right) cor-
responding to diffusion coefficients ¢, from the Perona-Malik non-convex reg-
ularizations (PM1 for ¢, PM2 for ¢,) and the total variation (TV) regulariza-
tion ¢, (y) = 1/y (the corresponding PDE is % plus the diffusive term (3.55)
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""\
| -
(a) g=0

() g(|Gy * Vu|) = |Gy * Vu|?

F1GURE 8. Stabilizing property of the inverse mollification func-
tion when combined with power growth numerator. Solution
of the PDE (2.7) with power growth ¢,(x,|Vu|) = |Vul’, p =
1,2,3,4,5 (left to right) without inverse mollification (a) g = 0,
and with (b) g(|G, * Vu|) = |G, * Vul|'. In both cases we used
K = 10~* and terminal time 100. It is clear visually that the in-
verse mollification has a stabilizing effect in keeping homogenous
regions.

equals zero; for technical reasons, we actually employ ¢,(y) = 1//€+ 3>
with € = 107%). As can be seen, by comparing the contour images, GRADE
tends to smooth and displace the level lines of resultant image whereas our
adaptive schemes obtain better preservation of level lines in both Perona-
Malik and total variation diffusion. Table 1 lists well-known error metrics in
the image processing literature for comparing GRADE against our adaptive
PDE methods and supports visual comparison results that adaptive schemes
are better at retaining structures while removing noise. Deeper quantitative
analysis of the numerical examples is deferred to an upcoming work and we
refer to [38] for an earlier attempt in this direction with a strictly convex
regularization.
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(d) Our-TV

FIGURE 9. GRADE Vs our approach on noisy synthetic Shapes
image (noise standard deviation o,, = 30, see Figure 6(a) right).
(a) GRADE Our adaptive PDE with main diffusion function (b)
PM1 ¢; in (1.11), (c¢) PM2 ¢9 in (1.11) (d) TV ¢. In each row
(ifii|iii|iv): we show (i) final denoised results, (ii) contours from
final denoised results (iii) close-up of the contour map, and (iv)
close-up surface. In PM1, PM2 we used K = 10~*, with terminal
time 7' = 50 and in TV terminal time 7" = 200.
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Metric | Noisy GRADE Our-PM1 Our-PM2 Our-TV
ISNR |0 1.1120  4.6094 8.4478  5.824
SNR 16.1925 17.3044 24.3237  24.6402  31.5589
PSNR |18.5571 19.6691 26.6883  27.0049  33.9235
MSSIM | 0.3333  0.7177  0.8776 0.8529 0.9591
MSE  1906.4984 701.7305 139.395  129.5954 26.3467
RMSE |30.1081 26.4902 11.8066  11.384 5.1329
MAE ]24.0084 14.7066 5.5361 6.2528 2.2002
MAX | 132.8668 208.9502 150.7193 159.5855 126.144
TABLE 1. Error metrics comparison for PDE based smoothing
results on noisy synthetic Shapes image obtained with noise stan-
dard deviation o,, = 30. Higher improved signal to noise ratio
(ISNR), signal to noise ratio (SNR), peak signal to noise ra-
tio (PSNR), mean structural similarity (MSSIM) indicate better
restoration whereas lower mean squared error (MSE), root mean
square error (RMSE), maximum absolute error (MAE), maxi-
mum absolute difference (MAX) indicate better restoration.
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