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1.Introduction
The goal of this paper is to establish existence and geometric properties

of nonlocal optimal design problems. This class of problems arises in the
study of best insulation devices. Motivations also come from semi-conductor
theory, plasma physics, flame propagations etc. When taking into account
eventual turbulence or long-range integrations, the model becomes more ac-
curate when ruled by nonlocal operators, such as (−∆)α. In particular, the
model becomes sensible to interior changes in the temperature; local ver-
sions of the problem can only feel changes on the boundary of the body to
be insulated.

Let us recall that the fractional Laplacian (−∆)α is given by

(−∆)αu(x) = Cn,αPV

∫
Rn

u(x)− u(y)

|x− y|n+2α
dy,

where PV is the Cauchy principal value and Cn,α is a normalization constant.
The free boundary optimization problem we study here takes the following
formulation: given a smooth domain D ⊂ Rn, a nonnegative function ϕ : D →
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R, and a positive number ω > 0, minimize the α-energy

Jα(u) :=

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dx dy (1.1)

among competing functions u within the functional set

K(α, ω, ϕ) :=
{
u ∈ Hα(Rn)

∣∣ u = ϕ in D and Ln({u > 0} ∩Dc) = ω
}
,

(1.2)
where Ln is the n-dimensional Lebesgue measure, and Hα(Rn) is the α-
fractional Sobolev space (see, for example, [8]), i.e. the set of functions u for
which

‖u‖Hα =

√∫
Rn

(1 + |ξ|2α)|û(ξ)|α dξ <∞.

By usual methods in the calculus of variations it is hard to perform volume
preserving perturbations as to derive energy estimates. In turn, proving ex-
istence of a minimizer u as well as regularity properties of u and its free
boundary ∂{u > 0} ∩ D is in general difficult tasks from the mathematical
view point.

Local versions of the problem have been well studied in the literature, see
[1, 2, 5, 17, 18] among others. A celebrate approach for tackling problems
involving volume constrains is based on penalization techniques. The idea is
to introduce an artificial parameter in the energy functional which charges
for configurations that exceed the volume budget. For fixed values of the
penalization parameter, the penalized functional can then be analyzed by
free boundary variational methods. Nonlocal free boundary variational tools
were first introduced in [6]. Thus, the starting point of this current paper is to
obtain regularity results for minimizers of nonlocal free boundary problems
with fixed penalized parameter. This requires adjustments of existing free
boundary methods from [6]; some extra work is though. Of course all analytic
and geometric estimates obtained depend upon the penalized parameter, and
they blow-up as the penalization term goes to infinity.

The auxiliary penalization problem we consider here takes the following
set-up. Fixed an ε > 0, we define the ε-energy functional

Jε(v) :=

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2α
dx dy + fε (Ln({u > 0} ∩Dc)) , (1.3)
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where

fε(s) :=

{
1
ε(s− ω) for s ≥ ω,
ε(s− ω) for s ≤ ω.

Define the functional set

K :=
{
u ∈ Hα(Rn)

∣∣ u = ϕ in D
}
, (1.4)

and then, the penalized problem becomes

find u ∈ K such that Jε(u) = inf
v∈K

Jε(v). (1.5)

As previously mentioned, the minimization problem (1.5) is similar to the
one treated in [6]. However, there’s no such thing as a free lunch – the key
and in general hard issue, though, is to prove that the aimed volume is
attained for small (but still positive) values of the penalization parameter.
This is only possible by means of a refined control on the rate between volume
decreasing versus energy increasing, of competing shapes. The appropriate
tool for such a control is the so-called Hadamard’s variational formula, whose
local (smooth) version is known for over one-hundred years, [13]. Hence, one
of the main difficulties we handle in this work is to derive a measure-theoretic,
α-fractional Hadamard’s formula for domain variations. This is accomplished
in section 4.

Another difficulty in dealing with nonlocal optimal design problems is the
lack of local information on the unknowns. To bypass this inconvenience, we
will make use of the extension property discovered in [7]. We consider the
upper half-plain

Rn+1
+ = {(x, y) ∈ Rn × R+},

and set β = 1− 2α. For u ∈ C2(Rn) we solve the Dirichlet problem

− div(yβ∇v) = 0 in Rn+1
+ , (1.6)

v(x, 0) = u(x).

A solution to such a problem can be obtained by convolution with the Poisson
kernel Pn,α(x, y) of the operator div(yβ∇) in Rn+1

+ , see [7]. We have

Pn,α(x, y) = qn,α
y2α

(x2 + y2)(n+2α)/2
,

where qn,α is such that
∫
Pn,α(x, 1) dx = 1. From [7] we also know that

Theorem 1.1. We have (−∆)αu(x) = −lim
y→0

yβvy(x, y).
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Because of the divergence form of the elliptic operator in (1.6), a Dirichlet
integral is available. We also observe that if u solves (1.6), one may extend
it evenly across the hyperplane {y = 0}, and the new equation satisfied by u
will be

− div(|y|β∇v) = 0 in Rn+1,

v(x, 0) = u(x).

For any open subset Ω of Rn+1, we introduce the weighted Hilbert space

H1(β,Ω) :=
{
u ∈ L2(Ω+); |y|β/2∇u ∈ L2(Ω)

}
,

where Ω+ = Ω ∩ Rn+1
+ . We set

Iε(u,Ω) :=

∫
Ω

|y|β|∇u|2 dx dy + fε(Ln({u > 0} ∩ Rn ∩ Ω)), u ∈ H1(β,Ω).

(1.7)
The study of penalized problem (1.5) is now replaced by the study of local
minimizers of Iε, i.e. functions u that are in H1(β,B1) and satisfy

∀B ⊂ B1, ∀v ∈ H1(β,B) with v = u on ∂B, Iε(u,B) ≤ Iε(v,B). (1.8)

The paper is organized as follows: in section 2 we list few analytic and
geometric properties we will need for the study of the (fixed) penalized func-
tional (1.7). Still in section 2 we show that a minimum of Iε is α-Hölder
continuous, which corresponds to the optimal regularity for the free bound-
ary problem. We also show that it is non-degenerate. The constants though
do depend on the penalized parameter ε and they blow-up as ε → 0. In
section 3 we obtain measure estimates on the free boundary. In section 4 we
derive a fractional Hadamard’s variational formula and in section 5 we prove
that for ε > 0 small enough – but still positive – the volume constraint is
verified. This finally provides the existence of a minimum for the fractional
optimization problem with volume constraint.

2.Preliminaries
We start off by listing few properties we will need along the article. Initially,

let us set, for the sake of notations, that a minimizer of (1.8) will be denoted
by u instead of uε. Here and afterwards by Br(x, y) we denote the ball in
Rn+1 centered at (x, y) and of radius r. When x = 0, we simply write Br. We
will also write Bn

r (x) for the ball in Rn centered at x with radius r. We now
prove existence of minimizers for the ε-penalized problem.
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Lemma 2.1. Given a smooth boundary datum, ϕ(x, y) defined on ∂B1∩Rn+1
+ ,

problem (1.8) has an absolute minimum u.

Proof : Take u0 with Ln({u0 > 0}) ≤ ω, then Iε(u0) ≤ C (uniformly in
ε), also Iε ≥ −ω. Therefore, there exists a minimizing sequence {uk}k∈N.
The sequence is bounded in Hα(B1) and, because the embedding Hα ↪→
L2n/(n−2α) is compact, the sequence {uk}k∈N converges (up to a subsequence)
to a function u strongly in L2n/(n−2α) and almost everywhere in Rn. Thus,

Ln({u > 0}) ≤ lim inf
k→∞

Ln({uk > 0})

and ∫
B1

|y|β|∇u|2 ≤ lim inf
k→∞

∫
B1

|y|β|∇uk|2.

Hence, u ∈ H1(β,B1) and since fε is a continuous and increasing function,
one has

Iε(u) ≤ lim inf
k→∞

Iε(uk) = inf
v∈H1(β,B1)

Iε(v).

Therefore u is an absolute minimizer of Iε in H1(β,B1).

For the behavior of a minimizer in its positivity set, we state the following
proposition and refer the reader for its proof to Proposition 3.1 of [6].

Proposition 2.1. Let u be a local minimizer in (1.8), and x0 ∈ Rn be such
that u(x0, 0) > 0. Then

lim
y→0
|y|βu(x0, y) = 0.

Moreover, if u is defined in Rn+1, is positive outside the hyperplane {y = 0}
and satisfies div(|y|β∇u) = 0 in its positivity set, together with the estimate
u(x, y) = O(|(x, y)|α), then (−∆)αu(·, 0) = 0 in Rn ∩ {u > 0}.

We now turn our attention to optimal Hölder estimates for minimizers. In
the proof of the following theorem we will use the characterization of Hölder
functions, [14]: given α ∈ (0, 1), if B is a ball in Rn+1, and if there are C > 0
and p ∈ (1, n+ 1) such that

∀x ∈ B, ∀r < dist(x, ∂B),

∫
Br(x)

|∇u|p ≤ Crn+1−p+pα, (2.1)

then u ∈ C0,α(B).

Theorem 2.1 (Optimal regularity). If u is a local minimizer of Iε posed in
B1, then u ∈ C0,α

loc (B1).
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Proof : For every r ∈ (0, 1) and (x0, y0) ∈ B1, let us consider the harmonic
replacement of u in Br(x0, y0) (we have chosen r < 1− |x0|), i.e. the solution
of

− div(|y|β∇hx0,y0r ) = 0 in Br(x0, y0), hx0,y0r = u on ∂Br(x0, y0). (2.2)

From the translation invariance in x, we may assume x0 = 0. We will use the
notation hr for the solution of (2.2). Note that u is an admissible Dirichlet
datum (see Theorems 2.2 and 2.3 of [6]). Note also, that for all r > 0 one
has Iε(u,Br) ≤ Iε(hr, Br). The latter implies∫

Br

|y|β|∇u|2 ≤
∫
Br

|y|β|∇hr|2 + Crn. (2.3)

Note that although the constant C depends on ε, but this does not bother
us, because ε will always be fixed (maybe very small but fixed).

The rest of the proof is the same as of Theorem 1.1 in [6]. We bring it here
for reader’s convenience.

Due to the identity

∫
Br

|y|β∇hr · ∇(u− hr) = 0, we get from (2.3)∫
Br

|y|β|∇(u− hr)|2 ≤ Crn.

Therefore, if r < ρ < 1,∫
Br

|y|β|∇u|2 =

∫
Br

|y|β|∇(u− hρ + hρ)|2

≤ 2

(∫
Bρ

|y|β|∇(u− hρ)|2 +

∫
Br

|y|β|∇hρ|2
)

≤ Cρn + 2

∫
Br

|y|β|∇hρ|2

≤ Cρn + C

(
r

ρ

)n+1+β ∫
Bρ

|y|β|∇hρ|2 by Theorem 2.6 of [6]

≤ Cρn + C

(
r

ρ

)n+1+β ∫
Bρ

|y|β|∇u|2. (2.4)

Let now δ < 1/2. If ρ = δk, r = δk+1, µ = δn, then (2.4) gives∫
Bδk+1

|y|β|∇u|2 ≤ Cµk + Cµδ2(1−α)

∫
Bδk

|y|β|∇u|2,
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which in turn, by choosing δ such that q = Cδ2(1−α) < 1 and using induction,
gives ∫

Bδk

|y|β|∇u|2 ≤ C2

1− q
µk−1.

Therefore, for all r < 1/2 ∫
Br

|y|β|∇u|2 ≤ Crn. (2.5)

Now, if α ≤ 1/2, then β ≥ 0, and∫
Br

|∇u| ≤
(∫

Br

|y|−β
)1/2(∫

Br

|y|β|∇u|2
)1/2

≤ Crn+α,

which is (2.1) with p = 1, and so u ∈ C0,α(B1/2).
In case of α > 1/2, we get from (2.5)∫

Br

|∇u|2 ≤ r−β
∫
Br

|y|β|∇u|2 ≤ Crn−β = Crn−1+2β,

which is (2.1) with p = 2.

Next we prove the non-degeneracy of a minimizer.

Theorem 2.2 (Non-degeneracy). If u is a local minimizer of (1.8), then
there exists a constant C0 > 0 such that for all x ∈ Bn

1/2(0) ∩ {u > 0},

u(x, 0) ≥ C0dist(x, ∂{u > 0})α.

Proof : Assume that the conclusion of the theorem is not true. It means that
for every C0 > 0 there is a point z ∈ Bn

1/2(0) ∩ {u > 0} such that u(z, 0) <

C0dist(z, ∂{u > 0})α. We denote by d the distance of the point (z, 0) from
the free boundary. We also define δ := u(z, 0). The contradictory assumption
implies that δ can be made as small as we wish.

From the Harnack inequality, [11], there exists c > 0 such that u ≤ cδ in
Bd(z, 0). Now if γ is a smooth nonnegative function such that

γ(x, y) = 0 in Bd/2(z, 0), γ(x, y) = 2c in B7d/8(z, 0) \B3d/4(z, 0),

we define

v(x, y) := min(u(x, y), δγ(x, y)).



8 E. TEIXEIRA AND R. TEYMURAZYAN

Note that v ∈ H1(β,Bd(z, 0)), and v = u at the boundary of the ball, so it
is an admissible test function for (1.8). Therefore

Iε(u,Bd(z, 0)) ≤ Iε(v,Bd(z, 0)). (2.6)

On the other hand, from the definition of v one has∫
Bd(z,0)

|y|β|∇v|2 ≤
∫
Bd(z,0)

|y|β|∇u|2 +O(δ),

and since v = 0 in Bd/2(z, 0), then

Ln({v > 0}) ≤ Ln({u > 0})− Ln(Bd/2(z, 0) ∩ Rn),

which implies that

fε
(
Ln({v > 0})

)
< fε

(
Ln({u > 0})

)
.

Therefore,

Iε(u,Bd(z, 0)) > Iε(v,Bd(z, 0)),

which contradicts (2.6). We remark that the constant C0 may depend on
ε.

Now, arguing as in [6, Proposition 3.3], it is possible to show that u is in
fact strongly non degenerate.

Lemma 2.2. If u is a local minimizer of (1.8) in B1, and (0, 0) is a free
boundary point, then there is C > 0 such that for r ∈ (0, 1/2),

sup
Bnr

u ≥ Crα.

As a consequence of the Hölder regularity result and the non-degeneracy,
we get the positive density result below.

Theorem 2.3 (Positive density). Let (0, 0) be a free boundary point. If u is
a local minimizer of (1.8) in B1, then there is a constant C1 > 0 such that
for every r > 0

Ln({u = 0} ∩Bn
r ) ≥ C1r

n, Ln({u > 0} ∩Bn
r ) ≥ C1r

n. (2.7)

Proof : In fact, from the non-degeneracy we know that there is y ∈ Bn
r such

that u(y) ≥ Crα > 0. By Hölder continuity, u > 0 in Bn
δr(y) for a small δ > 0,

which gives us the second estimate of (2.7).
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To prove the first estimate of (2.7), it is enough to consider the case r = 1.
Assume the contrary. There is a sequence of minimizers uk defined in B1,
such that 0 ∈ ∂{uk > 0} and

lim
k→+∞

Ln({uk = 0}) = 0. (2.8)

Recall that uk is uniformly Hölder continuous. We may assume that the
sequence converges to u0 uniformly. Moreover, one has∫

B1

|y|β|∇u0|2 dx dy ≤ lim inf
k→+∞

∫
B1

|y|β|∇uk|2 dx dy.

For every v agreeing with uk on ∂B1 one has Iε(uk, B1) ≤ Iε(v,B1). Together
with (2.8) this implies for every v ∈ H1(β,B1) which agrees with u0 on ∂B1,

fε
(
Ln(Bn

1 )
)

+

∫
B1

|y|β|∇u0|2 dx dy ≤ Iε(v,B1)

≤ fε
(
Ln(Bn

1 )
)

+

∫
B1

|y|β|∇v|2 dx dy.

Therefore, u0 minimizes the Dirichlet integral over the unit ball of Rn, and
as such, satisfies div(|y|β∇u0) = 0 in B1. Since u0(0) = 0 and u0 ≥ 0,
then the strong maximum principle, see [4], implies that u0 ≡ 0, which is a
contradiction on the non-degeneracy property. Once again we remark, that
the constant C1 may depend on ε.

3.Further properties of solutions
The ultimate goal of this section is to prove that the free boundaries of local

minimizers of (1.8) have local finite parameter. The results in this section
are the analogue of the ones from [3].

Proposition 3.1. For a local minimizer u in Ω, µ(u) := −(−∆)αu is a
nonnegative Radon measure with support in Ω ∩ ∂{u > 0}.

Proof : Once again we recall the extension result from [7] (see also Theorem
1.1 above). The proof is now the same as the one of Remark 4.2 of [3].

In the spirit of [3] a representation theorem can be proven. It plays an
important role in the study of the free boundary.

Theorem 3.1 (Representation theorem). If u is a local minimizer in Ω, then

(1) Hn−1(K ∩ ∂{u > 0} ∩ Rn) <∞, for every compact set K ⊂ Ω.
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(2) There exists a Borel fucntion qε such that

µ(u) = qεHn−1b∂{u > 0},
that is for any ψ ∈ C∞0 (Ω) there holds

−
∫

Ω

|y|β∇u · ∇ψ =

∫
{u>0}

ψqε dHn−1.

(3) For any compact set K ⊂ Ω, there exist constants 0 < c < C < ∞
depending on n, Ω and ε such that for Br(x) ⊂ Ω and x ∈ ∂{u > 0}
one has c ≤ qε(x) ≤ C and

crn−1 ≤ Hn−1
(
Br(x) ∩ ∂{u > 0} ∩ Rn

)
≤ Cn−1.

(4) For Hn−1 almost everywhere in ∂{u > 0} an outward normal ν =
ν(x0) is defined and furthermore

u(x0 + x) = qε(x0)(x · ν(x0))
α
+ + o(|x|), as x→ 0.

(5) Hn−1
(
(∂{u > 0}∩Rn)\(∂∗{u > 0}∩Rn)

)
= 0, where ∂∗ is the reduced

boundary.
(6) The reduced free boundary ∂∗{u > 0} ∩ Rn is locally a C1,α surface.

Proof : The first three assertions of the theorem follow as those of Theorem
4.5 of [3]. For the first assertion we also refer the reader to Theorem 1.1 of [16].
Note that Ω∩{u > 0}∩Rn has finite perimeter, thus, the reduced boundary
is defined as well as the measure theoretic normal ν(x), for x ∈ ∂∗{u > 0}
(see, for example [10]). The 5th assertion of the theorem is a consequence
of the 3rd one and properties of minimizers proved above (see [10]). C1,α

regularity of the reduced free boundary follows by [15].

The proof of 4 is similar to the corresponding one in [9] (Theorem 5.5),
but since in our case we are dealing with the fractional Laplacian, some
modifications need to be done (similar to [6]).

For a minimizer u we will denote by Ω−(u) ⊂ Rn the set where it is 0, and
by Ω+(u) ⊂ Rn its positivity set. We will also use Γ(u) ⊂ Rn to denote the
free boundary of u, and Γ∗(u) - the reduced free boundary.

The reduced free boundary is the set of points x0 at which the following
holds (see [12]): given the half ball (Bn

r )+(x0) := {(x− x0) · ν ≥ 0} ∩Bn
r (x0),

one has

lim
r→0

Ln
(
(Bn

r )+(x0)4Ω+(u)
)

Ln
(
Bn
r (x0)

) = 0.
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Note that from the uniform density of Ω± one has, as r → 0 at the free
boundary point x0

Bn
r (x0) ∩ Γ∗(u) ⊂ {|(x− x0) · ν(x0)| ≤ o(r)}. (3.1)

Indeed, if u(x) = 0 for (x − x0) · ν(x0) ≥ δr, there is γ > 0 such that
Ln
(
Bn
δr(x) ∩ {u = 0}

)
≥ γδrn, which implies

lim inf
r→0

Ln
(
(Bn

r )+(x0)4Ω+(u)
)

Ln
(
Bn
r (x0)

) ≥ γδ;

a contradiction.
The same argument is valid, if x ∈ Ω−(u) is such that (x− x0) · ν ≤ −δr.

In order to prove 4, we remark, that in fact it follows from the fact that
blow-up limits at regular points are one-dimensional. To prove it, without
loss of generality we assume that ν(x0) = en. Let

ur(x, y) :=
1

rα
u(x0 + rx, ry)

be a blow-up of u, and let u0 be a blow-up limit. We need to prove that
u0(x, 0) = q(xn)

α
+, where q is a constant. There exists a coordinate system

(x′, xn) centered at 0 such that

• Ω+(u0) = Rn
+ (this is because of (3.1)),

• (−∆)αu0 = 0 in Ω+(u).

Define v(x) = (xn)
α
+. By optimal regularity and non-degeneracy, there are

positive constants C1, C2 such that 0 < C1v ≤ u0 ≤ C2v. By applying the
oscillation lemma (see [11]or Theorem 2.5 of [6]), one has that there exists
λ ∈ (0, 1) such that for all small enough r > 0,

oscBr(x0,y0+1/2)∩Q1(x0,y0)
u0

v
≤ λ oscBr(x0,y0+1/2)∩Q1(x0,y0)

u0

v
,

where Q1(x0, y0) is the unit cube centered at (x0, y0) ∈ Rn+1. On the other
hand, Harnack constants are invariant under the blow-up scaling, so the
oscillation lemma holds at every scale, the solutions being global. Thus, one
may apply it all the way down from a ball of radius 2nr (n arbitrary large)
to a ball of radius r. Therefore, u0

v is a constant. Of course, that constant
depends on ε and also on the blow-up point. Although for our further work
this fact is not very important, but by following the argument of [3], which
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proves 2nd assertion of the theorem, one can see that the constant is actually
qε appearing in 2.

Next, we see that points, at which the free boundary has a tangent ball,
are regular points.

Definition 3.1. We say that a free boundary point x0 ∈ Γ(u) has a tangent
ball from outside, if there is a ball B ⊂ Ω−(u) such that x0 ∈ B ∩ Γ(u). A
point x0 ∈ Γ(u) is said to be regular, if Γ(u) has a tangent hyperplane at x0.

The following result is from [6]. The proof can also be concluded from the
4th assertion of the Theorem 3.1 together with Theorem 4.1 below.

Theorem 3.2. (The free boundary condition). Let x0 ∈ Γ(u) be a regular
point. There exists a constant λε(α) such that

lim
x→x0

u(x)(
(x− x0) · ν(x0)

)α
+

= λε(α).

4.A fractional Hadamard formula
In this section we proof a fractional Hadamard’s variational formula, which

will provide a rate control upon volume decreasing versus energy increasing,
for competing shapes.

Let u be a local minimizer. We recall the notation Γ∗(u) for its reduced free
boundary. For given two points x1, x2 ∈ Γ∗(u), the idea is to make an inward
perturbation around x1, and outward perturbation around x2 in such a way,
that we do not change very much the original volume, and then compare the
optimal configuration to the perturbated one in terms of the functional Iε.
We proceed as follows.

Let ρ : R → R be a nonnegative function from C∞0 [0, 1] with
∫
ρ = 1. For

any r ∈ (0, dist(x1,x2)
100 ) and γ > 0, we define

Pr(x, y) :=

 (x, y) + γrρ
( |(x−x1,y)|

r

)
ν(x1, 0), when (x, y) ∈ Br(x1, 0)

(x, y)− γrρ
( |(x−x2,y)|

r

)
ν(x2, 0), when (x, y) ∈ Br(x2, 0)

(x, y) elsewhere.

If v is any vector in Rn+1, direct computations show that in Br(xi, 0)

DPr(x, y) · v = v + (−1)i+1

{
γρ′
(
|(x− xi, y)|

r

)
〈(x− xi, y), v〉
|(x− xi, y)|

}
ν(xi, 0),

(4.1)
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where 〈·, ·〉 the the inner product in Rn+1 and i takes the values 1 and 2. Note,
that if γ is small enough, then Pr is a diffeomorphism that maps Br(xi, 0) onto
itself. Indeed, if γ sup

t∈[0,1]

ρ′(t) < 1, then Pr is a local injective diffeomorphism.

Now, if γρ(t) ≤ 1− t, for t ∈ [0, 1],

|Pr(x, y)− (xi, 0)| ≤ |(x− xi, y)|+ γrρ

(
|(x− xi, y)|

r

)
≤ r,

for any (x, y) ∈ Br(xi, 0). Finally, note that Pr = Id on ∂Br(xi, 0), therefore
Pr has to be onto.

For each r > 0 small enough, we consider the r-perturbed configuration by

vr(Pr(x, y)) = u(x, y).

The idea is to compare our optimal configuration {u > 0} to its perturbation
{vr > 0} in terms of the penalized problem (1.8). For any r > 0 small enough
and i = 1, 2, we consider the blow-up sequence uir : B1(0)→ R given by

uir(x, y) :=
1

rα
u(xi + rx, ry).

From the blow-up analysis (see [9]) we know that the set B1 ∩{uir > 0}∩Rn

approaches to {(x, 0) ∈ B1, 〈(x, 0) · ν(xi, 0)〉 < 0}, as r → 0. In order to
compute the change on the volume of the perturbation, we use the Change
of Variables Theorem to obtain

Ln
(
Br(xi, 0) ∩ {vr > 0} ∩ Rn

)
rn

=
1

rn

∫
Br(xi,0)∩{vr>0}∩Rn

dz

=

∫
B1∩{vr(xi+rx,ry)>0}∩Rn

dx dy

=

∫
B1∩{uir(xi+rx,ry)>0}∩Rn

det(DPr(xi + rx, ry)) dx dy (4.2)

→
∫
B1∩{〈(x,0),ν(xi,0)〉<0}∩Rn

1 + (−1)i+1γρ′(|(x, y)|)
〈

(x, y)

|(x, y)|
, ν(xi, 0)

〉
dx dy,

as r → 0. Note that there is a constant C(ρ) such that for any unit vector
ν ∈ Sn

C(ρ) =

∫
B1∩{〈(x,0),ν〉<0}∩Rn

ρ′(|(x, y)|)
〈

(x, y)

|(x, y)|
, ν

〉
dx dy. (4.3)
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A similar computation shows that

Ln
(
Br(xi, 0) ∩ {u > 0} ∩ Rn

)
rn

→
∫
B1∩{〈(x,0)·ν(xi,0)<0〉}∩Rn

dx, (4.4)

as r → 0. From (4.2), (4.3) and (4.4) we get

1

rn

[
Ln
(
Br(xi, 0) ∩ {vr > 0} ∩ Rn

)
− Ln

(
Br(xi, 0) ∩ {u > 0} ∩ Rn

)]
→ 0,

as r → 0. From the Lipschitz continuity of the penalization fε, we obtain

fε
(
Ln
(
Br(xi, 0) ∩ {vr > 0} ∩ Rn

))
− fε

(
Ln
(
Br(xi, 0) ∩ {u > 0} ∩ Rn

))
≤ 1

ε
o(rn). (4.5)

Now we should check what happens with the integral part of the functional.
Initially we observe that

1

rn

∫
Br(xi,0)

|y|β|∇u(x, y)|2 dx dy =

∫
B1

|y|β|∇uir(x, y)|2 dx dy

=

∫
B1∩{uir>0}

|y|β|∇uir(x, y)|2 dx dy, (4.6)

once Γ∗(uir) is smooth. Next we apply twice the Change of Variables Theorem
and take into account that Pr maps Br(xi, 0) diffeomorphically onto itself to
write

1

rn

∫
Br(xi,0)

|y|β|∇vr(x, y)|2 dx dy

=
1

rn

∫
Br(xi,0)

|y|β|DPr(P−1
r (x, y))−1 · ∇u(P−1

r (x, y)|2 dx dy

=
1

rn

∫
Br(xi,0)

|y|β|DPr(z, y)−1 · ∇u(z, y)|2| det
(
DPr(z, y)

)
| dz dy (4.7)

=

∫
B1∩{uir>0}

|y|β|DPr(xi + rh, ry)−1 · ∇uir(h, y)|2| det
(
DPr(xi + rh, ry)

)
| dh dy.

From (4.1), using the fact that for any matrix A with |A| < 1,

(Id+ A)−1 = Id+
∞∑
i=1

(−1)iAi,
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we have

DPr(xi + rh, ry)−1 · ∇uir(h, y) (4.8)

= ∇uir(h, y)− (−1)i+1γ
ρ′(|(h, y)|)
|(h, y)|

〈(h, y),∇uir(h, y)〉ν(xi, 0) + o(γ).

On the other hand,

| det
(
DPr(xi + rh, ry)

)
| = 1 + (−1)i+1γ

ρ′(|(h, y)|)
|(h, y)|

〈(h, y), ν(xi, 0)〉. (4.9)

Combining (4.6), (4.7), (4.8) and (4.9), we obtain

1

rn

∫
Br(xi,0)

|y|β
[
|∇vr(x, y)|2 − |∇u(x, y)|2

]
dx dy

= (−1)i+1γ

∫
B1∩{uir>0}

|y|β|∇uir(h, y)|2ρ
′(|(h, y)|)
|(h, y)|

〈(h, y), ν(xi, 0)〉 dh dy (4.10)

+ (−1)i2γ

∫
B1∩{uir>0}

|y|β ρ
′(|(h, y)|)
|(h, y)|

〈(h, y),∇uir(h, y)〉〈∇uir(h, y), ν(xi, 0)〉 dh dy

+ o(γ).

Now we recall that in the proof of 4 of Theorem 3.1, we verified that uir(h, y) =
qε(xi)(hn)

α
+ + o(r), as r → 0, i.e. blow-up limits are one dimensional. There-

fore, from the blow-up analysis, we have, as r → 0∫
B1∩{uir>0}

|y|β|∇uir|2 → α2q2
ε(xi)

∫
B1∩{〈z,νi〉<0}

|y|β|hn|2(α−1) dh dy.

Hence, letting r → 0 in (4.10) leads to

1

rn

∫
Br(xi,0)

|y|β
[
|∇vr|2 − |∇u|2

]
→ (−1)i+1γα2q2

ε(xi)c(ρ) + o(γ), (4.11)

where

c(ρ) := lim
r→0

∫
B1∩{uir>0}

|y|β

|hn|1+β

ρ′(|(h, y)|)
|(h, y)|

〈(h, y), ν(xi, 0)〉 dh dy

is a positive constant. To check that indeed, 0 < c(ρ) < ∞ is a positive
constant, we argue as follows: since

div
(
ρ(|z|)

)
=
ρ′(|z|)
|z|
〈z, ν(xi, 0)〉,
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so the divergence theorem together with the blow-up analysis provides∫
B1∩{uir>0}

ρ′(|z|)
|z|
〈z, ν(xi, 0)〉 dz →

∫
B1∩{〈z,ν(xi,0)〉=0}

ρ(|z|) dHn−1(z) = const.

Recalling that the function ρ is compactly supported in [0, 1], we conclude,
that 0 < c(ρ) <∞. Returning to (4.11), we can write∫

Ω

|y|β[|∇vr|2 − |∇u|2] dx dy = rnγα2c(ρ)
(
q2
ε(x1)− q2

ε(x2)
)

+ rno(γ).(4.12)

Combining (4.12) with the minimality property of u, we get

0 ≤ Iε(vr)− Iε(u) ≤ rnγα2c(ρ)
(
q2
ε(x1)− q2

ε(x2)
)

+ rno(γ) +
1

ε
o(rn), (4.13)

which gives after dividing by rn and letting r → 0

0 ≤ γα2c(ρ)
(
q2
ε(x1)− q2

ε(x2)
)

+ o(γ).

Now dividing by γ and letting γ → 0, and afterwards reversing the places of
x1 and x2, we obtain

qε(x1) = qε(x2).

Since x1 and x2 were arbitrary in Γ∗(u), we actually proved

Theorem 4.1. On the reduced free boundary, we have qε ≡ λε(α).

Note also that (4.10) provides the Hadamard’s variational formula:∫
Ω

|y|β
[
|∇vr|2 − |∇u|2

]
= λ2

ε(α)V + o(V ), (4.14)

where V is the volume change.

5.Recovering the original problem
Here we shall relate a solution to the penalized problem to a (possible)

solution of our original problem. The idea is that the function fε will charge
a lot for those configurations that have a volume bigger than ω. We hope that
if the charge is too big optimal configuration of problem (1.8) will prefer to
have volume ω than pay for the penalization.
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Proposition 5.1. There exist C, c > 0 constants such that

0 < c ≤ Ln({uε > 0} ∩ Rn ∩ Ω) ≤ ω + Cε,

where uε is a solution to (1.8).

Proof : Let Ω∗ be any smooth domain such that its complement contains Ωc

with Ln((Ωc
∗ ∩ Rn) \ (Ωc ∩ Rn)) = ω. From the minimality of uε we have

Iε(uε,Ω) =

∫
Ω

|y|β|∇uε|2+fε(Ln({uε > 0}∩Rn∩Ω)) ≤ Iε(u∗,Ω∗) = C, (5.1)

where u∗ is the α-harmonic function in Ωc
∗\Ωc taking ”boundary data” equal

to ϕ in Ωc and 0 on ∂Ωc
∗. Thus

1

ε
(Ln({uε > 0} ∩ Rn ∩ Ω)− ω) ≤ fε(Ln({uε > 0} ∩ Rn ∩ Ω) ≤ C.

This proves the estimate from above. In order to prove the estimate from
below, we first note that since the weight |y|β is in the second Muckenhoupt
class A2 for β ∈ (−1, 1), we have a Poincaré inequality (see, for example, [6]),
which together with (5.1) provides∫

Ω

|y|β[|∇uε|2 + |uε|2] ≤ C, (5.2)

for some C independent of ε. Recalling the fact that uε takes values ϕ outside
of the domain, where it is α-harmonic, recalling also the mean value inequality
and (5.2), we obtain (by integrating along layers with E := Ω ∩Bδ(∂Ω))(∫

∂Ω

ϕ

)2

≤ C(δ)Ln({uε > 0} ∩ Rn ∩ E)

∫
E

|y|β[|∇uε|2 + |uε|2]

the last integral being bounded uniformly in ε. Hence, the estimate from
below is proved.

Lemma 5.1. There exists C > 0 depending on the domain and ϕ, but inde-
pendent of ε, such that λε(α) ≤ C.

The proof of this lemma is a consequence of Proposition 5.1, isoperimet-
ric inequality and 2nd assertion of the Theorem 3.1 (see the proof of the
corresponding result in [1], [5], [9], or [18]).

Lemma 5.2. There exists c > 0 depending on the domain and ϕ but inde-
pendent of ε such that c ≤ λε(α).
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Proof : As in the above mentioned references, the proof is based on the Hopf’s
Lemma, which is true also for the fractional Laplacian case (see [4] or Propo-
sition 2.7 in [6]).

In fact, let z1 ∈ Ω be such that uε(z1) > 0 for all ε > 0. Let δ :=
dist(z1, ∂Ω). We then consider the smooth family of domains Γt := B δ

2+t(z1)∩
Ω. Let tε be the first t such that Γt touches ∂{uε > 0}. Let x0 be that touching
point. Define ψε to be α-harmonic in Γtε \ Γ0, with the following ”boundary
data”:

ψε|∂Γ0
= minϕ and ψε|Γctε = 0.

By the maximum principle we have uε ≥ ψε in Γtε\Γ0. From the (generalized)
Hopf’s Lemma we also know that there exists a constant c > 0 depending
only on the domain and ϕ, but independent of ε, such that

ψε(x) ≥ c((x− x0) · ν(x0))
α. (5.3)

On the other hand we have the following asymptotic development around x0

ψε(x) ≤ uε(x) = λε(α)((x− x0) · ν(x0))
α + o(|x− x0|). (5.4)

Letting x→ x0 in (5.4) and taking into account (5.3), we obtain

c ≤ λε(α)

as desired.

Now we are ready to prove the main theorem of this section.

Theorem 5.1. If ε is small enough, then any solution of (1.8) is a solution
of (1.1).

Proof : Basically, we just need to show that S := Ln({uε > 0}∩Rn∩Ω) = ω,
for ε small enough.

Suppose S > ω. In the spirit of the previous section, we consider an inward
perturbation of the positivity set of uε with the volume change V , such that
for the new function ũε we still have Ln({ũε > 0} ∩ Rn ∩ Ω) > ω. Thus

fε
(
Ln({ũε > 0} ∩ Rn ∩ Ω)

)
− fε

(
Ln({uε > 0} ∩ Rn ∩ Ω)

)
= −1

ε
V. (5.5)

From Theorem 4.1 and Lemma 5.1 we have∫
Ω

|y|β[|∇ũε|2 − |∇uε|2] = λ2
ε(α)V + o(V )

≤ C2V + o(V ). (5.6)
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Using the fact that Iε(uε,Ω) ≤ Iε(ũε,Ω), from (5.5) and (5.6) we get

0 ≤ C2V + o(V )− 1

ε
V,

therefore (by dividing on V and letting V → 0) it provides us with

ε ≥ 1

C2
,

which is a contradiction, when ε is small enough. Hence S ≤ ω, for small ε.
If S < ω, arguing the same way and using Lemma 5.2, we obtain another
lower bound for ε. Thus, when ε is small enough, S = ω.
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Universidade Federal do Ceará, Av. Humberto Monte s/n, Campus of Pici - Bloco 914,
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