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ABSTRACT: This paper introduces lax orthogonal algebraic weak factorisation sys-
tems on 2-categories and describes a method of constructing them. The related
notions of KZ lifting operation, lax natural lifting operation and lax orthogonality
between morphisms are studied, and a number of examples provided. These ex-
amples rest in the notion of simple 2-monad, that is a generalisation of the simple
reflections studied by Cassidy, Hébert and Kelly. Each simple 2-monad on a finitely
complete 2-category gives rise to a lax orthogonal algebraic weak factorisation sys-
tem. Examples of simple 2-monads are: completion under a class of colimits, the
filter monad on topological spaces and Cauchy completion on Lawvere’s metric
spaces.
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1. Introduction

This paper contains four main contributions: the introduction of lax or-
thogonal algebraic weak factorisation systems (AWFSs); the introduction of
the concept of KZ diagonal fillers and the study of their relationship to lax
orthogonal AWF'Ss; the introduction of simple 2-monads, and the proof that
each such induces an AWFSs; the proof that some well-known 2-monads, on
topological spaces, on categories and on Lawvere metric spaces, are simple,
and a description of the corresponding induced factorisations.

Weak factorisation systems form the basic ingredient of Quillen model
structures [20], and, as the name indicates, are a weakening of the ubiq-
uitous orthogonal factorisation systems. A weak factorisation system (WFS)
on a category consists of two classes of morphisms £ and R satisfying two
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properties: every morphism can be written as a composition of a morphism
in £ followed by one in R, and for any commutative square, with vertical
morphisms in £ and R as depicted, there exists a diagonal filler. One says
that r has the right lifting property with respect to ¢ and that ¢ has the left
lifting property with respect to 7.

L ————

cat 34 | rem (1.1)

- —_— .

When r is an identity 1o, one usually says that C' is injective with respect
to /.

In order to unify the study of injectivity with respect to different classes
of continuous maps between T'0 topological spaces, Escardé [8] employed lax
idempotent 2-monads, also known as K7 monads, on poset-enriched cate-
gories — these are the same as 2-categories whose hom-categories are posets.
For example, if T is such a lax idempotent 2-monad, the T-algebras can be
described as the objects A that are injective to all the morphisms ¢ such that
T? is a coretract left adjoint — a T-embedding. A central point is that not
only each morphism dom(¢) — A has an extension along ¢, but moreover it
has a least extension: one that is smallest amongst all extensions.

A

The assignment that sends a morphism to its least extension can be described
in terms of the 2-monad T, so one no longer has the property of the existence
of at least one extension, but the algebraic structure that constructs the
extension. If one wants to describe WFSs in this context, instead of just
injectivity, in the sense that » may not be an identity, one is led to consider
algebraic weak factorisation systems (AWFSs), to which we shall return in
this introduction.

1.1. Injective continuous maps. One of the basic examples that fit in the
framework of [§] is that of the filter monad on the category of T'0 spaces, that
assigns to each space its space of filters of open sets. It was shown in [6] that
the algebras for this monad are the topological spaces that arise as continuous
lattices with the Scott topology. These spaces were known to be precisely
those injective with respect to subspace embeddings [22]. In [3] this and
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other related results are generalised, characterising those continuous maps of
T0 spaces that have the right lifting property with respect to different classes
of embeddings, and exhibiting for each a WFS in the category of T'0 spaces.
A morphism f: X — Y is factorised through the subspace K f < TX x Y of

those (p,y) such that Tf(p) < {U € O(Y) : y € U}. The monad T can be
the filter monad or a variant of it.

Kf——TX (1.2)
er| = le
Y —TY

Central to the arguments in [3] is the fact that the monad f — p; is lax
idempotent or KZ. This property is intimately linked with the fact that T'A¢
is always an embedding of the appropriate variant — ie A is a T-embedding.

The construction of the factorisation of maps just described resembles the
classical case of simple reflections [4]. One of the aims of the present paper
is to show that both constructions are particular instances of a more general
one.

1.2. Algebraic weak factorisation systems. Algebraic weak factorisa-
tion systems (AWFSs) were introduced in [I1] with the name natural weak
factorisation systems, with a distributive axiom later added in [10]. Many of
the factorisations systems that occur in practice provide a construction for
the factorisation of an arbitrary morphism. Such a structure on a category
C is called a functorial factorisation and can be described in more than one
way: as a functor C? — C3 that is compatible with domain and codomain;
as a codomain-preserving — ie with identity codomain component — pointed
endofunctor A: 1 = R of C?; as a domain-preserving copointed endofunctor
®: L = 1 of C2. Then, a morphism f factors as f = Rf - Lf. Any such
functorial factorisation has an underlying WFS (£, R) where L consists of
those morphisms that admit an (L, ®)-coalgebra structure and R of those
that admit an (R, A)-algebra structure. One wants, however, to guarantee
that Lf € £ and Rf € R, for which one requires extra data in the form of
a comultiplication that makes (L, ®) into a comonad L and a multiplication
that makes (R, A) into a monad R. The pair (L,R), together with an extra
distributivity condition, is an AWFS.
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The underlying WES of an AWFS (L,R) is an orthogonal factorisation
system precisely when L and R are idempotent [11]; it is enough if either is
idempotent [2].

All the above constructions can be performed on 2-categories instead of
categories. Two morphisms ¢: A — B and r: C' — D in a 2-category % are
lax orthogonal when the comparison morphism

f%/(BuC) - ‘%/(Au C) X ¥ (A,D) %(BJD)

has a left adjoint coretract. — Compare with the usual definition of weak
orthogonality and orthogonality where it must be an epimorphism and, re-
spectively, an isomorphism. — Such a left adjoint provides diagonal fillers
that moreover satisfy a universal property with respect to 2-cells. A choice
of diagonal fillers like these that is in addition natural with respect to ¢ and
r we call a KZ lifting operation.

When the 2-category % is locally a preorder, the lax orthogonality of ¢
and r reduces to the statement, encountered before in this introduction, that
for each commutative square there exists a least diagonal filler.

One could then ask what is the property on an AWFS that corresponds to
the existence of KZ diagonal fillers. The answer is that both the 2-comonad
and the 2-monad of the AWFS must be lax idempotent — Theorem|[6.6] Equiv-
alently, either the 2-comonad or the 2-monad must be lax idempotent — Sec-
tion [l This last statement mirrors the case of AWFSs whose underlying
WES is orthogonal, for which, as mentioned earlier, it is enough that either
the comonad or the monad be idempotent.

A basic example of a lax idempotent AWEF'S is the one that factors a functor
f: A — B as a left adjoint coretract A — f | B followed by the split opfi-
bration f | B — B. We refer to this AWFS as the coreflection—opfibration
AWFS.

1.3. Simple reflections. The paper [4] studies the relationship between
orthogonal factorisation systems, abbreviated OFSs, and reflections. Every
OFS (£, M) in a category C induces a reflection on C as long as C has a
terminal object 1; the reflective subcategory is M/1, the full subcategory of
those objects X such that X — 1 belongs to M. Under certain hypotheses,
a reflection T on C induces an OFS. One of the possible hypotheses is that T
be simple, which means that for any morphism f the dashed morphism into
the pullback depicted below is inverted by T. The factorisation of f is then



LAX ORTHOGONAL FACTORISATION SYSTEMS 5

given by f = ps- Ay, and the left class of morphisms consists of those which
are inverted by T.

Pf

TKf—2TA
Pfl p.b. le
B——1TB

One way of expressing the construction of the OFS from T is the follow-
ing. On any category A we have the OFS (Iso, Mor), with left class the
isomorphisms and right class all morphisms. Isomorphisms are the coalge-
bras for the idempotent comonad L' on A? given by L'(f) = laom(p- If
F 4 U: A< C is the adjunction induced by the reflection T, the copointed
endofunctor (L, ®) defined by pullback along the unit of the adjunction satis-
fies the property that the rectangle on the right hand side below is a pullback.
In other words, (L, ®)-coalgebras are those morphisms that are inverted by
F, equivalently by 7. Any morphism that is inverted by T is orthogonal
to T'f and therefore to its pullback ps; in particular, A satisfies this if the
reflection is simple. Therefore, we obtain an OFS when T is simple, with left
class those morphisms that are inverted by 7.

L—=U?L'F? (L, ®)-Coalg — (L', ®’)-Coalg
o [ | pb. | (1.3)
| — . [2F? C2 i A2

An alternative way to prove that we obtain an OFS is to show that (L, ®)
has an extension to an idempotent comonad. The comultiplication >:: L =
L? is the morphism that corresponds to the pair of morphisms ¥g: L =
U?L'F%2L and 1: L — L, where ¥, is the transpose of the transformation
F2[ = L['F?L with component at f the (L', ®')-coalgebra structure of F s,
ie (1,(FAp)™1): Laom(f) — F'Ay. The pointed endofunctor (R, A) given by
f +— py underlies a monad by construction.

The above analysis can be adapted to the case where categories are sub-
stituted by 2-categories and OFSs by lax orthogonal AWFSs. Reflections
are substituted by lax idempotent 2-monads, idempotent (co)monads by lax
idempotent 2-(co)monads, the simple reflections by appropriately defined
simple 2-adjunctions or simple 2-monads. The reflective subcategory Iso of
the arrow category is substituted by the lax idempotent 2-comonad whose



6 M. M. CLEMENTINO AND I. LOPEZ FRANCO

algebras are coretract left adjoints, while Mor is substituted by the free split
opfibration 2-monad.

1.4. Simple 2-monads. Generalising the construction on topological spaces
described in Section above, one can consider a factorisation of f as de-
picted in but where the inequality is a general 2-cell of a comma object,
and ask when does f = py - Ay arise from a lax idempotent AWFS. This is
analogous to the construction of OFSs from simple reflections discussed in
the previous section.

A 2-monad T is simple if T'A\y has a certain right adjoint retract. If T is
moreover a lax idempotent 2-monad on ¢, and (L', R’) is the coreflection—
opfibration AWFS on T-Alg,, the copointed endofunctor (L, ®) constructed
as in (1.3), and given by f — As, can be extended to a 2-comonad, and the
pointed endofunctor f +— py can be extended to a 2-monad that combine
into a lax idempotent AWFS on 7.

The filter 2-monad on topological spaces is lax idempotent, where the cat-
egory of topological spaces is made into a 2-category by the opposite of the
specialisation order. We show that it is simple, therefore inducing a lax
orthogonal AWF'S on the category of topological spaces.

Given a class of colimits, there exists a 2-monad on Cat whose algebras are
categories with chosen colimits of that class. We show that these 2-monads
are simple, giving rise to AWFSs on Cat.

Another example of simple 2-monad is the one given by Cauchy comple-
tion on the 2-category of Lawvere metric spaces — categories enriched in the
extended non-negative real numbers. To give an idea about the lax orthog-
onal AWFS within the space constraints of this introduction, one can look
at maps between metric spaces. Left maps between metric spaces are dense
isometries. Right maps f: A — B between metric spaces are those distance
decreasing maps with the property that each Cauchy sequence in A, such
that its image under f converges to a point b € B, converges to a point of A
over b.

When all the 2-categories involved are in fact categories, lax idempotent
2-monads reduce to reflections and our concept of simple 2-monad to the
one of simple reflection. Therefore, we know that there are lax idempotent
2-monads that are not simple, as [4] gives examples of reflections that are
not simple.
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1.5. Description of sections. Section [2| can be regarded as a fairly self-
contained recount of the basic definitions and properties of algebraic weak
factorisations systems. The approach to diagonal fillers via modules or pro-
functors appears to be novel.

One of our main tools will be the lax idempotent 2-(co)monads, facts about
which we put together at the beginning of Section [3] before introducing lax
orthogonal AWFS, our main subject of study.

Section [4] proves that in order for an AWF'S to be lax orthogonal it suffices
that either the 2-monad or the 2-comonad be lax idempotent.

In a 2-category one can consider the usual lifting operations, but also lax
natural ones. We define lax natural and KZ diagonal fillers in Section
and prove that lax orthogonal AWFSs give rise to KZ diagonal fillers. Lax
orthogonal functorial factorisations are briefly considered.

In Section [6] we characterise lax orthogonal AWFSs as those AWFS (L, R)
for which R-algebras are algebraically KZ injective to all L-coalgebras, or
equivalently, for which natural KZ diagonal fillers exist for squares from L-
coalgebras to R-algebras.

Sections [7] to [9] are perhaps more technical, and give conditions that allow
the coreflection—opfibration lax orthogonal AWFS on a 2-category &7 to be
transferred along a left 2-adjoint Z — & to a lax idempotent AWFS on
HAB. Section studies the case when the left 2-adjoint is the free algebra
2-functor of a special kind of 2-monad, that we call simple 2-monad, as it
generalises the notion of simple reflection [4]. Conditions that guarantee that
a lax idempotent 2-monad is simple are provided.

Section looks at the case of locally preordered 2-categories, or cate-
gories enriched in the category of preorders, where various simplifications
take place, especially in the case where the morphisms in the right part of
the factorisation system are fibrewise posetal; this is the case in some of our
examples.

The example of the filter monad on topological spaces is spelled out in
Section [12] recovering a WF'S considered in [3].

Section [13]|studies the example of completion under colimits. We show that
for a class of colimits ®, the 2-monad on Cat whose algebras are categories
with chosen colimits of that class is simple, whence inducing a lax orthogonal
AWFS (L,R). We prove in Section that R-algebras are always split op-
fibrations with fibrewise chosen ®-colimits, but the converse does not always
hold, as shown by Section [13.3]
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. A-l-c
A0 | K (hk) I
i g — Kf—=Kg
BTD /)fi il)g

B—t-C

FiGURE 1. A functorial factorisation.

Lastly, a lax orthogonal AWFS in generalised or Lawvere metric spaces
— categories enriched in the category of extended non-negative real num-
bers [I8, 19] — is described in Section [14] as the AWFS induced by Cauchy
completion.

2. Background on algebraic weak factorisation systems

In this section we recall notions related to algebraic weak factorisation
systems [11], following [10] for the most part.

2.1. Basic definitions. Given a category C consider the functors dy, dj,
dy: C3 — C2 that send a pair of composable morphisms (f: A — B,g: B —
C) in C to: dO(fvg) - f7 dl(fag) =g- f7 dQ(fng) =4g.

A functorial factorisation in C is a functor K : C? — C3 such that d; K = 1.
This means that for each morphism (h, k): f — g in C? we have a factorisa-
tion, functorial in (h, k), depicted in Figure [1]

A functorial factorisation as above induces a pointed endofunctor A: 1 = R
and a copointed endofunctor ®: L = 1 on C%. The endofunctor L is given
by Lf = Ay, and the component of the copoint ® at the object f is depicted
on the left hand side of (2.1). Similarly, Rf = py, and the component of the
point A at the object f is depicted on the right hand side of (2.I)). We note
that domL = dom and codR = cod, as functors C2 — C.

A=——=A Af
M | f fj?_>K¢J;f (2.1)
Kf5—-5 B——B

An algebraic weak factorisation system [11],[10] is a functorial factorisation
where the copointed endofunctor ¢: L = 1 is equipped with a comultiplica-
tion ¥: L = L?, making it into a comonad L, and the pointed endofunctor
A: 1 = R is equipped with a multiplication II: R?> = R, making it into a
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monad R, plus a distributivity condition. The components of this comulti-
plication and multiplication will be denoted by as follows.

pr— Kf
Y= Afl o ka Iy = Pos | | ps
Kf " K\ B——B

One of the ideas behind this definition is that the L-coalgebras have the
left lifting property with respect to the R-algebras, as explained below.

An L-coalgebra structure on a morphism f: A — B, respectively, an R-
algebra structure on f, is given by morphisms in C? of the form

A=——=A Kf-2-A
fl Wf and pr) if
B—=Kf B——2nB

The horizontal identity morphisms are such as a consequence of the counit
axiom of the comonad L, respectively unit axiom of the monad R. These
axioms also imply py-s=1pand p- Ay = 14.

Continuing, given a morphism (h, k) in C? as in Figure [l we get a diagonal
filler as depicted.

h C C
\Af\ K(h,k) Agl /
f Kf——Kg g (2.2)
B / zgpf e B

The distributivity condition introduced in [10] asserts that the natural
transformation A: LR — RL with components

of
o —_— .

Aj = A,,fl\\ilmf (2.3)

is a distributive law, ie that the diagrams in Figure 2 commute. In fact, the

two triangles automatically commute as a consequence of the comonad and
monad axioms for L and R.
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A

LR RL m L
/ \
oR R o LR—*2 - RL
LR A RL LR?2E RLr A R2p
SR A N |re 1n) N 15177
I2REA LRL AL RI2 LR RL

F1GURE 2. Distributivity axioms, of which the two triangles are
automatically satisfied.

Every AWFS (L,R) has an underlying WFES (£, R), where £ consists of
the coalgebras for the copointed endofunctor (L,®) and R consists of the
algebras for the pointed endofunctor (R, A).

We continue with some more background, in this case, the characterisa-
tion of orthogonal factorisation systems in terms of the associated AWFS.
Clearly, any orthogonal factorisation system (£, M) in a category C induces
an AWFS. This is a consequence of the uniqueness of the factorisations. One
can easily characterise the AWFS obtained in this way.

Proposition 2.1 ([I1, Thm 3.2]). The following are equivalent for an AWFES
(L,R): the comonad L and the monad R are idempotent; the underlying WFES
s an OFS.

In fact, if R is idempotent, then so is L, a proof of which the second author
learned from Richard Garner. During the preparation of this manuscript a
full proof of this fact appeared in [2].

2.2. Digression into modules. As a preamble to next section, let us
briefly remind the reader about the language of modules or profunctors,
which will be heavily used henceforth. A module or profunctor ¢ from a
category A to a category B, denoted by ¢: A - B, is a functor B? x A —
Set, and a module morphism is a natural transformation. Given another
module ©: B - C, the composition 1 - ¢ is defined by the coend formula
(- ) (C, A) = (" (C, B) x ¢(B, A); the identity 14 for this composition is
given by 14(A, A") = A(A, A"). In this way we obtain a bicategory Mod.
There is a pseudofunctor (—),: Cat — Mod that is the identity on objects
and sends a functor F': A — B to the module F, given by F.(B,A) =
B(B,FA). There is an adjunction F, - F* where F*: B - A is given by
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F*(A, B) = B(FA, B), with unit and counit
A(A AN L B(FA FA) ~ F* - F,(A, A)

A
F,-F*(B,B) = J B(B,FA) x B(FA,B") ™2 B(B, B').

Precisely the same description applies to enriched categories and enriched
modules, by substituting Set by another symmetric monoidal closed cate-
gory. We will be interested in Cat-enriched modules later.

The following easy lemma will be useful in the next section.

Lemma 2.2. Let (G, e) be a copointed endofunctor on the category X, and U
the corresponding forgetful functor from (G, e)-Coalg. The module morphism

1s a right inverse of
(U*- G L ) (2.5)

where n:' 1 — G* - G, 1s the unit of G. 4 G* and s: U — G - U 1is the
G-coalgebra structure of U.

Proof: The module morphisms (2.4) and ({2.5)) have respective components

X(UA), X) S x(GUA),G(X)) 2, x(U(A), G(X)) (2.6)
X(GU(A), G(X)) 21, x(qu(A), X). (2.7)

If x: UA — X is a morphism, apply (2.6) and then (2.7) to obtain ex -
G(x) - s4, which is equal to = - eya - s4 naturality, and therefore to x by
EUA " SA = 1. |

2.3. Natural diagonal fillers. Fix a category C. Recall that there are
retract adjunctions
cod 4id 4 dom: C? — C (2.8)

Define a module (profunctor) D¢: C2 -+ C? in the following way. Given
two morphisms f, g in C, D¢(f, g) is the set of commutative diagrams

Al
1) 27 s (2.9)
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The action of C? on either side is simply by pasting the appropriate commu-
tative square.

*

Lemma 2.3. There are isomorphisms of modules ®¢ =~ id, - id* = (id -
dom), =~ cod” - dom, = (id - cod)*.

The second isomorphism is the one induced by the fact that id* =~ dom.,

— see (2.8). The isomorphism D¢(f,g) = (id - dom).(f,g) = C3(f, Laomg) is
given by

h h
TN

The counit of id, - id" is a module morphism
De — 12 (2.10)

whose component at (f, g) sends the element (2.9) to the outer commutative
square. It corresponds, under ®¢ =~ (id - dom),, to the module morphism
induced by the natural transformation with f-component

id- dom = 1¢z  lams| , |J (2.11)

- —_— .

Definition 2.4. Let (A,U), (B,V) be two objects of Cat/C?, and define a
module

DU, V): BL 22 02 U g, (2.12)

The module morphism ®¢ — 1 induces another D (U, V') — U*-V,. A lifting
operation for U, V is a section for this module morphism, and amounts to a
choice, for each square in C of the form

Al-c
Ua) | v ac A beB (2.13)

of a diagonal filler, in such a way that it is natural with respect to composition
on either side.
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FExample 2.5. A functorial factorisation system, with associated copointed
endofunctor (L, ®) and pointed endofunctor (R, A), gives rise to a lifting op-
eration for the forgetful functors U: (L, ®)-Coalg — C? and V': (R, A)-Alg —
C2.

Recall from Remarks 2.17 and 2.18| the transformations (1, A): iddom = L
and (1,p): LV = iddomV, satisfying (1,p) - ((1,A\)V) = 1. Denote by
n: 1= L*- L, the unit of L, 4 L*, and by s: U — L-U the (L, ®)-coalgebra
structure of U.

We claim that the following module morphism is a section to D (U, V) —
U V..

U*-n-Vy

vrv, S g L Vo S (LU (L V) S5 Ut (L V), —

M U*-(id- dom-V), = DU,V) (2.14)

Indeed, (s*-(L-V).)-(U*-n-V,) has right inverse U*-(®-V),, by Lemma [2.2]
Thus, the composition (2.14)) has right inverse

U*-((LA)-V)« U*(®V)s

(U, V) S U*(id- dom V), U (L-V).,

The composition ®-(1, A): id- dom = L = 1¢2 is precisely the transformation
described in (2.11)) — see Remark for a description of the components of
(1, ) — therefore (2.15)) is (2.10]), as required.

U*-V,. (2.15)

Remark 2.6. It can be instructive to describe explicitly the component of
(2.14) at an object (f,g) of (L, ®)-Coalg x (R,A)-Alg. If (1,s): f — Lf is
the coalgebra structure of f and (p,1): Rg — g the algebra structure of g,
the component is given by

C2(f,9) 5 CA(Lf, Lg) <00 c2(f, L) S, 2(f 1y0ne) (216
i e b
k p-K(hk)-s

Composing ([2.16]) with the isomorphism C(f, Liom(g)) = C(Leod(s), 9), We get
a module morphism with components

C2(f,9) B C2(Rf, Rg) S8 c2(Rf, g) S, 02(1,040, 9)
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_h) ' p-K(hk)-s
fl lg — 1l lg
Tk -

Fxrample 2.7. A functorial factorisation corresponds to an orthogonal factori-
sation system when ® (U, V) — U* - V, is invertible.

Remark 2.8. Let us now assume that in Definition U has a right adjoint
(. Then, the module is isomorphic to (G -id - dom-V),, U* -V, is
isomorphic to (G - V)., and the module morphism U* - ©, -V, — U* -V,
corresponds to the natural transformation

G-id-dom- V= G-V (2.17)

induced by the counit of the adjunction id 4 dom, ie the transformation with
component at b e B

G(l, Vb) Gldom(Vb) —> GVb.

Now suppose that the functor U is the forgetful functor U: L-Coalg —
C2, for a comonad L, and still denote by G its right adjoint. Denote by
Fi: C? — KI(L) the Kleisli construction of L. The natural transformation
(2.17)), belonging to the full image of G, can be described as a morphism in
[B.KI(L)]

F-id-dom-V = F - V. (2.18)

Proposition 2.9. Given a comonad L on C2, lifting operations for the func-
tors U: L-Colag — C? and V: B — C? are in bijective correspondence with
sections of the natural transformation (2.18]).

Ezample 2.10. An AWFS (L, R) induces a lifting operation — Example —
which corresponds to a section of , by Proposition . In this example
we explicitly describe this section in terms of the AWFS.

Consider the transformation (1,p): L-V = id- dom-V as in Remark [2.18]
and denote by 6 : V' — id- dom -V the associated morphism in [R-Alg, KI(L)].
It is easy to check that 6 is the required section: Fi (1, g)-0, is, as a morphism
in C2,

(179) ’ (Lp) - (LPg) = Oy
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2.4. The universal category with chosen diagonal fillers. Given a
functor U: A — C2, [10] defined a category A" and a functor U": A" — C?
as follows. The objects of A" are pairs (g, ¢?), where g € C% and ¢7 is an
assignment of a diagonal filler for each square

h

Ual ?ﬁ_(a,h;kg lg

k

which are compatible with morphisms Ua: Ua’ — Ua, in the sense that

¢?(a, h, k) - cod(Ua) = ¢?(a’, h - dom(Ua), k- cod(Ua)).

A morphism (g, ¢?) — (e, ¢°) is a morphism (u,v): ¢ — e in C? such that
u-@d(a, h, k) = ¢(a,u- h,v-k), for all (h, k).

The functor U" is the universal one equipped with a lifting operation for
U, U, ie a section of U* - D¢ - UM — U* - UM, It can be constructed as a
certain limit in Cat, of the form

vh _C2—=P(C?) P

AP i v P
U7 et — P(C?) T

where P(X) denotes the presheaf category on X, and D¢ is the functor
associated to ®¢. Equally well, U™ is a certain enhanced limit, in the sense
of [17].

We continue with some further observations from [L0]. The universal prop-
erty of U™ implies that lifting operations for the pair of functors U: A —
C% « B : V are in bijection with functors B — A™ over C? — [10]. In par-
ticular, each AWFS (L,R) in C gives rise to a canonical functor R-Alg —
L-Coalg™. Furthermore, this functor is fully faithful, as shown in the subse-
quent paragraph.

Let (p,1): Rg — g and (p/,1): Rg’ — ¢’ be two R-algebra structures, and
(u,v): g — ¢ a morphism in L-Coalg™. We know that the chosen diagonal
filler of the square (1,p,): A, — g is p, and similarly for ¢’ and p’, so we
have u - p = p’ - K(u,v). Hence, (p/,1) - R(u,v) = (u,v) - (p, 1), so (u,v) is a
morphism of R-algebras.
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Lemma 2.11. Given a functor U: A — C2, an adjunction U - G, and
g € C?, there is a bijection between structures of an object (g,¢?) € A" and
sections s of G(1,9): G(laomg) — Gg in A. If (f,¢') € A™ is another object,
with associated section t, morphisms (g, ¢9) — (f,¢') in A™ are in bijection
with morphisms (h,k): g — f in C? such that G(h,k)-s =1t -G(h, k).

Proof: See discussion before Proposition [2.9] m

The previous lemma can be reinterpreted in the following way. If we denote
by €: UG = 1 the counit of the adjunction, a structure of an object of A®
on ¢ is given by a diagonal filler d9:

dom(eg)

UGy l fj(eg) lg

A morphism in A™ is one that preserves these diagonal fillers, in an obvious
sense.

Lemma 2.12. Assume the conditions of Lemma [2.11. Then, for any full
subcategory F < A containing the full image of G, the functor A® — F%
induced by the inclusion is an 1somorphism.

Proof: Denote by J: F — A the fully faithful inclusion functor, and by H
the right adjoint to U.J, observing that JH = G. An object of F" is a lifting
operation for the functors UJ and ¢g: 1 — C2, ie a section to the module
morphism (UJ)*- D¢ - g. — (UJ)* - g.. The same data can be equally given
by a section to the morphism H(1,g): H(ljom(g)) — Hg in F; or a section
to the image of this morphism under the fully faithful J. But JH = G, so
we simply have a section of G(1,g), precisely an object of A®. This shows
that A" — F™ is bijective on objects. The proof that it is fully faithful is
along the same lines, and is left to the reader. |

Corollary 2.13. The category L-Coalg™ can be described, for a domain-
preserving comonad L on C?, as having objects (g, d?)

)
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and morphisms (g,d?) — (e, d®) morphisms (h,k): g — e in C? such that h -
d9 = d°-K(h,k). If F < L-Coalg is a full subcategory containing the cofree L-
coalgebras, the induced functor L-Coalg™ — F* over C? is an isomorphism.

Proof: Combine Lemma [2.11], the comments that follow it and Lemma [2.12]
|

2.5. Double-categorical aspects. We continue this section with remarks
on double categories and AWFSs, due to R Garner. The standard category
object in Cat®® displayed on the left below induces a category object in
Cat, that is, a double category, displayed in the centre, that we may call the
double category of squares and denote by Sq(C). Objects of Sq(C) are those
of C, vertical morphisms are morphisms of C, as are horizontal morphisms,
while 2-cells in Sq(C) are commutative squares in C.

R-Alg —C
- e cod -
C* <aom— C

If (L,R) is an AWF'S on C, R-algebras can be composed, in the sense that if
f: A— Bandg: B — C are R-algebras, then an R-algebra structure for g- f
can be constructed from the AWFS. The forgetful functor from R-algebras
forms part of a double functor, depicted on the right hand side above.

Interestingly, the converse also holds. If R is a codomain-preserving monad
on C, there is a bijection between AWFSs with monad R and extensions of
the diagram on the right hand side of to a double functor, by which we
mean extensions of the reflexive graph R-Alg =3 C to a category object that
makes into a functor internal to Cat — a double functor into Sq(C).

If (f,ps) and (g,p,) are R-algebras with cod(f) = dom(g), the double
category structure provides for a vertical composition (g,p,) ® (f,p;) =
(g- f,pg®ps) with underlying morphism g - f. The identities for the vertical
composition are the R-algebras (1, p;). Morphisms of R-algebras can be verti-
cally composed too: given such morphisms (h, k): f — g and (k,¢): f' — ¢/,
where cod(f) = dom(f’) and cod(g) = dom(g’), then (h, ) is a morphism
ffef—4d ey

Later on we will use the following construction of the comonad L from the
double category structure. The codomain preserving pointed endofunctor
(R, A) already gives us a domain preserving copointed endofunctor (L, ®).
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The only datum that remains to give is the comultiplication ¥; = (1,07):
Lf — L?f. Define a morphism of R-algebras (67,1): Rf — Rf e RLf as the
one corresponding under free R-algebra adjunction to (Ay;,1): f — Rf-RLf.

Kf -1 K
LP,\f
Pf Kf O-f)\f:)\)\j
| pr
B——2~8

The components oy form a comultiplication for L. More details can be found
in [21, Thm 2.24].

Given a double functor U: A — Sq(C), define a category A™ in the fol-
lowing manner. An object is a morphism ¢g € C? equipped with a section ¢
of C(cod(U—),dom(g)) — C*(U—, g), that can be depicted by the diagram
on the left below, that are natural with respect to squares in A, and that
satisfies a further condition: for any pair of vertical morphisms a, a’ in A,
and a square (h,k): Ud' - Ua — g,

¢(d,dp(a,h, k-Ud), k) = ¢(a’ e a,h, k).

h
h | sahkrd) ? °
- va|  dlahkUd)
Ua L(Zb(a’h’k)jg | ¢(al7¢(a7h,k:‘Ua/)7]€) g
. Uall
k

So objects of A™ are objects of the category (A;)" induced by the horizontal
part Uy: A, — Sq(C), = C? that satisfy an additional property. We define
A™ as the full sub category of A" consisting of the objects just described.
A morphism (g,¢) — (¢/,¢') in A™ is, thus, a morphism g — ¢ in C2 that
is compatible with ¢ and ¢'.

Each double functor F': (B,V) — (A,U) over Sq(C) induces a functor
F™: A™ — B™ that is simply given by F,j“: A,d; — IB%;’;. In other words,
F(H\<g> ¢)(b7 h, k) = ¢(Fbv h, k)

Theorem 2.14. Given an AWFS (L,R) on C, there is an isomorphism
R-Alg, ~ L-Coalg™.
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The result above is included in [2], which appeared during the preparation
of this manuscript, and for this reason we have the freedom of omitting the
proof. We limit ourselves to point out that the R-algebra structure on g

associated to (g, @) is ¢(Lg, Laom(g): Pg)-

Lemma 2.15. For any double functor U: A — Sq(C) the resulting category
A™ is a fibration over C in such a way that the functor U™: A™ — C? is a
strictly cartesian functor.

Corollary 2.16. For any AWFS (L,R) the codomain functor exhibits
R-Alg, — C as a fibration over C, such that the forgetful functor R-Alg, — C2
1S a cartesian functor.

2.6. Miscellaneous results. Below we collect a number of observations
that will be of use in later sections.

Remark 2.17. Recall that there are retract adjunctions cod 4 id 4 dom:
C? — C. Suppose given a functorial factorisation, with associated copointed
endofunctor (L, ®) and pointed endofunctor (R, A). The identity natural
transformation 1 = dom-L - id corresponds under id -4 dom to a natural
transformation (1, \) with f-component equal to the morphism depicted on
the right hand side below.

dom f == dom f

id- dom
2 4N C2 1] |
L dom f — Kf
7

Remark 2.18. Given a functorial factorisation given by (L, ®) and (R, A) in
C, denote by V': (R, A)-Alg — C? the corresponding forgetful functor. Define
a natural transformation

(R, A)-Alg —~ 2
v| (Lrlg lid-dom (2.20)
C? C?

L

in the following way. Start with the identity natural transformation cod -L =
dom - R, which corresponds under cod — id to a transformation L = id -



20 M. M. CLEMENTINO AND I. LOPEZ FRANCO

dom -R. Now, ([2.20)) is the composition
(L,p): L-V=id- dom-R-V = id - dom-V
where the first arrow is the transformation just defined and the second is

the application of the (R, A)-algebra structure of R-V = V. Explicitly, the
component of (1,p) on an (R, A)-algebra (f,py) is

A——=A
Y

Remark 2.19. The (unique possible) pasting of the transformation (1, A) of
Remark with the transformation (1,p) of Remark is the identity.
Indeed, for any (R, A)-algebra (f,py), its unit axiom says precisely this, ie

pr- )\f = 1.
3. Lax orthogonal AWFSs

This section introduces the fundamental definition of this work, lax orthog-
onal AWFSs, and describes the most basic 2-categorical example. Before all
that, we shall recall some facts about lax idempotent 2-monads.

3.1. Lax idempotent 2-monads. We begin the section by introducing
some space-saving terminology. Suppose given an adjunction f - g in a 2-
category, with unit : 1 = ¢- f and counit e: f-g = 1. We say that f - g is
a retract (coretract) adjunction when the counit (unit) is an identity 2-cell.

Recall that a 2-monad T = (7,i,m) on a 2-category £ is lax idempo-
tent, or Kock-Zoberlein, or simply KZ, if any of the following equivalent
conditions hold. (i) 7% 4 m with identity unit. (ii) m < i7" with identity
counit. (iii) Each T-algebra structure a: TA — A on an object A is part
of an adjunction a — i4 with identity counit. (iv) There is a modification
d: Ti = T satisfying 6 -i = 1 and m - J = 1. (v) The forgetful 2-functor
Up: T-Alg, — ¢ is fully faithful. (vi) For any pair of T-algebras A, B, every
morphism f: UA — UB in J# admits a unique structure of a lax morphism
of T-algebras. (vii) For any morphism f: X — A into a T-algebra (A, a),
the identity 2-cell exhibits a - T'f as a left extension of f along ix.

It may be useful to say a few words about how to obtain a left extension
from the modification ¢. If f: X — A and g: TX — A are morphisms into
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a T-algebra (A, a), and a: f = ¢g-ix a 2-cell, then the corresponding 2-cell
a-Tf = ¢gis constructed as Tg - dx.

A 2-comonad G = (G, e,d) on X is lax idempotent, or KZ, if the 2-monad
(G°P, € d°P) on £ °P is lax idempotent. This means that we have conditions
dual to the ones spelled out above for 2-monads; eg adjunctions eG — d - Ge,
a modification : Ge = eG, etc. We state one of the conditions in full: given
a morphism f: A — X from a G-coalgebra (A, s), the identity 2-cell exhibits
Gf-s: A— GX as a left lifting of f through ex.

Remark 3.1. Given a lax idempotent 2-monad T on %", the right adjoint
of its Kleisli construction Ur: KI(T) — % is locally fully faithful. This is
easily verified, since Ut is the composition of the full and faithful comparison
2-functor KI(T) — T-Alg, with the forgetful 2-functor from the 2-category
of T-algebras.

3.2. Definition and basic properties of AWEFSs.

Definition 3.2. An AWFS on a 2-category % consists of a pair (L, R) formed
by a 2-comonad and a 2-monad on #? satisfying the same properties as
AWFSs on categories; ie the 2-comonad must be domain-preserving and the
2-comonad codomain-preserving, the copointed endofunctor of L and the
pointed endofunctor of R must give rise to the same functorial factorisation

of morphisms in JZ, and A (2.3) must be a distributive law.

Definition 3.3. An AWFS (L,R) in a 2-category ¢ is said lax orthogonal
if the 2-comonad L and the 2-monad R are lax idempotent.

We will later see in Section [4] that it is enough to require that L or R be
lax idempotent.

Remark 3.4. R is lax idempotent precisely when each morphism (h, k): g — ¢’
between R-algebras has a unique structure of a lax morphism. It is useful
to make the point that such a structure (h,k): (p/,1) - R(h,k) = (h,k) -
(p, 1) necessarily satisfies k = 1 — where (p,1) and (p/, 1) are the R-algebra
structures of g and ¢’. This is a consequence of the unit axiom for lax
morphisms: (h, k) - (A;, 1) = 1. This axiom also implies ¢’ - h = 1.

Remark 3.5. It was observed in Remarkthat the transformation (1, p): L-
V —id - dom -V of Remark has as right inverse (1, \) - V, where (1, \)
is the transformation of Remark 2.17. We claim that, when the 2-monad
R is lax idempotent, we also have a retract adjunction in the 2-category
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2-Cat(R-Alg,, #?) of 2-functors, 2-natural transformations and modifica-
tions

(L,p) 4 (1,N)-V:id- dom-V = L -V -

The counit of this adjunction is the identity modification, and the unit has
components

for f € R-Alg,, where 7, is the domain component of the unit of the adjunc-
tion (pr,1) - (Af, 1) provided by the fact that R is lax idempotent. The fact
that this defines a modification with components (1,7;) follows, and clearly
satisfies the triangular identities.

Remark 3.6. Further to Remark , (1, p) extends to an oplax natural trans-
formation L -V, = id - dom-V,, where V;: R-Alg, — #? is the forgetful
2-functor from the 2-category of R-algebras and lax morphisms.

To see this, recall that, for a general 2-monad T on a 2-category .Z, the
T-algebras structures a: TA — A form an oplax natural transformation as
depicted on the left hand side, with 2-dimensional component at the lax

morphism (f, f) from (A,a) to (B,b) given by the 2-cell on the right hand
side.

Ue TA-2- A

T-Alg, -2 &
ge\ﬂ |z el fp s
vy T8 —-B

In the case of Remark [3.5] we obtain an oplax natural transformation
R -V, — V,, which provide us, for each morphism (h,k): f — ¢ in R-Alg,,
with 2-cells p, - K(h,k) = h - py, where (py,1): Rf — f is the R-algebra
structure. One can now verify that these same 2-cells endow the morphisms
(1,p) with the required oplax transformation structure.

Remark 3.7. The oplax natural transformation L -V, = id - dom -V} defined
in Remark [3.6, when composed with the counit 2-natural transformation
id - dom -V, = V}, equals the counit ® - Vj; in particular, this composition is
2-natural. Both transformations have trivial domain components, and (1, g)-
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(1,py) = (1,p4) = @4, so we must only verify that the domain component
pg - K(h,k) = h - py of the lax morphism structure of (h, k), composed with
g, is the identity 2-cell. This is clear, since the lax morphism structure in
question is a 2-cell in J#2.

3.3. A basic example. Every functor f: A — B factorsas \;: A - Kf =
(f | B) followed by ps: K f — B, where A¢(a) = (a,1: f(a) — f(a),a), and
prla,B: f(a) — b,b) = b. The associated pointed endofunctor R on Cat?
given by f ~— p; underlies the free split opfibration monad R. Precisely
the same factorisation can be constructed in any 2-category % with the
necessary comma objects. At this point one could deduce that there is an
AWEFS (L,R) by observing that split opfibrations compose and the results
cited in Section [2.5, and furthermore, one could use the results of Section
to prove that the AWFS is lax orthogonal. Instead, we shall give an explicit
description of the comonad and its coalgebras, as they will become important
in later sections. First, let us say a few words about R. The free split
opfibration on f is given by a comma object as depicted on the left hand
side. The unit of R has components Ay = (Af, 1), where A\j: A — K f is the
unique morphism such that py- Ay = f, ¢s- Ay = 1 and vy - Ay = 1. The
multiplication II; = (7f, 1) is given by the unique morphism 7y: Kpy — K f
satisfying the three equalities depicted on the right hand side.

Kf2.A

orl g lr TR = Ay Pp T =Py Yy T = Vg (Ve )
B—

(3.1)
Observe that Ay comes equipped with an adjunction A\; - gy with identity
unit, where gy is the projection. The counit wy,: Ay - ¢y = 1 is the one
induced by the universal property of comma objects and the pair of 2-cells
qp-wr, = 1o qr = qrand py-wy, = vpipp-Ap-qr = f-qp = py-
The copointed endofunctor L underlies a comonad with comultiplication
¥: L = L?, defined by the following equality and the universal property of
comma objects.

o q
Kf-2o KN\ ——A  Kf-2-A4

T2 P O BY (32)
Kf—Kf Kf=—KFf
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The 2-monad R is well-known to be lax idempotent. To see that the comonad
L is lax idempotent, one can exhibit an adjunction ®r; - X, with identity
counit.

The existence of an adjunction py, — oy, with identity counit, follows from
Remark below. The fact that this adjunction provides another ®, — Xy
can be readily checked. We leave the verification of the distributivity law
between the 2-comonad and 2-monad to the reader.

Remark 3.8. Given a comma object as exhibited on the left below, each
adjunction ¢ — r induces a retract adjunction p - s, where s is defined by
the equality on the right hand side.

(lt—21-A X2t |t—2-A y_ !l p_r_4
vl 4 lf Pl 4 WZ %W
X—>t B X—>t B B

The unit n: 1 = s - p is the unique 2-cell satisfying p-n =1 and
(lt—~A—A

1
CLemelt——a = s 4 [
o X——B

We make a final observation that will be of use later on. Suppose that the
unit of £ - r is an identity and h: Z — ¢ | t is any morphism such that v - h
is an identity 2-cell. Then 7 - A is an identity 2-cell.

Proposition 3.9. (1) There is an isomorphism between (L, ®)-Coalg and
the 2-category with
o Objects (f,v,&) where f: A 2 B :v and &: f-v = 1 satisfy
v-f=1gand & f =1 — strong deformation retracts of B.
e Morphisms (f,v,&) — (f',v', &), morphisms (h,k): f — [ in
H? such thath-v=2v"-kand & - k=Fk-¢&.
o 2-cells (h,k) = (h,k): (f,v,6) — (f,.,¢&), 2-cells (a,B):
(h, k) = (h, k) in A2 such that o -v =2 B.
(2) There is an isomorphism between L-Alg, and the 2-category with
e Objects coretract adjunctions f — v — with counit denoted by e.
e Morphisms from f — v to f' 4 v morphisms (h,k): f — f' in
K2 such thath-v =1k ande -k =Fk-e.
o 2-cells those of 2.
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(3) Cofree L-coalgebras correspond to the coretract adjunctions Ay - qs.
(4) The double category structure on L-Coalg, induced by this AWFS is
the one given by composition of coretract adjunctions.

Proof: Recall the definition of Kf as a comma object (3.1). There is a
bijection between morphisms s: B — K f such that ps-s = 15 and morphisms
v: B — A equipped with a 2-cell £: f - v = 1p; the bijection is given by
composing with the comma object vy, ie v = ¢y -s and § = vy -s. Under this
bijection, the condition s - f = Ay, which means that (1,s) is a morphism
f — Lf, translates into £ - f = 1. This completes the description of (L, ®)-
coalgebras.

Next we translate the condition oy-s = K (1, s)-s, that is the coassociativity
axiom for that makes an (L, ®)-coalgebra into an L-coalgebra. Denote the
counit of Ay 4 ¢ by wy, and recall that o is defined by (3.2). The morphism
oy - s corresponds under the universal property of the comma object vy, to
the 2-cell

Ur, " Of 8 =Wr 8 Af-(qp-5=NAf-0=>5 (3.3)
while K (1,s) - s corresponds to
vy, K(l,5)-s=5-vp-5=5-{:5-[-v=Ap-v=>5 (3.4)

Therefore, s is a coalgebra precisely when equals (3.4). These are both
2-cells between morphisms with codomain K f, and as such they are equal
if and only if their respective compositions with the projections p; and gy
coincide. Their composition with p; yield respectively

pr-wp-s=vi-s=¢§ and pr-s-§=¢§

while their composition with ¢, yield respectively

qr-wr-s=1 and qr-s-{=v-¢&.

It follows that s is coassociative if and only if v - & = 1, completing the
description of L-coalgebras as coretract adjunctions f — v.

We now describe the morphisms of (L, ®)-coalgebras from (1,s): f — Lf
to (1,8'): f' — Lf’. Such a morphism is a morphism (h,k): f — f’ in ¢
satisfying s’ - k = K(h,k) - s. Composing with the comma object vy, this
equality translates into v’ -k = h-v and & -k = k-£ A morphism of
L-coalgebras is just a morphism between the underlying (L, ®)-coalgebras.
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A 2-cell between morphisms (h, k), (h, k): (f,s) — (f,s") of (L, ®)-algebras
is a pair of 2-cells a: h = h and : k = k satisfying K (o, ) -5 = s - 5.
This is an equality of 2-cells between 1-cells with codomain K f/, so it holds
if and only if it does after composing with the projections py and gy. The
composition of this equality with py yields 8 = 8 — no information here —
while its composition with ¢ yields ac-v = §-v'. This completes the descrip-
tion of (L, ®)-Coalg. When (f,s) and (f’,s’) are L-algebras, with associated
coretract adjunctions (f,v,€&) and (f,v',&’), this latter equality is void too,
since its mate automatically holds. Explicitly,

(h-v%l_z-v)=(h-v=v'-kﬂ>vl-k=h-v)

holds if and only if it does after precomposing with f and composing with
the unit 1 = v - f of f H v:

Oé=Oé-U'f=(hZh-v-f=U/-k'fﬂ>vl'l_€-f=i_l-v-f=]_7,).

But this latter equality automatically holds, by 8- f = f' - «. This shows
that 2-cells in L-Coalg, are simply 2-cells in .#2.

Finally, we prove the fourth statement of the proposition. The 2-category
of L-coalgebras is equipped with an obvious composition: that of coretract
adjunctions. Any such composition corresponds to a unique multiplication
II: R — R that makes (R, ®,II) a 2-monad and satisfies distributivity —
Section . We have to show that II equals the multiplication IT of the free
split opfibration 2-monad.

By the comments at the end of Section [2 or rather the dual version of
those comments, [1; = (7, 1) is defined by the property that (1,7;) is the
unique morphism of L-coalgebras from L(ps) e Lf to Lf that composed with
the counit ®; = (1,pf): Lf — f yields the morphism (1, p,,): Ay, - Ay — f
in 2. Recall that 7 has domain Kp; and codomain K f. By the previous
parts of the present proposition, to say that (1,7f) is a morphism of L-
coalgebras is equivalent to saying that q; - Ty = qy - g,, and

TENp Wy W s
(75 Xy Aty —— Ny gy~ ) = (A gy u’(”f))
3.5
In order to deduce that 7; is the multiplication of the free split opfibration
2-monad, we can verify that it satisfies the three equalities of . The first
of these we have already verified above, while the second holds by definition
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of 7. It only remains to verify the third equality in (3.1]), for which we
will use py - wy = vy — see remarks that follow the equation (3.1)). If we
postcompose the left hand side of with py, we obtain v, (vy - q,,), while
doing the same on the right hand side we obtain vy - ;. Therefore, 7; does
satisfy the third equality of (3.I)), and necessarily 7; = 7s, completing the
proof. |

In general, for a copointed endofunctor (G,e) on a category C, and a
retraction r: Y — X with section s in C, each (G,¢)-coalgebra structure
0: Y — GY on Y induces another on X. This induced coalgebra structure
is (Gr)-6-s: X — GX. Later we shall need the description of this construc-
tion in the case of the copointed endo-2-functor (L, ®) of Proposition[3.9] Let
(f,v,€) be a coalgebra and (rg,71): f — f a retraction on .#2 with section
(50,51). The induced coalgebra structure (f,v,&) is given by o = ry - v - 51
and

]F'@:]?'TO'U'Sl:Tl'f‘U'Slgrl'Slzl-

4. The 2-comonad is lax idempotent if the 2-monad is
SO

In this section we show that, in order for an AWFS on a 2-category to be
lax orthogonal, it suffices that either its 2-monad or its 2-comonad be lax
idempotent. This result can be seen as a two-dimensional generalisation of
the fact that an AWF'S on a category is orthogonal if either its monad or its
comonad is idempotent — a fact the second author learned from R Garner
and is included in [2]. However, the proof, as it is to be expected, is more
involved. Incidentally, our proof uses the double category structure on R-Alg,
mentioned in Section (2]

Theorem 4.1. The 2-comonad of an AWES on a 2-category is lax idempotent
provided the 2-monad s lax idempotent.

Proof: Denote the AWFS on the 2-category % by (L,R). We will exhibit a
coretract adjunction ¥y 4 L®; whose counit is a modification in f: A — B
— the unit is an identity 2-cell. In Section [2| we mentioned that (o, 15) is a
morphism of R-algebras Rf — Rfe RLf, where the codomain is the vertical
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composition of the R-algebras RLf and Rf. Consider the morphism
RLf 22 pp 7012, pro RIS

which is, by Section [3.1], a left extension along Az of its composition with
the unit Az

(Of,lB) : R(I)f-ALf = (Of,lB) -Af : (I)f = ()\)\f,pf): Lf — Rf : RLf.

The morphism (1xy, pf): RLf — Rf-RLf in 2 satisfies (1xy, pf)-Ars =
(Ax;, py) too, therefore the universal property of left extensions gives a unique
2-cell (of,1p) - R®¢ = (1, ps) in £ ? whose composition with Ay is the
identity 2-cell. This forces the 2-cell to be of the form

(e, 11,): (05, 1B) - R® = (1ky, py) (4.1)
for a 2-cell in J#

Ef: Of-K(lA,pf) —— 1K)\f: K)\f—>K)\f

since the codomain component of Ay is an identity. This definition makes
(ef,11,), and hence ef, a modification in f, a fact that can be verified by
using the universal property of extensions.

We now proceed to prove that € is the counit of a coretract adjunction
or 4 K(1ya,py) in 2, for which we must show three conditions:

8f'0‘f=1 K(lA,pf)-é?f:1 6f'>\/\f=1. (4.2)

The first two conditions are the triangular identities of the adjunction, while
the last one means that £; is a 2-cell in J#2.
Consider the morphism of R-algebras

Rf (of,1B) Rf . RLf (p1p)e Ry 150 Rf 1pe(oy,1B) g e Rf o RLf

depicted in Figure[3, which equals (of,15). The 2-cell (f,1): (of,1)- R®; =
1 induces a 2-cell

((pf7 13) d (5f7 113)) ) (va 1) = (5f "Of, 113) (4-3)

with domain and codomain equal to (of,1p): Rf — Rf e RLf — top of
Figure . This 2-cell (4.3) precomposed with Ay: f — Rf equals the identity,
for oy - Ay = A\, and € - A\, = 1 by definition of e;. Since (oy,1) is a left
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FIGURE 3. Proof of Theorem 4.1l

extension of (of,1) - Ay along Ay, we must have (ef-0y,1;,) = 1, the first of

the equalities (4.2)).

Consider the morphism of R-algebras

(

RLfZ2 Rp ), ppo g YRR Ry

depicted in the bottom of Figure [3| which equals (K (14,pf),1). The 2-
cell (4.1) induces an endo-2-cell

((pys 1) @ R®y) - (e, 11,): (K (1a, pp)s o) = (K (14, p1), py), (4.4)

which, by definition of (4.I)), equals the identity when precomposed with Ay .
The morphism (K (14, pf), ps) is a morphism of R-algebras, and hence a left
extension along Ars, from where we deduce that must be the identity
2-cell. That is, K (14, py) - s = 1, the second equality of (4.2).

All that remains to verify is € - A\, = 1, but this is part of the definition
of €. |
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The foregoing theorem implies that a lax orthogonal AWFS can be equiv-
alently given by a lax idempotent 2-monad R on .#2 and a double category
structure on R-Alg, as described in Section [2|

5. KZ lifting operations

Section described the algebraic structure that provides a lifting oper-
ation, and the category A", in terms of modules. This section introduces
variations of these notions that are suitable to lax orthogonal factorisations.

5.1. Lax natural lifting operations. Before introducing the main def-
initions of this section, let us remind the reader about some facts around
Cat-modules. The bicategory Cat-Mod of Cat-categories, ie 2-categories,
and Cat modules, can be constructed from the bicategory Cat-Mat of Cat-
matrices, as explained, in the case of a more general enrichment, in [1]. This
2-category has sets as objects and homs from X to Y equal to the underly-
ing category of Cat¥ ¥ so a morphism from X to Y is a matrix A(y,z) of
categories, where (y,z) € Y x X. Composition of a matrix A: X — Y
with another B: Y — Z is given by the formula for matrix multiplica-
tion: (B - A)(z,z) = X, B(z,y) x A(y,z). Note that the hom-category
Cat-Mat(X,Y) is the underlying category of a 2-category, namely, Cat**Y
and the composition in Cat-Mat is not only functorial but 2-functorial.

A 2-category 7 with objects |.2/| is a monad on the object |.2/| in Cat-Mat.
For a pair of 2-categories o/, %, there is a 2-monad on Cat-Mat(|<7|, |4|),
given by precomposing with the monad &/ and post-composing with the
monad A. The 2-category of Eilenberg-Moore algebras and strict morphisms
(B - — - of)-Alg, is the 2-category of Cat-modules Cat-Mod (<, %).

Observe that Cat-Mod(X,Y) is just Cat-Mat(X,Y) if X, Y are dis-
crete 2-categories. Thus, a 2-category % can be regarded as a monad on
|%| in Cat-Mod. The 2-category Cat-Mod(«/, %) is (— - HA)-Alg,, for
the 2-monad given by post-composing with the monad % : |#| - |%| on
Cat-Mod(«7, | %))

We now substitute the category C in Section by a 2-category £, and
make the modules into Cat-enriched modules. So © »(f,¢g) is now the cat-
egory with objects commutative squares with a diagonal filler as depicted
in ([2.9), with morphisms, from an object with diagonal d to another with di-
agonal d’, given by 2-cells d = d’ in .# . Given 2-functors U: & — J# 2 and
V:%B — #?2 we define D(U,V) in the same way as we did in Section
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in the case of ordinary categories, with the difference that now the modules
are Cat-enriched.

Let us, for the purposes of this section, denote by T the 2-monad induced
by the monadic 2-functor Cat-Mod (<7, #) — Cat-Mat(|.<7|,|%|). Thus, a
lifting operation is just a section of ©(U, V) — U* -V, in T-Alg, — Defini-
tion 2.4l

Definition 5.1. A laz natural lifting operation for U, V is a section of
DU, V)—U*-V,in T-Alg,.

An object of the 2-category T-Alg, is a Cat-module ¢: &7 - %, while a
morphism ¢: ¢ — 1 is a morphism of the underlying matrices that is oplax
with respect to the action of &/ and 4. This means that, given a morphism
fra—d in <, and g: b — b in A, there is extra data

b,a’

(b, ) = (b,
eoh)| g e
/ /

Sﬁ(b 70/) t(b/,a) w(b a)

satisfying coherence axioms.

Each component U* - V,(a,b) — D(U,V)(a,b) of the section of Defini-
tion gives a diagonal filler for each square Ua — Vb in #2. The oplax
morphism structure on the section can be described as follows. Suppose the
morphisms a: ¢’ — ain o and B: b — V' in & are mapped by U and V to
commutative squares in %

A2 A o ygl
v |va and 1y Jvv
B 2B DD

Consider the diagonal fillers given by the respective components of the sec-
tion:

A" o AR o
Ual d/’ lVb and Ua’l y lVb/
BTC B/m)Dl

Then, the oplax morphism structure on U* -V, — ® (U, V') provides a 2-cell
w=w(la,pf):j = u-d-vy, satisfying (VV) -w = 1, w- (Ud') = 1, and
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coherence conditions that we proceed to describe. Suppose given an object
d of ®(U,V)(a,b) as above, and morphisms in &/ and %

n o

a5 d S a and bib'ib"

we have the following diagram, where the dashed arrows are chosen diagonal
fillers.

A ' A _E A 5 C uyci’glscw

" Ud Ua 94: = Z-7 / ”
Ua . g Vb Vb Vb
- - /

=57 T
B" = / B’ ; B p D - D’ / D"
Yy v

The condition corresponding to the associativity axiom of the oplax mor-
phism U* -V, — ®(U, V) says that

w' ) o vw(af)y

(ew(a-a’,ﬂ’-ﬁ) u’-u-d-y-y’)z(e u ey >u’-u-d-y-y')

The axiom corresponding to the unit axiom of the oplax morphism U* -V, —
(U, V) says that w(1,1) = 1.

5.2. KZ lifting operations.

Definition 5.2. A KZ lifting operation in £ for the 2-functors U, V is a
left adjoint section to the morphism ©(U,V) — U* -V, in the 2-category
Cat-Mod(«, ).

In more explicit terms, a KZ lifting operation is given by, for each square
(2.13)) in %, a diagonal filler d(h, k), with the following universal property.
For any d': B — C and any pair of 2-cells a, [ satisfying

h k
Al 02D = A BT D
dTa Vod
there exists a unique 2-cell y: d(h, k) — d' such that v-Ua = a and Vb-y = (.
Moreover, these diagonal fillers must be natural in a and b.

Definition 5.3. A laz natural KZ lifting operation in % for the 2-functors
U, V is a left adjoint section to the morphism ©(U,V) — U* -V, in the
2-category Cat-Mat(|<7|, |4)).
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This means that a lax natural KZ lifting operation is given by a left adjoint
section for each component

DU, V)(a,b) — #?*(Ua,Vb) ac o, be AB.

More explicitly, it is given by a choice, for each square (h,k): Ua — Vb, of
a diagonal filler d(h, k): cod(Ua) — dom(V'd) with the property that 2-cells
d(h,k) = d: cod(Ua) — dom(Vb) are in bijection with 2-cells (h,k) =
(d-Ua,Vb-d). In other words, the same universal property of KZ lifting
operation, except that the chosen diagonals d(h, k) need not be natural in a,
b.

Remark 5.4. A lax natural KZ lifting operation equates to providing, for each
a€ o/ and be B, with Ua: A — B and Vb: C' — D, a left adjoint section
of the usual comparison functor

%(B7C) —)%(A7C) X ¥ (A,D) ’%(B?D)

However, the presentation using modules and matrices effortlessly yields
more, as discussed below.

Remark 5.5. It is clear that each KZ lifting operation is also a lax natural
KZ lifting operation.

It is also clear that each lax natural KZ lifting operation is also a lax natural
lifting operation — Definition 5.1, This is so by doctrinal adjunction: for a
2-monad S on a 2-category £, a morphism f in S-Alg,. has a left adjoint
(resp. left adjoint coretract) precisely when f is a pseudomorphism and its
underlying morphism has left adjoint (resp. left adjoint coretract) in 2.
Now one can apply this fact to the 2-monad on Cat-Mat(|<7|, |%|) whose
algebras are the Cat-modules & - 7.

Proposition 5.6. KZ lifting operations for the 2-functors U: o/ — #? and
VB — % are, if U has a right adjoint G, in bijective correspondence with
left adjoint sections of the morphism G -id - dom -V — G -V induced by the
counit of id - dom — with components G(1,Vb) — in the 2-category | A, o]
of 2-functors B — o .

Proof: By the same argument deployed in Remark [2.§, the Cat-module
transformation

U Dy Vi— UV, (5.1)
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corresponds to the 2-natural transformation of the statement
G-id-domV—= G-V (5.2)

via the pseudofunctor (—). from 2-Cat to Cat-Mod. Since the 2-functor
from [#, o/ to Cat-Mod (%, &) is full and faithful as a 2-functor, (5.1)) has
a left adjoint coretract if and only if (5.2) does so. ]

Proposition 5.7. Given a lax orthogonal AWFES (L,R) on J£, the 2-natural
transformation F--id- dom-V = F“ -V induced by the counit of id - dom
has a left adjoint section in [R-Alg,, L-Coalg,], where F*: #? — L-Coalg,
is the cofree coalgebra 2-functor and V' the forgetful 2-functor from L-Coalg,.

Proof: Given an R-coalgebra structure (py, 1): Rg — g we need to exhibit a
coretract adjunction in L-Coalg, with right adjoint L(1,g): Llgom() — Lg.
We know from Remark that there is a coretract adjunction (1,p,) -
(1, Ay), whose unit we denote by 7,; the same Remark points out that these
adjunctions are 2-natural in (g, p,). Together with the adjunction ¥, - L®,
that exhibits L as lax idempotent, we obtain

L(1,p,) -, 4 L&, - L(1,\,) = L(1,g).

The unit of this composition of adjunctions is

L= Lo, -3, S L, - L(1,Ag) - L(1,p) - Xy = 1,
which is the identity since ®, -7, = 1 — again by Remark [3.5 |

Theorem 5.8. Each lazx orthogonal AWFS (L,R) on the 2-category & in-
duces (1) A KZ lifting operation for L-Coalg, — 2 and R-Alg, — 2.
(2) A lax natural KZ lifting operation for U,: L-Coalg, — #? and

Vi R-Alg, — 2. Moreover, the diagonal fillers are those given by the
AWES on the usual way — (2.2).

Proof: The first part is a direct consequence of Propositions and [5.7]
The second part means that there must exist a left adjoint coretract to each
functor

D(Up, Vi) ((f, ), (g,p)) = A (cod(f), dom(g)) — A 3(f, 9) (5.3)

where (f,s) is an L-coalgebra and (g,p) an R-algebra. We know that such
a left adjoint coretract does exist, by the fist part of the statement, and the
proof is complete. u
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Theorem can be rephrased by saying that the usual lifting operation
for (L, R) is, when both L and R are lax idempotent, lax natural with respect
to all morphisms in .#". This is so since every morphism in #2 has a unique
structure of a lax morphism of L-coalgebras, respectively, R-algebras.

Remark 5.9. It may be useful to exhibit the counit of the coretract adjunction
in the proof of Theorem [5.8], in which is the right adjoint, even though
it is not necessary to prove that result. Let d be a diagonal filler for a square
(h, k) from an L-coalgebra (f,s) to an R-algebra (g, p), as depicted in ({2.9).
The diagonal filler given by the lifting operation is p - K(h, k) - s, and the
counit p- K(h,k)-s=d is

pK(h7k) "S = Ple K(lap) 'O-Q'K<17pg) K(L)‘g)K(had) "8 =
— .- K(L,p)- K(1,)) - K(h,d)-s = p1, - K(h,d)-s=d-ps-s=d
where the 2-cell is the one induced by the counit o, - K(1, p,) = 1.

5.3. Lax orthogonal functorial factorisations. We have seen in the
previous sections that the lifting operation of a lax orthogonal AWFS has
the extra structure of a KZ lifting operation. One could ask what extra
structure is inherited from a lax orthogonal AWFS to its underlying WF'S.
Since we work with algebraic factorisations, we have at our disposal not only
mere WFSs but functorial factorisations, and it is for these that we answer
the question.

Let @7, & be 2-categories and 2" be Cat-Mod (%, 7). Denote by M the
2-monad (M, A TIM) on 22 whose algebras are morphisms in 2~ equipped
with a left adjoint coretract. A dual of M has been described in Section [3.3];
more precisely, if L is the 2-comonad of Proposition 3.9, whose algebras are
morphisms equipped with a right adjoint retract defined on the 2-category
(Z2°°P)2 =~ (Z%)°P, then M is L°?. An algebra for the pointed endo-2-functor
(M, AM) is a morphism a: ¢ — ¢ equipped with a coretract o: ¢y — ¢
and a 2-cell m: 0 -« = 1 such that ¢ - m = 1. This is a dual form of

Proposition ().

Definition 5.10. Consider 2-functors U and V from &/ and £ into J#2.
A laz orthogonality structure on U, V is an (M, A*)-coalgebra structure on
the morphism of Cat-modules U* - ® - V., — U* - V,. Consider a functo-
rial factorisation on £ with associated copointed endo-2-functor (L, ®) and
associated pointed endo-2-functor (R, A). A lax orthogonality structure on
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the functorial factorisation is one on U, V, for U the forgetful 2-functor from
(L, ®)-coalgebras and V' the forgetful 2-functor from (R, A)-algebras.

Explicitly, a lax orthogonality structure as in the definition is a choice of
natural diagonal fillers D(a,b)(h,k): cod(Ua) — dom(V'b) that is functorial
on squares (h,k): Ua — Vb, and natural on a € o7, b € #. Furthermore, for
any diagonal filler e of (h, k) we are given a 2-cell 6(a,b)(e): D(a,b)(h, k) = e
that is natural on e and a modification on a, b.

. h .
Ua ;D\l? Y |y
) - X

The 2-cells 0(a, b)(e) must satisfy (Vb)-6(a,b)(e) = 1} and 6(a,b)(e)- (Ua) =
15. Naturality in e means that for each 2-cell €: e = e the equality

(0(a,b)(€)) (D(a,b)(e- Ua,Vb-€)) = eb(a,b)(e)

holds. The modification property for § means that, if «: ' — aand 5: b — V/
are morphisms in ./ and %, then

dom(V B3) - 0(a,b)(e) - cod(Ua) = 0(a’,b")(dom(V ) - e - cod(Ua)).

Observe that there is no reason why 6 should satisfy the extra property
that the endo-2-cell O(a, b)(D(a, b)(h, k)) of D(a,b)(h, k) be an identity 2-cell.

Remark 5.11. In the particular instance when o = % = 1, the 2-functors
U and V pick out morphisms f: A — B and g: C — D in %, and a
lax orthogonality structure for f, g can be described simply as a functor D
that is a section of the canonical comparison functor H into the pullback,
together with a natural transformation 6: DH = 1 that satisfies Hf = 1.
This structure can be described as a choice of a diagonal filler D(h, k) for
each square (h, k) and a 2-cell (e): D(h, k) = e for any other diagonal filler
e, that satisfies g - 0(e) = 1 and f(e) - f = 1.

H
%(B,C) ?%(A,C) in/(A,D) %(B,D)
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Proposition 5.12. The underlying functorial factorisation of a lax orthogo-
nal AWFS carries a canonical lax orthogonal structure, whose diagonal fillers

are those induced by the functorial factorisation in the usual way — as in FEx-
ample [2.5 and Remark [2.6,

Proof: For an AWFS (L,R), consider the forgetful functors U and V' from,
respectively, the 2-categories of (L, ®)-coalgebras and (R, A)-algebras. De-
note by ¥ = (1,s): U = LU the L-coalgebra structure of U, and II =
(p,1): RV = V the R-algebra structure of V. The morphisms ¥*: (LU)* —
U* and A, : (RV), — V, induce a retraction

oL -9 -RV,—U"-9D: -V,

: J
U*L*- RV, U*- V.

where the object of 2'2 on the left is a M-algebra, where the 2-category
Z and the 2-monad M are those described in the beginning of the present
section. Theorem implies that the object of 2 depicted by the leftmost
vertical arrow in the diagram carries a structure of an M-algebra. Hence
the object on the right hand side is a retract of a M-coalgebra, therefore it
carries an (M, AM)-algebra structure that makes the retraction a morphism
of (M, AM)-coalgebras. It remains to show that the section of U*-® 4 -V, —
U* -V, so obtained is equal to that induced by the functorial factorisation, as
described in Example 2.5 for which we appeal to the comments at the end
of Section 3.3 The induced section is

Uy, L2V e R Vo UL 4 R,V

(173)*9%(1”1)* U*Q%/V

where the middle morphism is the KZ lifting operation for LU, RV. One
can verify that the diagonal filler of a square (h,k): f — g, where (f,s) is
an (L, ®)-coalgebra and (f,p) and (R, A)-algebra, is p - d - s where d is the
diagonal filler of (A, - h,k - ps): Lf — Rg. But d = K(h,k),sop-d- s is
precisely the diagonal filler induced by the functorial factorisation. |

6. Algebraic KZ Injectivity

Recall from Section 2.4 and originally from [10], the definition of the free
category with a lifting operation U": A" — C2for U: A — C%2. If U: o/ —
2% is a 2-functor instead, &/™ has objects (g,$) where ¢ is a section of
the 1-cell U* - © 4 - g. — U* - g, in the 2-category Cat-Mod(1, <), which is
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isomorphic to [«/°P, Cat]. Morphisms (g, ¢) — (¢’, ¢’) are those morphisms
(u,v): g — ¢ in Z? that are compatible with the sections, while 2-cells
(u,v) = (u,v) are pairs of 2-cells a: u — @ and f: v — v in £ such that
the equality below holds — we omit the dots that denote composition to save
space.

U*Q* U,V ) 4 U*M)* /
Vg U Dge 1 U Dy = Ut 1 U Lo "D g,
U*Q*(U»U)* U*m)*

In more elementary terms, « - ¢(a, h, k) = ¢'(a,a - h, 5 - k), for each a € &
and square (h,k): Ua — g. The 2-functor U™: @™ — #2 is the obvious
one, analogous to one constructed in the case of categories.

Next we introduce a different construction, the universal 2-category with
a K7 lifting operation.

Definition 6.1. Given a 2-functor U: &/ — # 2 define another U": &/* —
2% in the following manner. Its objects are morphisms g € J# 2 that are
algebraically KZ injective to U, by which we mean equipped with a KZ lifting
operation for the 2-functors U, g: 1 — ¢2; ie a left adjoint coretract to
U Dy -g. — U g, Hence, every object is an object of &/™ equipped
with the extra structure of a coretract adjunction. A morphism g — ¢ is a
morphism (h, k) in 2#? such that in the diagram below not only the square
formed with the right adjoints commute — this always holds — but moreover
the diagram represents a morphism of adjunctions; ie it commutes with the
coretracts and it is compatible with the counits.

U*D (k) l lU*'(h’k)* (6.1)
U Dy-9. 1T U g,

The 2-cells in .27* are those of #2. Observe that any such 2-cell is auto-
matically compatible with the left adjoints in (6.1]) — see Proposition [3.9] (2).
There are obvious forgetful 2-functors &> — &/ and &/* — 2, the first of
which is locally fully faithful by the observation of the previous paragraph.

Dually, given a 2-functor V: & — #2 define “V: "% — H#? by “#B =
(98°P)” and “V = (V°P)". Here we use the obvious isomorphism (¢ %)% =
(2£°P)2. More explicitly, objects of % are f € #? equipped with a KZ
lifting operation for the 2-functors f: 1 — 2, V.
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There is a concise way of describing «/”. Let M be the 2-monad on the
2-category P (/)? whose algebras are right adjoint retract morphisms in
P () = [«/°P, Cat]. This 2-monad can be described by performing the con-
struction of the 2-monad of Section [3.3|starting from the 2-category &2(.a7)°P.
The Cat-module morphism ® ,» — 1,2 can be equivalently described as a
2-functor

E: % — 2(x?)?

that sends g € #2 to D 4 (—,9) — #2(—,g). Then & is the pullback of
the 2-category of M-algebras along &2(U*)2E.

" M-Alg,

|

222 (2 2

One can express the compatibility of the morphism (h, k) in /" with the
counits required in Definition in terms of diagonal fillers. Given a diag-
onal filler 5 as on the left hand side below, the counit provides for a 2-cell
gt ¢(a,u,v) = j. The compatibility means that - e; = e.;.

S

These constructions are functorial, in the sense that if F': (&7, U) — (£4,V)
is a 2-functor over ¢ 2, there is another 2-functor F*: (#°,V*) — (&*,U"),
which sends g € 2 equipped with a KZ lifting operation for V, g to the
induced choice for U = V' F,g. A 2-functor “F can be similarly defined.

Remark 6.2. Given V: % — 2, there is an isomorphism of categories
between 2-functors & — &7° over # 2 and KZ lifting operations for the pair
of 2-functors U, V. Similarly, there is an isomorphism of categories between
2-functors & — % over #? and KZ lifting operations for the pair of 2-
functors U, V. We hence have a natural isomorphism of sets

2-Cat/ 7 (o, U), (B, V")) = 2-Cat/ #?*(B,V), ("<,"U))

and an adjunction between (—)" and “(—).
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The unit and counit of this adjunction — or rather, both units — are 2-
functors Ny: & — “(&/") and My: &/ — (".«/)” commuting with the func-
tors into # 2. The first one corresponds to the tautological KZ lifting oper-
ation for the pair of 2-functors U, U”, and the second one to the tautological
KZ lifting operation for “U, U.

Ezxample 6.3. In the case when U is the 2-functor f: 1 — .#2 that picks out
a morphism f, the objects of the 2-category f” are morphisms algebraically
KZ injective with respect to f. This is a slightly abuse of language, as a
morphism can be algebraically KZ injective to f in more than one way — but
two such are, of course, isomorphic.

Lemma 6.4. Given a 2-functor U: o/ — #2, a 2-adjunction U 4 G and
g € 2, there is a bijection of 2-categories over % between </ and the
2-category described by:

e Objects are coretract adjunctions {y, 4 G(1,9): G(lgom(y)) — Gg in
o .

o Morphisms from ¢, 4 G(1,g) to {; 4 G(1,g) are morphisms (h,k): g —
g in 2 such that G(h, k) defines a morphism of adjunctions: G(h,k)-
by =1Ly-G(h,k) and G(h,k) commutes with the counits.

o 2-cells (h, k) = (h, k) are 2-cells in 22, with no additional conditions.

Proof: By Proposition there is a bijection between objects of .&7” and
coretract adjunctions as in the statement. The description of the morphisms
and 2-cells is a direct translation from the ones of 27" — Definition 6.1, =

Lemma 6.5. Assume the conditions of Lemma[6.4 Then, for any full sub-
2-category .F < of containing the full image of G, the functor &/* — F*
induced by the inclusion is an isomorphism.

Proof: If we denote by J: .% — & the inclusion and H = JG: &/ — % the
right adjoint of UJ, Lemma [6.4] allows us to describe .#* as the 2-category
with objects coretract adjunctions ¢, - H(1,g): H(lqom()) — Hg in 7.
But to give this retract adjunction in .% is equivalent to giving a retract
adjunction ¢, 4 G(1, g) in /. The rest of the proof is similarly easy. |

Proposition 5.7 together with Lemma6.4)imply that if (L, R) is a lax orthog-
onal AWFS, there is a 2-functor, depicted by the dashed arrow below. On
objects, it sends an R-coalgebra (p,1): Rg — ¢ to the coretract adjunction
L(1,p) -3, 4 L(1, g) in L-Coalg,, composition of the adjunctions ¥, 4 L®,



LAX ORTHOGONAL FACTORISATION SYSTEMS 41
and L(1,p) 4 L(1,A;). On morphisms and 2-cells it is given by the identity.

R-Alg, - - - L-Coalg, — #"
~ ! (6.2)
L-Coalg? — 7

Theorem 6.6. The following are equivalent for an AWFES (L,R) on a 2-
category. (1) (L,R) is a lax orthogonal AWFS. (2) There is an — essentially
unique — KZ lifting operation for the forgetful 2-functors from L-coalgebras
and from R-algebras. (8) There is an — essentially unique — 2-functor
R-Alg, — L-Coalg, making commutative. (4) There is an — essen-
tially unique — 2-functor R-Alg, — F° making the outer diagram in (6.2)
commutative, for any full sub-2-category % < L-Coalg, containing the cofree
L-coalgebras.

Proof: There is a bijection between structures in and those in , by
definition of 2/, in which case both are essentially unique since KZ lifting
operations are unique up to isomorphism — Remark [6.2] The equivalence
of (3)) and (4)) follows from Lemma [6.5, while that of (1)) and (3 was already
explained above.

We now proceed to prove (B)=(I). As it has been our convention, we will
denote by £ the base 2-category, by U and V the forgetful 2-functors from
the 2-categories of L-coalgebras and R-algebras, respectively.

Let (g,p) be an R-algebra. Its image in L-Coalg;h can be given as in Corol-
lary 2.13] again by (g,p). By hypothesis, (g,p) carries a structure of an
object of L-Coalg,. By definition p- A, = 1 and ¢ - p = p,. Consider the
diagonal

and note that p, = Rg is an object of L-Coalg,, and that the chosen diagonal
filler of the outer square is the identity morphism. It follows the existence of
a unique 2-cell n: 1 = A\, - p such that n- A\, = 1 and p, -n = 1. The first
of these two equalities is one of the triangular identities required to obtain a
retract adjunction p -4 A;. The second of the these equalities tells us that, if
we can prove the other triangular identity, we obtain not only an adjunction
in # but also a retract adjunction (p,1) 4 A, in 2.
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We now show that p-7n = 1. Consider the pasting below.

Py

The chosen diagonal filler of the outer diagram is p, and p-n is an endo-2-cell
of p. In addition, g-p-n = p;-n = 1 and p-n-A, = 1. By the universal property
of KZ lifting operations spelled out immediately after Definition [5.2] it must
be p-n = 1. This finishes the proof that R-algebra structures are left adjoint
retracts to the components of the unit of R, ie that R is lax idempotent.
One can show that L is lax idempotent either by appealing to Theorem
or by a duality argument. By taking opposite 2-categories, and taking
into account the isomorphism (J#°P)2 =~ (J#2?)°P, the 2-functor L-Coalg, —
“R-Alg,, which exists by Remark [6.2] transforms into a 2-functor L°P-Alg, —
R°P-Coalg; that commutes with the 2-functors into ROp—Coalg?. By the proof
above we know that L°P is a lax idempotent 2-monad on (£ 2)°P, which is to
say that L is a lax idempotent 2-comonad. |

Theorem has a dual statement of the following form: an AWFS (L, R)
is lax orthogonal if and only if there exists an — essentially unique — 2-functor
L-Coalg, — “R-Alg, commuting with the respective forgetful functors into
m

R-Alg,.

Remark 6.7. For a lax orthogonal AWFS (L, R), objects of L-Coalg; are in
bijection with normal pseudo-R-algebras. Indeed, the proof of Theorem
shows that they are in bijection with retract adjunctions (p,1) 4 A, in 2
which are precisely normal pseudo-R-algebras

7. Extending copointed endofunctors to comonads

This section includes a series of results that provide conditions that will
allow us to transfer a comonad along an adjunction. We start with the
following lemma, which appears, in a slightly different form, in [12].

Lemma 7.1. Let FF 4 U: A — B be an adjunction with unit i, (G,€) a co-
pointed endofunctor on A and (L, ®) the copointed endofunctor on B defined
by the pullback square on the left hand side below. Then, the square on the
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right hand side 1s a pullback.

L-~UGF (L, ®)-Coalg — (G, e)-Coalg
o) |Uer Ul U (7.1)

The transformation 7 has a transpose 7: FIL = GF that makes (F,7) into
a morphism of copointed endofunctors from (L,®) to (G,e). This means
that an (L, ®)-coalgebra structure s: X — LX corresponds to the (G,¢)-
coalgebra structure s = 7x-F's: FX — GFX. Conversely, ift: FX — GFX
is a (G, g)-coalgebra, then the unique s: X — LX such that 7x - s = Ut - ix
is an (L, ®)-coalgebra.

Below we use the term coalgebra for a copointed endofunctor, or comonad,
on a category B in the generalised sense of a functor with codomain B with
extra structure, as opposite to the usual notion of an object of B with extra
structure.

Lemma 7.2. In the situation of Lemma [7.1, there is a bijection between
(L, ®)-coalgebra structures ¥2: L = L? on L and (G, ¢)-coalgebra structures

A

>: FL = GFL on FL. Moreover,

(1) S is coassociative if and only if F - %: (FL,Y) — (FL? YL) is a
morphism of (G, €)-coalgebras.

(2) (L-®)X =1 if and only if (GF - ®)X =T.

(3) (L, ®,%) is a 2-comonad if and only if the conditions in and (9)
hold.

(4) An (L, ®)-coalgebra structure s: X — LX in B is an (L, ®,3)-coalgebra
structure if and only if Fs: (FX,8) — (FLX,Xx) is a morphism of
(G, €)-coalgebras.

Proof: The bijection between X and 3> was described in the paragraph pre-
vious to this lemma. The counit axiom (® - L)X = 1 comes at no cost from
the fact that X is an (L, ®)-coalgebra structure on L. Using the bijection,
(X- L)X corresponds to (3-L)(F-X), while (L-X)¥ corresponds to (GF-X)3.
Thus, X is coassociative if and only if F'- ¥ is a morphism of (G, €)-coalgebras
as in the statement.

To prove , note that (L - ®)X = 1 precisely when its composition with
7 equals 7 and its composition with ® equals ®. The last fact always holds,
as ®(L-P)X = &(P - L)X = &. By taking transposes under the adjunction
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F — U, the first fact is equivalent to (GF - ®)% = 7. The statement H is
obvious.

We now prove (). The coalgebra s is a coalgebra over the comonad if
(Ls) - s = Xx - s. By the definition of L as a pullback given in Lemma [7.1]
this is equivalent to ®px-(Ls)-s = ®px-Xx-sand 7px-(Ls) s = Tpx-Xx-S.
The first of these two equalities holds since s is compatible with ®; in fact
both sides of the equality are s. The second equality is easily seen to be
equivalent to (GFs) - § = Sy - (Fs). m

Denote by L’ = (L', ®', %) the 2-comonad on &2 part of the AWFS that
factors a morphism as a left adjoint coretract followed by a split opfibra-
tion, described in Section [3.3} In Proposition we gave a 2-category iso-
morphic to that of (L', ®')-coalgebras, henceforth we shall identify the two
2-categories. For example, (L', ®')-coalgebras shall be identified with mor-
phisms f in &7 with a retract v and a 2-cell £: f-v =1 such that £ - f = 1.

Proposition 7.3. Let ' H U: of — & be a 2-adjunction, where </ has lax
limits of morphisms and & has pullbacks. Denote by (L, ®) the copointed
endofunctor on % constructed from (L', ®') in Lemma[7.1]

(1) There is a transformation Q;: FKf — F(dom f), 2-natural in f €
K2, and a modification wy: Ff - Qp = Fpy that induces the lift-
ing of F to (L, ®)-Coalg, — (L', ®")-Coalg, in the following way: if
(1,s): f — Lf is an (L, ®)-coalgebra, then v = Qy - F's: F(cod f) —
F(dom f) together with wy-Fs: Ff-v =1 gives an (L', ®")-coalgebra
structure on F f as described in Proposition [3.9.

(2) Given an (L, ®)-coalgebra structure ¥ = (1,0): L = L?, or equiva-
lently by Lemma[7.3, a 2-natural transformation ry = Qry - Foy and
modification with components ap: FAp -1y =1 that satisfies

Tf-F)\f=1 af-F/\f=1, (72)

the following are equivalent.
(a) (L, ®,Y) is a 2-comonad.
(b) The following equalities hold.

Ty - Fop =1y ay, - Foy=Foy-ay Fpr-a=wy. (7.3)

Proof: As it is our custom, we denote by K and K’ the functorial fac-
torisations associated with (L, ®) and (L', ®’). We begin by proving (I).
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We have noted before that there is a transformation 7: F'L = L'F sat-
isfying (®' - F)7 = F - ®. Since the domain component of both ¢ and
@’ are identities, the same holds for 7, which is thus given by 2-natural
morphisms 0;: FKf — K'Ff, satisfying p, - 0y = Fpy. By definition
of K'Ff as the comma object F'f | 1, we obtain 2-natural morphisms
Qf: FKf — F(dom f) and a modification ws: Ff - Qy = Fpy. We know
that the 2-functor from (L, ®)-coalgebras to (L', ®')-coalgebras is induced by
7, which in terms of  means that if (1,s): f — Lf is an (L, ®)-coalgebra, for
s: cod f — K f,thenf;-Fs: cod(Ff) — K'Ffisan (L, ®)-coalgebra. This
coalgebra structure on F'f can be described in the terms of Proposition (3.9
as the morphism €y - I's equipped with a 2-cell w; as in the statement.

By Lemma and Proposition [3.9] to give an (L, ®)-coalgebra struc-
ture 3 on L is equivalent to giving an (L', ®’)-coalgebra structure on F'L,
ie morphisms r;: K f — F(dom f), 2-natural in f, and a modification with
components ay: FAy-ry = 1 satisfying the equalities (7.2)). The condition
equivalent to coassociativity of ¥ given in Lemma translates into con-
junction of the first two equalities in (7.3)). The counital condition given in
Lemma translates to the third equality in ([7.3]). ]

In the following proposition we continue with the notations used above.

Proposition 7.4. Assume given the 2-comonad L = (L,®,%) of Proposi-
tion[7.3. The category L-Coalg, is isomorphic to the 2-category with
e Objects (L, ®P)-coalgebras (1,s): f — Lf on f: A — B, with corre-
spondingv: FKf — F(dom f) and&: Ff-v =1 that satisfy - Ff =1
as in Proposition[3.9, that in addition must satisfy

ry-Fs=w Fs-{=ay-Fs. (7.4)

e Morphisms from (f, v/, €7) to (g,v9,&9), morphisms (h,k): f — g in
2% such that

v - Fk=Fh-v/ and & -Fk=Fk-¢. (7.5)

e For morphisms (h,k) and (h,k) between the coalgebras in (f, v, &)

and (g,v9,£9) as above, 2-cells (h,k) = (h,k) are those of #? that
satisfy Fo - vl = v9 - FB.

Proof: In this proof we continue using the notation of Proposition [7.3] Ac-

cording to Lemma [7.2] an L-coalgebra structure on f: A — B is given
by (1,s): f — Lf such that (1, F's) is a morphism of (L', ®')-coalgebras
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(Ff,(1,5)) — (FA;,3¢), where 3: F(cod f) — K'Ff is the (I/, ®')-coalgebra
structure on F'f induced by s. By Lemma [7.2] we must show that (1, F's) is
a morphism of (L', ®')-coalgebras from F'f to F'Ay, which happens precisely
if rp- F's=wvand F's-& = ay- Fs, by Proposition [3.9]

Morphisms between L-coalgebras are those between the underlying (L, ®)-
coalgebras. By the pullback of categories depicted in ([7.1]), a morphism from
(f, v, &) to (g,v9,£9) is amorphism (h, k): f — g in J# 2 such that (Fh, Fk)
is a morphism of (L', ®')-coalgebras F'f — Fg, which means precisely the
equalities by the description of morphisms in Proposition .

Similarly, 2-cells between two such morphisms are 2-cells in ~#?% whose
image under F are 2-cells in (L', ®')-Coalg,. The compatibility with v/ and
v9 given in the statement is a direct consequence of the descriptions of 2-cells

in Proposition : u

8. Simple 2-adjunctions and lax idempotent 2-monads

This section introduces the notion of simple 2-adjunction, which can be
thought as a lax version of that of simple reflection studied in [4].

Lemma 8.1. Let &/ be a monoidal 2-category and € < </ a coreflective
2-category, closed under the monoidal structure, and (T,i,m) a monoid in
. If a: S — T is the coreflection of T into €, then S carries a structure
of a monoid (S,7,n) making o a monoid morphism. Assume further that
a®S: S®S —>T®S is the coreflection of T®S. Then S s lax idempotent
iof there exists a coretract adjunction

(T2 TR8) 4 (TeS S TeT I T). (8.1)

Proof: The unit j: I — S and multiplication n: S ® S — S are defined by
a-j=iand a-n =m-(a®a«). We shall define a 2-cell §: S®j = j®S: S —
S®S. From the fact that a ® S is a coreflection, it follows that to give 9 is
equally well to give a 2-cell ¢': (T'® j) - a = i ® S, and by the adjunction
(8.1)), to give a 2-cell 0": a = m - (T®«a) - (i®S), which we choose to be the
identity.

The axiom 0 -j = 1 of a lax idempotent monoid follows from the triangular
identity £ - (T'®j) = 1, where ¢ is the counit of (8.1)): we show that ¢’-j = 1
below.

0 j=(T®j) m-T®a)-&j)c-(j®5) - j)=c- (T®j)i=1
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It only rests to verify the axiom n -6 = 1. By the coreflection o, we have
toshowl=a-n-d=m-(a®a)-d=m-(T®«)-§ =", which holds by
our choice of §”. u

Before continuing, it is convenient to introduce some notation. Each endo-
functor S of C? corresponds under the isomorphism End(C?) = [C?,C]? to a
pair of functors Sy, S;: C? — C with a natural transformation Sy = S;. We
denote the component of this natural transformation at f by Sf: Sof — Sif.
A morphism S — T in End(C?) corresponds to a pair of natural transforma-
tions Sy = Ty and S7; = 17, compatible with Sy = S; and T = T;.

The following lemma is contained in [10, Prop 4.7].

Lemma 8.2. If C has pushouts, then the category of codomain-preserving
pointed endofunctors 1\End.,q(C?) is a — non full — coreflective subcategory
of the category of pointed endofunctors 1\End(C?). The coreflection of a
monad has a canonical structure of a codomain-preserving monad that makes
the counit a monad morphism.

Given a pointed endofunctor (7, 0), its codomain-preserving coreflection
(R, A) is given by the following pullback square, while the point A: 1 = R is
induced by the universal property. The natural transformation R = T with
components given by the pullback square is the counit of the coreflection.

Tof
\Tf
T f

1f

Remark 8.3. For future reference, we state that the coreflection R = T of a
monad T on C? into a codomain-preserving monad R is a monad morphism.

Definition 8.4. Let F' 4 U: &/ — J# be a 2-adjunction, P a 2-monad on
/2 and a: S — U?PF? the codomain-preserving coreflection of the 2-monad
U2?PF2. The 2-adjunction is said to be simple with respect to P if there is a
coretract adjunction in the 2-category [ £ 2, &7?]

(P25, prs) 4 (PFS 22 prupr 2, ppp mE, pr)
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where j the unit of S, e the counit of ' 4 U, and m the multiplication of P
in 2 .

Lemma 8.5. Given a simple 2-adjunction as in Definition[8.4], the codomain-
preserving reflection S is a lax idempotent 2-monad.

Proof: Let us denote by T the 2-monad U2PF2. By the construction of the
coreflection S as a pullback, it is clear that oT': SS — T'S is the coreflection
of T'S. Lemma[8.1]tells us that S will be lax idempotent if we have a coretract
adjunction in [#2, ¢ 2]

(T 2 1S) =4 (TS 1% 7T — 7).

Such an adjunction is obtained from the one of Definition by applying
U2. m
Remark 8.6. Given F' - U, P and the codomain-preserving coreflection
a: S — U?PF? as in Lemma — we do not make any assumption re-

lated to idempotency, however — since « is a 2-monad (strict) morphism, we
know that

(SS — S 5 U?PF?) = (SS *% UPPF?U?PF? - U?PPF? — U?PF?)

The point we make, and will use in the next section, is that this morphism
factors through U?mF?, where m is the multiplication of the 2-monad P.

Below we describe Definition [8.4]in a particular case of interest, but before
let us recall a few facts about the Kleisli construction for the free split opfi-
bration 2-monad R’ on «72, for a 2-category .« with lax limits of morphisms.
This Kleisli construction can be described as the inclusion 2-functor of .o72
into the 2-category Lax[2,.47] of 2-functors from 2 to o/ and lax transfor-
mations between them. Morphisms between free R’-algebras are in bijection
with morphisms in Lax[2, o7], and the bijection is given as displayed below,
a fact we shall soon employ.

LM N h 4
N PR

Proposition 8.7. Let F' H{ U: &/ — & be a 2-adjunction, where </ has
comma objects and & has pullbacks, and R’ be the free split opfibration 2-
monad on /2. Denote by R the codomain-preserving coreflection of U*R'F2.
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The 2-adjunction is simple with respect to the coreflection—opfibration AWES
precisely when there are coretract adjunctions FAy - qry-exrpp-F'1p 2-natural
in f, where these morphisms are those defined in (8.3)).

Proof: In this proof we shall denote the unit and counit of /' - U by 7 and
e, respectively. The definition of simple adjunction consists of a coretract
adjunction in [.#2, &7?] between 2-natural transformations that are in the
image of

[1,Up]: [#2 KI(P)] — [#2, /7.

When Up is locally fully faithful, such a coretract adjunction can be lifted to
[#2,KI(P)]; this is possible if P is lax idempotent by Remark [3.1]

When P is the free split opfibration 2-monad R’, its Kleisli construction is
isomorphic to the inclusion of @2 into Lax[2, 47| — see the comments before
the present proposition. We can use the correspondence between morphisms
between free R’-algebras and morphisms in Lax[2, 7] described in to
deduce the form of the lifting to [.#2, Lax[2, &/]] of the coretract adjunction
in [£2, o/?] that exhibits ' - U as a simple 2-adjunction. The lifting has
component at f € J#2 displayed below, where v is the comma object that
defines p'.

EXy Fry p e p qrf
FA-LFKf FKf-LFUK'Ff—~KFf¥ Fa
Ffl prl B lef | FUp;fl p%fl 4, LFf (8.3)
FB——FB rg " FUFB—° - FB—— FB

This adjunction consists of a coretract adjunction as in the statement of
this proposition, plus the requirement that its counit, say ay, is a 2-cell in
Lax[2, o7]; ie

pr-Ozf:I/'eK/Ff'FTf. (84)
Thus, the direct part of the statement is trivial, and it remains to show
that if F'A\; has a right adjoint retract in % as in the statement, then (8.4)
automatically holds. As a consequence of the adjunction, the 2-cell on the
left hand side of is the unique 2-cell 3, with the appropriate domain
and codomain, such that - F'A; = 1. We must verify that the 2-cell on the
right hand side of satisfies the same property. By definition of A,

eK,FfFTfFAf:eK,FfFUA%fFZA:)\/FfeFAF'lA:A;—‘f7
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from where it is clear that v -egpy- F'7p- FAp = v - A};f = 1, concluding the
proof. |

Lemma 8.5| yields:

Corollary 8.8. Given a simple 2-adjunction as in the previous Proposition,
the codomain-preserving 2-monad R is lax idempotent.

Remark 8.9. There is a 2-monad morphism with components (77, icoq(f)):
Rf — UR'Ff, by Remark [8.3] Taking the mate along F' - U, we obtain an
opmorphism of 2-monads (77, 1pcoq(s)): FRf — R'Ff.

Recall from Corollary that the codomain functor is a fibration from
(the underlying category of) R-Alg, to C. In particular the category of split
opfibrations in a 2-category # with lax limits of morphisms is a fibration

over J .

Theorem 8.10. Assume given a 2-adjunction F' 4 U: of — & between 2-
categories equipped with chosen lax limits of morphisms and pullbacks, strictly
preserved by U. If the 2-monad R is as in Proposition [8.7], then there is a
canonical 2-functor into the category of split opfibrations in & that commutes
with the forgetful functors into 2.

R-Alg, — OpFib, (%)

Proof: Denote by R, and R/, the free split opfibration 2-monad on &2 and
2 respectively. Clearly U?R’, = R, U?, and there is a monad morphism
R',, — U?R/,F?. Since R is by definition the codomain-preserving coreflec-
tion of U?R’,F?, there exists a 2-monad morphism R — R, which induces
the 2-functor of the statement. |

9. Transferring an AWF'S along a left adjoint

If (L',R") is an AWFS on A, and F 4 U: A — C an adjunction, we obtain
a transferred right algebraic weak factorisation system ((L,®),R) in C. The

monad R is the codomain-preserving coreflection of the monad U?R’'F'2 on C?
— see Lemma 8.2 This means that Rf is given by the pullback in C depicted
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on the left hand side.

A —“‘» UFA
Kf— UK’Ff O \Ff
Rfy |URFf UK'Ff
B — UFB ) \LUpr
UFB

The domain-preserving copointed endofunctor (L,CID) on C? associated to
(R, A) is the same as the one constructed from (L', ®') and F' 4 U as Lemma
7.1} Explicitly, f = py- A\j: A — B where ) is as in the diagram on the
right hand side above.

The above considerations hold in the case of 2-categories, 2-adjunctions,
etc, which we assume for the rest of the section.

We know that there is a 2-natural transformation Q;: FKf — F(dom f)
and a modification wy: F'f - Qy = 1 that induce the 2-functor from (L, ®)-
coalgebras to (L', ®')-coalgebras, as shown in Proposition [7.3] Given a coal-
gebra (1,s): f — Lf then v = Q¢ - Fs: F(cod f) — F(dom f) together with
wy-Fs: Ff-v=1make Ff into an (L', ®')-coalgebra.

Remark 9.1. The 2-adjunction F' - U is simple precisely when there are
coretract adjunctions F'Ay - €1y with counit a modification arp: FAr-Qp =1
that must satisty Fpy-ay = wy.

Theorem 9.2. Let F' - U: of — & be a simple 2-adjunction, where of
has lax limits of morphisms and & has pullbacks, and denote by (L',R’)
the AWFES on <f described in Section [3.3, that factors a morphism as a
left adjoint coretract followed by a split opfibration. Then the right AWES
(L, ®),R) on & described above has an extension to an AWFS (L,R), which
is, moreover, lax orthogonal. Furthermore, the outer square in Figure [ is a
pullback of 2-categories and of double categories.

Proof: By simplicity, we have coretract adjunctions FAy — €, 2-natural
in f, and whose counit we denote by ay, as in Remark [9.1f Moreover,
Fps-ay = wy. In Proposition [7.3, set 7y = €2y and « the counit of the
adjunction, which clearly satisfy by the triangular identities. Therefore
there is a corresponding (L, ®)-coalgebra structure (1,0): L — L* on L,
which is related to 2 by 0y = Qr¢ - Foy. In order to obtain a 2-comonad
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L-Coalg, L’-Coalg,
J J
(L, ®)-Coalg — (L', @’)-Coalg
| o
2 F o2

FIGURE 4. A pullback diagram of 2-categories and of double categories.

extension of (L, ®) we need to verify

Ozf-F)\f=1 QLf-FO'fZQf Oé)\f'FO'f:FO'f'Oéf pr~af:wf.

The first of these equalities is one of the triangular identities of the adjunc-
tion, the second we saw it is satisfied by definition of o, and the fourth
equality holds by Remark . It only remains to prove ay, - F'oy = Foy-ay,
but, by taking mates along the coretract adjunction F'Ay - {2; on either side
of the equality, one obtains the identity 2-cell of F'A),. — Note that in this last
point we used for the first time all the strength of the adjunction F'A; 4 Q. —
Hence the original equality holds, and therefore there is a 2-comonad L.

Next we show that the outer diagram in Figure {4|is a pullback. Suppose
that f: A — B is sent by F' to an L'-coalgebra (1,3): f — L'f, ie F'f H v,
with unit . By Proposition [7.4, we need to prove that the corresponding
(L, ®)-coalgebra structure (1,s): f — L satisfies the second equality in equa-
tion (7.4). This is easily done by taking mates with respect to FA; — €y
and I'f — v, obtaining on both sides of the equality the identity 2-cell of
F¢. Together with Lemma , this means that an (L, ®)-coalgebra f is an
L-coalgebra precisely when F'f is an L’-coalgebra; the square in the statement
is a pullback, at least at the level of objects. But Lemma tells us that
the bottom square in the diagram in Figure {4| is a pullback, and since the
forgetful functors from the 2-categories of coalgebras for the 2-monads to the
2-category of coalgebras for the respective copointed endofunctors are fully
faithful, we deduce that the outer diagram is a pullback.

To finish the proof, observe that L-Coalg, has a double category structure,
being a pullback of the double category L’-Coalg,; in other words, there
is a composition of L-coalgebras and F' preserves it. The double category

structure endows the pointed endo-2-functor (R, A) with a multiplication
II = (m,1): R* = R. Recall from the end of Section [2 that 7; is defined
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by the requirement that (14,77): A,, - Ay — Ay be the unique morphism of
L-algebras LRf e Lf — Ljf such that p; -7y = p,,.

On the other hand, there is a multiplication II given by the fact that
(1,4): R = UR'F is the codomain-preserving coreflection of the 2-monad
UR'F on #? - Lemma 8.2 We will show IT = II by proving that (1,7;) is
a morphism of L-coalgebras LRf e Lf — Lf — see previous paragraph. By
the pullback square in Figure , we must show that (1, F'ry) is a morphism
of L'-coalgebras with domain F(LRf e Lf) = FLRf e FLf and codomain
FLf. To this end, we shall use the characterisation of Proposition [3.9. The
L-coalgebra structure on FLRf - FLf is given by composing the relevant
coretract adjunctions, ie the right adjoint is {2y - Qgy, and the counit is

FLRf-a;Qrs ary
FLRf-FLf-Qf Qpf =———=—= FLRf -Qr; = 1.

Then, still by Proposition [3.9] (1,7) is a morphism of L-coalgebras if and
only if

Qf-QRf = Qf-Fﬂf (F7Tf-OéRf)(FWf-FLRf-af-QRf) :ozf'FWf. (9.1)

Recall from Remark that the mate of (7,7), namely © = (7,1): FR —
RF'| is an opmorphism of 2-monads when R is equipped with the multipli-
cation II; in particular, the following diagram commutes.

FR? °% RFR S RPF

Fnl | e
FR © R'F
The domain component of this rectangle evaluated on f € J#2 is the equation
W%f-K,(f'f,l)-f'prf'f-Fﬂf. (9.2)

Observe that gpy - 75 = Qf, so composing qrps: K'Ff — FA with the left
hand side of we obtain:
qrf - W%f - K'(77,1) - Try = qry - qury - K'(77,1) - 74 (def. of 7)
= qFf - Tf qFp; " TRf (def. of K')
= Q- Qpy.
On the other hand, composing the right hand side of with gpy yields

Q¢ - Frry, and we deduce the first condition of a morphism of L’-coalgebras
for (1,7f) in (9.1). The second condition is verified by taking mates along
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ty
Kf—UFA

lor o s
B——UFB
B
Kf--UFA Kf—2UKFFura
rrl lUFfIPfl pb. | Uy dUv lUFf
Bi—B>UFB BTUFB—UFB

FIGURE 5. Factorisation of a morphism f.

T t tp UF e
Kpr - Kf - UFA Kp; L UFPKf—LUFrUFAYS Ura
pfl ﬂ,uf tUFf = ppfl ﬂ,upr%pf ﬂUFuf lUFUFf jUFf
B——~UFB B——~UFB——UFUFB— UFA
1B B UFZB UGFB

F1GURE 6. Characterisation of the multiplication of R.

FAgrs - Qrry, a procedure that transforms the 2-cells at either side of the
equality into the 2-cell ay. This completes the proof that (1, F'rry) is a mor-
phism of L’-coalgebras, and thus the proof that IT = II.

Finally, the 2-monad R = (R, A, II) is lax idempotent by Corollary [8.8] so
the AWFS (L, R) is lax orthogonal by Theorem [4.1] u

The AWEFS constructed in the theorem above factors a morphism f: A —
B as f = py- Ay, where py is given by the comma in Figure 5, and Ay is the
unique morphism such that p- Ay = 1.

Now we look at the fibrant replacement 2-monad associated to the AWFS
constructed.

Corollary 9.3. Suppose that in Theorem the 2-category J£ has a termi-
nal object 1, and that i1: 1 — UF'1 is a right adjoint of UF1 — 1. Then the
restriction of R to /1 =~ & — the fibrant replacement 2-monad of (L,R) —
15 1somorphic to UF'.
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Proof: Let us denote by f: A — 1 the unique morphism into the terminal
object, and by Ry the restriction of R to £ /1. We shall show that in the
comma object

Kf - UFA
prl v |UFs
1—~UF1

the projection t 4 is an isomorphism. For any morphism x: X — UF A, there
exists a unique 2-cell UF f - x = iy - |, as these are in bijection, by mateship
along 77 - f, with endo-2-cells of X — 1, of which there is only one. Hence
A (X,ta) is an isomorphism, for each X, and thus ¢4 is an isomorphism.
Since t4- Ay = i4, and the compatibility of ¢ with the multiplication of R and
UF that can be found in Figure [6] we have that ¢ is a 2-monad isomorphism
t: Rl — UF. |

We conclude the section with the following lemma, which will be of use
in later sections. Corollary says that for any morphism b: 1 — B from
the terminal object of JZ the fibre A; of any R-algebra g: A — B — ie the
pullback of g along b — has a structure of a T-algebra, for 7' = UF'.

A== A

3 | g

1~ B
Furthermore, (2, b) is a morphism of R-algebras.

Lemma 9.4. Assume the conditions of Corollary and denote by T the
monad generated by F' 4 U. Giwen g: A — B and b: 1 — B, the morphism

(Kg), 2> Kg > TA

1s a morphism of T-algebras.

Proof: Denote by a: T(Kg), — (Kg), the T-algebra structure given by
Corollary 9.3 We are to show that the following rectangle commutes.
T(Kg)y =% TKg % T2A
al | ma (9.3)

ty

(Kg)bLKg—>TA
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a z ty K (2p,b) Tg 2
T(Kg), < (Kg), =~ Kg—~TA T(Kg)y — Kp, —= Kg—=TA
! } Pal 4 ng = } Prg | pel o ng =
1 1—~B-—~TB 1 B——B—-TB
b iB b B
K(zp,b
T(Kg), )Kpg TKg—2%T24 "4 T A
= | Pl 4 Tp A |2 ng =
1 B—~TB——~T2B——~TB
b 1B Tip mp
T(Kg)y —— T(Kg)y = TKg—% T2A 4 T A
= | Y | Tpy| ¢ szg ng
1—— T1 TB——~T2B——~TB
11 Tb TZB mp

FIGURE 7. Proof of Corollary [9.3]

In order to do so, consider the string of equalities displayed in Figure [7],
the first of which holds since (zp,b) is a morphism of R-algebras; the second
holds by definition of 7, — see Figure [f, next equality reflects the definition
of K (z,b) and the fact that the restriction of R to ¢ /1 is T — Corollary 0.3
Now it is clear that commutes. m

10. Simple 2-monads

A 2-monad T on a 2-category # with lax limits of morphisms is said to
be simple if the usual Eilenberg-Moore adjunction F' - U: T-Alg, — # is
simple with respect to the coreflection—opfibration AWFS on T-Alg, — in the
sense of Definition [8.4, To make this definition more explicit, consider the
factorisation of a morphism f: A — B in J# depicted in Figure [5], and recall
from Proposition that the simplicity of F' - U amounts to the existence
of a certain coretract adjunction in T-Alg,; namely

T)\f —|mK/Ff-th (10.1)

where m is the multiplication of T and the rest of the notation is as in
Figure p This adjunction must be an adjunction in T-Alg, — a condition
that is redundant when, for example, T is lax idempotent, as it will often be
in our examples.
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Remark 10.1. At this point it is useful to consider the meaning of simple 2-
monads and the previous proposition when the 2-category is locally discrete,
ie just a category C. In this case comma objects are just pullbacks, and the
coreflection—opfibration factorisation becomes the orthogonal factorisation
(Iso, Mor) that factors a morphism f as the identity followed by f. To say
that a monad T on C is simple is to say that the image of the comparison
morphism ¢, which goes from the naturality square of i to the pullback in
(10.2)), is sent to an isomorphism by the free T-algebra functor. Equivalently,
one can say that T/ is an isomorphism. Observe that when T is a reflection,
this gives the definition of simple reflection in the sense of [4].

AX i
B xrpTA—TA (10.2)
f J |7
B TB

iB

We consider in this section some properties that guarantee that a 2-monad
is simple, thus inducing a transferred AWFS. We make the blanket assump-
tion that the 2-category % has pullbacks and cotensor products with 2, and
therefore comma objects.

Given a cospan f: A - C < B : g, consider the comparison 1-cell

k:T(flg —Tf|Tg. (10.3)

Proposition 10.2 (Simplicity criterion). A 2-monad T = (T',i,m) is simple
if it is lax idempotent and composing with (10.3)) induces a bijection between
the following 2-cells, where f: A — B, u, and v are arbitrary morphisms.

X X

u k-u
v) \U, and o] \U
Tflip e T(Tf l Z'B) Tflip e Try | Tig

Proof: As before, denote by R’ the free split opfibration 2-monad on T-Alg?
and by R the transferred 2-monad along the Eilenberg-Moore adjunction
F - U, ie the codomain-preserving coreflection of the 2-monad UZ?R’'F2.
The right part ps of the factorisation of a morphism f in J# induced by R
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is given by a comma object

Kf-2-TA
prl oty |Tf (10.4)
B——TB
B
and the left part \y: A — K f is the unique morphism such that ps- Ay = 1.
As explained at the beginning of the present section, we must exhibit a core-
tract adjunction in .Z"; this adjunction is automatically an adjunction
in T-Alg,, since T is lax idempotent.

In order to define a counit a: TAr-mgps-Tty = 1 we can give its transpose
under the free T-algebra 2-adjunction, which is a 2-cell a: T'Ay -ty = ik in
H .

The morphism £ of is the unique such that satisfies the equality

TKf—LT24 TKf 2o T2f | Tip -2 724
Tpfi YTy lT2f = dll Yy lTQf
TB——T°B TB—— T?B
1B iB

To give & is to equally give a pair of 2-cells, corresponding to dy - k£ - & and
dy- k- a:

541:th-TAf-tf=TiA-tf$iTA'tf=th'i[(f

542:T,Of'T)\f-thTf-tfiiB-pfZTpf-in

compatible with 6, in the sense that the following two compositions of 2-cells
must be equal.

T2f - Tiyg -ty L% T2 Tty gy = T2 ~do -k - iy s Tig - dy - k - iy

9-]€~T)\f-tf

T2f-dy-k-TAs t; Tig-dy-k-Thp-ty = Tig-Tf-t; —2% Tig-ig-p;

Set & = 04 -ty and &y = py, where 6: T% = ¢1" is the modification given
by the lax idempotent structure of T. We must verify the pair of 2-cells
displayed above are equal. Using that 0 - k = T'uy, the verification takes the
following form, where the first equality is the modification property for 6 and
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the 2-naturality of 7, the second is the interchange law in a 2-category, the
third holds since 0 -7 = 1, and the last holds since s - Ay = 1.

(T ineg) (T°F -0a-ty) = (irn-ps) (05- T -t5) = (Op-in-py) (Tin ) =
=Tip-py= (Tip-pp)(Tps-TAp- 1)
It remains to verify the triangular identities of an adjunction. One of them
is mg - Tty - o = 1, equivalent to my - Tty - @ = 1, and by definition of &,
equivalent to m4-a; = 1. This latter equality clearly holds, since m4-6 = 1,
Up to now we have only used the hypothesis in the case when v is an
identity morphism. Only now, in order to prove the other triangular identity
a-(TAf) = 1 we shall need the hypothesis in its general form, more precisely,
for v = Ay. The triangular equality is equivalent to & - Ay = 1, which holds
since 04 -tf-Af =04-%4 = 1 and py - Ay = 1, finishing the proof. |

The proposition will be usually used in the following, less powerful form.

Corollary 10.3. A 2-monad T = (T,i,m) is simple if it is lax idempotent
and composing with (10.3)) induces a bijection between 2-cells u = is,-v and
k-u=k-if,-v, where f: A— B« C: g are arbitrary morphisms.

Let pu: h -5 = g be a left extension in a 2-category with comma objects.
Recall that u is a pointwise left extension if, whenever pasted with a comma
object as depicted on the left hand side below, the resulting 2-cell is a left
extension. Recall that if a 2-monad T = (7,4, m) is lax idempotent then
the identity 2-cell below exhibits T'f as a left extension — not necessarily a
pointwise extension — of ip - f along i4 — Section |3.1].

jlw—W ‘
| = Jw A2 T4
X2 .V fl | le (10.5)
Xélh B . TR
A

Theorem 10.4. Suppose the lax idempotent 2-monad T satisfies: the identity
2-cell (10.5)) exhibits T'f as a pointwise left extension of ip - f along ia, for
all f; and the components of the unit i: 1 — T are fully faithful. Then T is
simple.

Proof: We will verify the hypothesis of Corollary|10.3] Given a comma object
h | g depicted on the left below, denote by k: T'(h | g) — Th | Tg the
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comparison morphism. Given a morphism u: X — T(h | g), we consider
the diagram on the right hand side, where the unlabelled 2-cell is a comma
object. This pasting exhibits (T'd,) - u as a left extension, since T'd, is a
pointwise left extension.

€1

- X
hlg-2B o) 7 |

ol 7 hlg——=T(h]yg)
A——C ] ’ | 7d,

cod(d,) s T'(cod(d,))

Given a morphism v: X — h | g, we will show that 2-cells a: k-u = k-ip4-v
are in bijection with 2-cells u = iy, - v.
We begin by observing that 2-cells « are in bijection with pairs of 2-cells

ao: (T'dy) - w= (Tdp) - ipyy - v and ay: (Tdy) -u= (Tdy) - ipg-v

compatible with 7Ty in the sense that (T'g-aq)(Ty-u) = (Ty-iny-v)(Th- )
holds.

By the universal property of extensions, «, is in bijection with 2-cells
i-dy-eg = (T'd,) ipg-v-€1 = ied(d,) dn-v-e1, and since i has fully faithful
components, with 2-cells §,,: d,, - eg = d,, - v - e;. The compatibility between
ap, a1, and Ty translates into (g - £1)(y-eo) = (y-v-e1)(h- Fy). By the
universal property of v, the pair S5y, 51 is in bijection with 2-cells ey = v - ey,
and thus with 2-cells 45, - €9 = in4 - v - €;. Finally, by the description of u
as a left extension, these 2-cells are in bijection with 2-cells u = 4y}, - v, as
required. u

The theorem can be used to prove that, for a class of Set-colimits, the
2-monad on Cat whose algebras are categories with chosen colimits of that
class is simple. Section proves this fact in another way, that applies to
enriched categories.

11. Locally preordered 2-categories

By a locally preordered 2-category we mean one whose hom-categories are
preorders: categories with at most one morphism between any pair of objects.
This type of 2-category is particularly simple and includes some interesting
examples, that we will mention later. Another usual way of describe them is
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as categories enriched in the cartesian closed category of preorders Preord.
A morphism x — y in a preorder will usually be denoted by = < y.

When 7 is a locally preordered 2-category, a 2-monad T = (7,4, m) is lax
idempotent when any of the following equivalent conditions holds: (7)-m <
1T2; 1T2 < (ZT) - m; T <iT.

11.1. KZ lifting operations in locally preordered 2-categories. Con-
sider 2-functors U: &/ — #2 « 98 : V and assume that all three 2-categories
are locally preordered — in fact, &/ and Z could be general 2-categories, but
this makes no difference to our analysis. The Cat-modules of Section [6]
Dy = (id - dom),: H? —» X2 U*: #? » o and Vi: B —» H? can be

regarded as Preord-modules.

Theorem 11.1. In the locally preordered case, given U and V as in the
preceding paragraph, a KZ lifting operation for U, V' — Definition -5 a
lifting operation with the extra property that given a square (h,k): Ua — Vb,
its chosen diagonal filler is less or equal than any other diagonal filler.

Proof: Definition [5.2]says that a KZ lifting operation for U, V is a left adjoint
coretract for U* - © 4 -V, — U* - V.. Since these are modules enriched in
preorders, this amounts to a lifting operation U* -V, — U* - ®_ - V, such
that

The naturality is automatically satisfied. This inequality can be verified
component-wise, and this means precisely that given a square (h,k): Ua —
Vb, as depicted in (2.13)), and an arbitrary diagonal filler j, then d < j where
d is the chosen diagonal filler. |

The proof above also shows that distinction between lax orthogonality
structures — Definition [5.10] — and KZ lifting operations disappears, so we
have:

Corollary 11.2. In the locally preordered case, a lax orthogonality structure
for U,V emists if and iof a KZ lifting operation does; in this case they coincide,
and this structure is unique.

Corollary 11.3. For a 2-functor U: of — #? between locally preordered
2-categories, the forgetful 2-functor &/® — ' is fully faithful.
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Proof: Consider Definition [6.1, where a morphism between two objects of
of/® is defined as a morphism in /™ that satisfies an extra condition of
compatibility with the counits of each adjunction. In the locally preordered
case, this condition is void. In the same Definition, it is already mentioned
that our 2-functor is locally fully faithful, completing the proof. ]

11.2. Lax orthogonal AWFSs on locally preordered 2-categories.
Let (L,R) be a lax orthogonal AWFS on the locally preordered %, with
underlying WES (£, R). Recall that g € R precisely when A;: g — Rg is split
monic, and, by the remarks above, when g admits an R-algebra structure.
The dual statement holds for £, so £ consists of those morphisms that admit
an L-coalgebra structure, and R of those that admit an R-algebra structure.

Definition 11.4. We say that a morphism f: A — B in a locally preordered
2-category £ is fibrewise posetal if, for any isomorphism a: u = v: X — A,
it holds that @ = 1 whenever f-a = 1. In other words, if for all X the fibres
of the functor # (X, f): (X, A) - # (X, B) are posets.

Observe that fibrewise posetal morphisms in locally preordered 2-categories
are closed under retracts.

Lemma 11.5. Let R be a lax idempotent and codomain preserving 2-monad
on K2, where # is a locally preordered 2-category. If free R-algebras are
fibrewise posetal morphisms in &, then: (1) A morphism g € 2 admits
an R-algebra structure if and only if there exists a left adjoint retract of
Ay g — Rg. (2) R-algebra structures are unique. (3) R-algebras are closed
under retracts in 2. An object of 2 is an R-algebra if and only if it is a
retract of a free R-algebra.

Proof: In this proof we shall use the same notation for R we employ for the
right part of an AWFS. The morphism Rg will be p,: Kg - Bif g: A — B,
and the 2-monad R will have unit A = (A, 1) and multiplication I = (7, 1).

We must show that any left adjoint retract of A, is an R-algebra structure.
A retract of A, = (A;, 1) must have identity codomain component. Suppose
that (p,1) is a left adjoint retract of Ay, sop- A, = 1l and 1 — A;-p —
the adjunction between the codomain components is trivial, since these are
identities, so the unit and counit must be equalities. Note that ¢ is fibrewise
posetal since Rg is so. In order to show that (p, 1) is an algebra structure we
must show that p- K(p,1) = p - m,. There is an isomorphism

p-K(p,1)=p-m, (11.1)
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that is the mate of the identity K()\;,1)- Ay = A, - Ay under the adjunctions
K(p,1) 4 K(\g,1), 7y - A,, and p 4 A;. When post-composed with g,
both sides of are equal — to p, — and therefore an identity, since g is
fibrewise posetal.

We now prove the uniqueness of R-algebras. By a general fact about lax
idempotent 2-monads, two algebra structures (p, 1), (p',1): Kg — ¢ are iso-
morphic. The codomain component of the isomorphism must be an identity,
so we have p = p'. But g-p = p, = g -/, that implies p = p’ because g is
fibrewise posetal.

[t remains to show that a retract (rg,7): g — f of an R-algebra g: C — D,
with section (sg, s1), is again an R-algebra. If (p,1): Rg — ¢ is the algebra

structure, define

K (s0,81)
—

q=(Kf Kg5 C 2 A).

We shall prove that (¢,1): Rf — f is an algebra structure, which is to say,
as we have seen in the present proof, to prove that (¢, 1) is a left adjoint
retract of Ay. First, (¢,1) is a morphism:

fra=fropK(so,51) =r1-g-p-K(s0,51) = r1-pg-K(0,51) = r1-51-pf = py-

Next, we see that ¢ is a retract:

q-Ar=ro-p-K(s0,51)  Af=rg-p-Ag-So =705 = L.

It remains to show that
Apq = Apro-p-K(so, 1) = K(ro,m1)-Ag-p-K (80, 51) = K(ro,7m1)-K(s0,51) =1

which ends the verification of the existence of the retract adjunction. |

Lemma 11.6. For a lax orthogonal AWFS (L,R) on a locally preordered 2-

category, with underlying WFS (L, R), and with the property that R-algebras

are fibrewise posetal morphisms, the following assertions hold: (1) f € R if

and only if f is an R-algebra. R-algebra structures are unique. (2) f € L if

and only if f 1s an L-coalgebra.  L-coalgebra structures are wunique.
(3) R-Alg, — L-Coalg; is an isomorphism.

Proof: The assertion follows from Lemma |[11.5] We now prove that a
right adjoint retract of ®; = (1,ps): Lf — f is the same as an L-coalgebra
structure. Such an adjoint retract must be of the form (1, s), for a morphism
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s: B — K f. Taking mates of K(1,py)-py = p,, - py under the adjunctions
K(1,p5) 4 K(1,s), pf < s and p,, - 7y, we obtain an isomorphism

K(1,8)-5s > 0f-s (11.2)

that when post-composed with the fibrewise posetal morphism py-p,. equals
the identity. It follows that is an identity, so (1,s) is an L-coalgebra.

By a similar argument, L-coalgebra structures are unique. If s and s’ give
coalgebra structures, there is an isomorphism s =~ s’ that composed with p¢
is an identity, and one deduces that s = s’.

In order to prove that a retract of an L-coalgebra is again a coalgebra,
and thus that £ consist of the L-coalgebras, one can now deploy the same
arguments — in dual form — of the last paragraph of the proof of Lemma [11.5
to show that retracts of algebras are algebras.

Finally, we prove the assertion by recalling from Remark [6.7] that ob-
jects of L-Coalg, are in bijection with left adjoints retracts for the different
units Ay, and, as we saw, these are the same as R-algebra structures. u

Theorem 11.7. Let F' 4 U: &/ — & be a 2-adjunction, where </ has
lax limits of arrows, & has pullbacks, and it is locally preordered. Assume
further that the categories & (X, UFY) are posets for each X, Y € . If
the 2-adjunction is simple, there exists a transferred AWFS (L,R) on A,
with underlying WFS (L, R), that satisfies:

(1) It is lax orthogonal.

(2) The following statements are equivalent for an f € 2. (a) f admits
an L-coalgebra structure. (b) Ff is a left adjoint coretract in <.
(c) feL.

(3) The following statements are equivalent for a g € H2. (a) g € H?
admits an R-algebra structure. (b) g is algebraically KZ injective with
respect to all morphisms as in (4) above — see Example [6.3. (c) g is
injective with respect to all morphisms as in (9). (d) g € R.

(4) In the underlying WFS (L, R), the left class consists of morphisms as
in (9), and the right class of morphisms as in (3).

Proof: For g: C — D in £, the morphism p,: Kg — D is fibrewise posetal;
indeed, the fibre of the functor # (X, p,) over v: X — D is isomorphic to
A (X,UFg)/v, which is a poset since £ (X, UFC(C) is so.
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Lemma [11.6]2] shows the equivalence between (2a)) and (2d), while the
equivalence of these with (2b]) is part of Theorem , as well as is.
Finally, is part of Lemma [11.6]

By Lemma [11.5, we know that morphisms in R coincide with R-algebras.
This shows the equivalence between and . That implies
follows from Theorem [6.6 while that implies is a basic fact about
WEFSs. |

12. Example: the filter monad

In this section we exhibit an AWFES on the 2-category of topological spaces
arising from a simple lax idempotent 2-monad: the filter 2-monad. This
factorisation was constructed in the case of T0 spaces in [3]. In fact, [3]
constructs four WF'Ss, corresponding to the 2-monads for filters and its sub-
2-monads of proper filters, prime filters and completely prime filters. We
shall restrict only to the first of those, as only small modifications are needed
to treat the other three cases. The restriction to T'0 spaces ensures that the
2-category of spaces is locally posetal, but it is not essential, and indeed we
shall be able to work with general spaces, since the free space of filters on
any space is a poset.

Each topological space X carries a preorder structure given by the order

z <y if and only if y € {x}, (12.1)

ie if and only if every open neighbourhood of y is an open neighbourhood of
x — this is the opposite of what is usually called the specialisation order. This
induces a preorder structure on each hom-set Top(X,Y’) by defining f < g
if fx < gz, for all x € X, making Top into a preorder-enriched category, or
a locally preordered 2-category.

A comma-object f | g in Top can be described as the subspace of A x B
defined by the subset {(a,b) € A x B: f(a) < g(b)}.

dy
flg—DB
dol < l/g
A——C
f

Denote by F: Top — Top the filter monad. If X is a space, FFX is the set
of filters of open sets of X, with topology generated by the subsets U” = {¢ €
FX : U € ¢}, where U € O(X). The (opposite of the) specialisation order
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on F'X results in the opposite of the inclusion of filters. In particular, F'X is
a poset. If f: X — Y is continuous, then F'f is defined by (Ff)(p) = {V €
OY): f~1(V) € ¢}. The unit of the monad has components ix: X — FX,
given by ix(z) = {U € O(X) : x € U}. The multiplication of the monad has
components mx: F?X — FX, given by mx(©) = {U € O(X) : U* € ©}.

Observe that ix is a full (and faithful) functor between the underlying
preorders, by definition of the order in X. It is an injective function precisely
when X is T0.

The 2-monad F restricts to the full sub-2-category Top, of T'0 topological
spaces. It was shown in [6] that the category of algebras for this restriction
is isomorphic to the category whose objects are continuous lattices [22] and
morphisms poset maps that preserve directed suprema and arbitrary infima.
Our choice of the (opposite of the) specialisation order on spaces, which is the
opposite of the order used in [6], grants a few comments as a way of avoiding
confusion. A space X € Top, has an F-algebra structure precisely when the
opposite of the poset (X, <) is a continuous lattice, where < is the order
. The topology of the space X can be recovered as the Scott topology
of the continuous lattice (X, <)°°. A morphism of F-algebras f: X — Y
is a continuous function that preserves arbitrary suprema, as a poset map
(X, <) — (V,<) [6, Thm 4.4] — continuity is equivalent to preservation of
<-directed infima.

In fact the 2-category F-Alg, of general topological spaces equipped with
an F-algebra structure is isomorphic to the one described in the previous
paragraph. This is so because any F-algebra is a retract of a free F-algebra,
ie a space of filters, and these are posets, equally, T'0. Thus, the preorder
underlying any F-algebra is a poset and the algebra is a 70 space.

By an embedding we will mean a topological embedding, in the usual sense:
a continuous function that is an homeomorphism onto its image, where the
latter is equipped with the subspace topology.

The filter 2-monad F was shown to be lax idempotent in [9], where it is
also proved that a continuous function f between T'0 spaces is an embedding
if and only if F'f is the left adjoint in a coretract adjunction.

Recall that given a continuous map f: X — Y the inverse image morphism
1 O(Y) - O(X) is a left adjoint of f. given by f.(U) = u{V € O(Y) :
fY(V) € U}. The unit V < f.f (V) is the inclusion of V into U{W €
O): f71(W) < f~1(V)}. The map Ff has always a right adjoint r given
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by
1) = {U € O(X) : fo(U) € i} (12:2)
The unit of F'f H r is given by

r(Ff(9) ={UeOX): f.(U)e Ff(¢)} ={Ue OX): ff(U)ed} < ¢

where the inclusion is induced by f~!f.(U) € U. The counit
Ff-r()={VeOY): ff {(V)ey} 29

is induced by V < f.f (V).

Ezxample 12.1. For instance (ix). = (—)": O(X) — O(FX). To see this,
recall that {U* : U € O(X)} form a basis of open sets of FX, hence
U{V € O(FX) : i/(V) € U} is equal to the union of those W# satisfy-
ing i'(W?#) < U; but this means W < U, so the union is U.

The assignment X — O(X) can be extended into a pair of 2-functors
Top®“°? — Poset and Top — Poset into the 2-category of posets. The
first of these is defined on morphisms by f +— f~!. It is not hard to show
that if f < g in Top then f~1(V) 2 g }(V) for all V € O(Y). The second
2-functor is given on morphisms by f — f.. Taking mates, one deduces that
f+(U) € g.(U) for all U e O(X) when f < g.

Lemma 12.2. For a morphism f in Top, the following conditions are equiv-
alent. (1) f. is full — equivalently, f~'f. = 1. (2) Ff is the left adjoint in
a coretract adjunction in the 2-category Top. (3) F'f is the left adjoint in a
coretract adjunction in the 2-category F-Alg,. Furthermore, if any of these
conditions hold, f is a full morphism between the underlying preorders. If f
is a morphism in Topy, (1)-(3) are equivalent to f being an embedding.

Proof: We start by showing that for any space X, the unit iy satisfies (I)). In
Example [12.1| we saw that (ix). = (—)%, and i (U*) = U is easily verified.
As for any adjunction with invertible counit, the right adjoint is full.

Given f: X — Y in Top, consider the naturality of ¢, and apply the
2-functor (—)..

iy f=Ffix  (iv)fe = (Ff)(ix)s (12.3)
As (iy). is full — and faithful — we have that f, is full if and only if (F'f).(ix).
is full. It is clear that implies that F'f is full and faithful, so the unit of
F'f < r must be an identity, which is the statement (2).
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FIGURE 8. Factorisation of a continuous map.

Now assume ([2), ie that the unit of F'f — r is an identity, so the same is
true of (F f). - r.. By a standard argument, this implies that the counit of
(Ff)~! 4 (Ff). is an identity, so the counit of i\ (Ff)™! — (Ff).(ix). is an
identity too. Equivalently, the counit of f~liy,' - (iy).f. is an identity, but
this counit is =iy (iy)ufe = f1f. < 1, just the counit of f~! — f, which
therefore must be an identity, completing the proof of :>.

It remains to prove the equivalence between and (2)), of which the
direct direction is trivial. We only have to prove the converse, for which it
is enough to prove that r is a morphism of F-algebras, since the forgetful
2-functor F-Alg, — Top is locally fully faithful. We need to prove, thus,
that r preserves arbitrary suprema — intersections of filters, since we are
working with the opposite of the inclusion order. But this is readily verified
by using (12.2)).

Next we show that implies that f is full on the underlying preorders.
The unit 2y is full and faithful for any Z — this is precisely the way in which
the order on Z is defined. Then, ((12.3) shows that f is full if F'f is so, but
this is precisely what guarantees.

Finally, if X is a T0 space, its underlying preorder is a poset. In this case,
f is injective, as f(z) = f(y) implies both = < y and y < x in the X, so
x = y. Together with f~!'f. = 1, we have that f is an embedding. |

We shall show that F is simple by verifying the hypotheses of Theorem
[10.4, but first we summarise the consequences of this fact. There is a lax
orthogonal AWFS on Top that factors a morphism f as f = py - Af, as
depicted in Figure § We can now employ Theorem to recover one of
the WFSs considered in [3].

Proposition 12.3. The underlying WFS of the lax orthogonal AWFS (L,R)
on Top transferred from the coreflection—opfibration AWFS on F-Alg, has the
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following properties. (1) L consists of those maps that satisfy the equivalent
conditions of Lemma [12.3. (2) Maps in R are not just injective but also
algebraically KZ injective with respect to each map in L. If we restrict to T0
spaces, L is the class of topological embeddings.

Theorem 12.4. The 2-monad F is simple.

Proof: The proof uses Proposition [10.2l Let h: A - B «— C : g be two
continuous maps, and h | ¢ its comma object in Top, with first and second
projections denoted dy and dy. The comparison morphism k: F(h | g) —
Fh | Fgc FA x FB sends a filter ¢ on h | g to the pair of filters (g, ¢1):
Yo = {U € O(A) : dy'(U) € ¢}, w1 = {V € O(B) : d; (V) € p}. Given
(a,b) € h | g, recall that its image under the unit is i5,4(a,b) = {W € O(h |
g) : (a,b) € W}. We have (Fdy)ing(a,b) = iady(a,b) = ia(a), and similarly,
(Fdy)inyg(a,b) = ip(b).

We claim that given ¢ € F(h | g), (a,b) € h | g as above, if Y1 < i4(a)
and ¢y < ip(b) then ¢ < ip4(a,b). In other words, we shall show that if the
following two inclusions hold

(Ue O(A) :dy' (U) e p} 2{U e O(A) :ae U}
(VeOB) :di'(V)ep} 2{VeOB):beV}

then p 2 {W e O(h | g) : (a,b) e W}. Givenae U e O(A), be V e O(B),
then
(UxV)n(hlg)=dy"(U)ndi'(V)e .

But any neighbourhood W of (a, b) contains another of the form (UxV)n(h |
g), so W € ¢, completing the proof of the claim. |

The fibrant replacement 2-monad on Top of this AWFS is F, as a conse-
quence of Corollary 9.3, To prove this, first observe that the topological space
F1 of filters of open sets of 1 is {{1},{J,1}}, where L := {¢F,1} is an open
point, and T := {1} is not. So F'1 is the Sierpinski space, and | < T with
our choice of (the opposite of the specialisation) order. The unit 1 — F'1 is
the continuous function that picks out T € F'1, and hence a right adjoint to
1 — 1.

Ezxample 12.5. Let P be the 2-monad on Top that assigns to each space the
space PX of upper closed subsets of O(X), with topology generated by the
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subsets U* = {¢p € PX : U € p}. This 2-monad is lax idempotent by the
same considerations that apply to the filter monad.

One can prove that, for a map f: X — Y, f.: O(X) — O(Y) is full
if and only if Pf is a left adjoint coretract; an identical proof to the case
of the filter monad works just as well. This implies that P is not simple.
If it were, we would have an induced lax idempotent AWFS on Top, with
fibrant replacement 2-monad isomorphic to P, by the same arguments given
in the paragraph immediately previous to the present example. Whence, P-
algebras would be those spaces injective with respect to full maps, which are
the F-algebras, yielding the contradiction that F is isomorphic to P.

13. Example: completion of V-categories under a class
of colimits

This section is divided in three parts. In the first we prove that the 2-
monad whose algebras are V-categories with chosen colimits of a class is
simple, therefore inducing a lax orthogonal AWFS (L,R) on V-Cat. The
middle part shows that the algebras for R are, at least when V = Set,
split opfibrations whose fibres are equipped with chosen colimits and whose
push forward functors strictly preserve them. Intuitively, this type of split
opfibration should coincide with the R-algebras, but in general they do not,
and this is the subject of the last part of the section.

13.1. Simplicity of completion under a class colimits. Let ® be a
small class of colimits, and T¢ the 2-monad on V-Cat whose algebras are
small V-categories with chosen colimits of the class ®. This 2-monad, whose
existence was proven in [15], is lax idempotent. Earlier, less general, versions
of this monad appeared, for example, in [16]. In this section we prove:

Theorem 13.1. The 2-monads T are simple — in the sense of Section |10 —
therefore inducing a lax orthogonal AWFS (Lg,Re) on V-Cat.

Because an explicit description of TgA is only possible in particular in-
stances, we will use the usual presheaf pseudomonad and its relationship to
Tg. The free completion of a V-category C' under small colimits can be con-
structed as the V-category &C with objects small presheaves — ie V-functors
C° — V that are a left Kan extension of its own restriction to a small sub-
category of C°? — and enriched homs given by ZC(¢,1) = § [éc,1pc]. This
extends to a pseudomonad on V-Cat, whose unit has components the Yoneda
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embedding yo: C — 2C, and whose multiplication we denote by m?®. A
number of properties of &C, in particular its completeness, are studied in
[7.

The free completion of C' under colimits of the class & — or ®-colimits —
can be constructed as the smallest full sub-V-category of &C' that is closed
under ®-colimits and contains the representable presheaves. One obtains a
pseudomonad ® together with a pseudomonad morphism & — & that has
fully faithful components.

Lemma 13.2. Given a V-functor f: C — D between small V-categories, the
following statements are equivalent. (1) ®f: ®C — ®D has a right adjoint.
(2) Whenever 1 € ®D, ¥ fP: CP — V belongs to ®C. (3) D(f—,d) € C
forallde D.

Before we prove the theorem, it is convenient to recall some useful aspects
of the construction of Tg [I5]. Part of this construction is an equivalence
ta: Ty — PA for each V-category A, which form a pseudonatural transfor-
mation T — &, and moreover, a pseudomonad morphism.

Lemma 13.3. Denote by ® a small class of V-enriched colimits and the
associated pseudomonad on V-Cat. Let f: A — B be a V-functor into a -
cocomplete V-category, and denote by f: ®(A) — B a left Kan extension of
[ along the corestricted Yoneda embedding ya. Then the morphisms induced

by f

(A)(¢,ya(a)) — B(f(¢), f(a)) (13.1)

are isomorphisms for all ¢ € ®(A) and a € A.

Proof: The morphism ([13.1]) can be written as the composition of ®(A)(¢, f)
from ®(A)(¢,ya(a)) to P(A)(p, B(f—, f(a))) and the isomorphism between
the latter and B(col(¢, f), f(a)). The result is an isomorphism since f is full
and faithful. m

Proof of Theorem [13.1} Let the 2-monad T in Corollary be the 2-monad
on V-Cat whose algebras are V-categories with chosen ®-colimits. Assume
we are given morphisms f and ¢ as in the statement of the said corollary.
The V-category T'f | Tg is ®-cocomplete, as the forgetful 2-functor from T-
algebras creates comma objects. The comparison morphism of the corollary
is the left Kan extension of the V-functor h: f | g — T'f | T'g induced by i4
and 7p. Since h is full and faithful, then k is full and faithful on homs of the
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form T'(f | g)(u,is,4(v)) by Lemma [13.3] so we have indeed the bijection of
2-cells required in Corollary [10.3]. ]

13.2. Monadicity of split opfibrations with fibrewise chosen ®-
colimits. Given a small class of Set-colimits ®, denote by OpF'ib,-®-Colim;
the 2-category with objects split opfibrations in Cat whose fibres are small
categories with chosen colimits of the class ® and whose push-forward func-
tors strictly preserve these. Morphisms from p: £ — B to p': £/ — B’ are
strict morphisms (h, k): p — p’ of split fibrations such that the restriction of
h to fibres strictly preserves the chosen ®-colimits, while 2-cells are those of
Cat?.

The codomain functor OpFib,-$-Colim; — Cat is a fibration and the
forgetful 2-functor OpFib,-®-Colim, — Cat? is strictly cartesian. This
means that given a split opfibration A — B whose fibres have chosen ®-
colimits and the push-forward functors strictly preserve them, its pullback
along any functor B’ — B carries the same structure. The fibration of 2-
categories OpFib,-®-Colim; — Cat is equivalent to that whose fibre over
B is [B?, #-Colim,| and whose pullback along f: B’ — B is given by
precomposition.

Lemma 13.4. The forgetful 2-functor U: OpFib,-®-Colim, — Cat? is
monadic.

Proof: We first show that the strictly cartesian functor U has a fibred left
adjoint. Ome can write U as the composition of the forgetful 2-functors
V' from OpFib-$-Colim; to OpFib, and OpFib, — Cat?, and since the
latter is monadic, it will suffice to show that V' has a left adjoint. Observe that
V' is a strictly cartesian 2-functor between fibrations over Cat, so it suffices to
prove that each restriction V? to the fibre over B € Cat has a left adjoint,
say F'P, and that for any functor f: B’ — B, the natural transformation
FB f* — f*FB is invertible. This is a version for 2-categories fibred over a 2-
category of the corresponding classical result for fibred categories, but there
is no real difference in the proof. The 2-functor V? is equivalently described
as [B, ®-Colim,] — [B, Cat] given by composing with the right adjoint
forgetful 2-functor Uy : ®-Colim, — Cat. Therefore, V¥ has a left adjoint,
given by composing with the left adjoint, say Fg, of Ug. Given a functor f as
above, the Beck-Chevalley condition says that, given ¢: B — Cat, we need
the following transformation to be invertible, Fg-¢- f = Fp-Ug-Fp-¢- f =
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Fs - ¢ - f, where the arrows are induced, respectively, by the unit and counit
of Fg - Ug. This is obviously true, so we obtain a left adjoint F' — V.

In order to show that U is monadic it remains to show that it creates
coequalisers of U-split pairs. Suppose (ug, u1), (vo,v1): kK — h are a parallel
pair and (qo,q1): h — g a morphism in OpFib-®-Colim,, with a splitting
in OpFib, given by (sg,s1): ¢ — h and (tg,t1): h — k. This means q - s =
1, u-t =1and v-t = s-q. We have to show that fibres of g can be
equipped with chosen ®-colimits in a way that the restriction of ¢ to fibres
strictly preserves them, and the push-forward functors of the split opfibration
g strictly preserves them too.

Ug
—og> qo
C_>E—>A
to
k h Lg
U1 q
—o> 1
D_—F_—2~B
81
tq

Given b € B, the top row of the diagram restricts to the fibres Cy s 1), Es, )
and Ay, yielding a split diagram of categories. The first two categories are
equipped with chosen ®-colimits, and the parallel pair between them strictly
preserve them, so we have that A, has a unique choice of ®-colimits that
make q: I, ) — Ay strictly preserve them, by monadicity of categories with
chosen colimits [15]. It remains to prove that each qo: £y — A, (s) strictly
preserves ®-colimits, for any f € F. Since g exhibits E; as a retract of C, ()
it suffices to prove that qo - ug: C,(y) — Ag,(y) strictly preserves ®-colimits,
as any such colimit in Ey is the image under ug of another in Cy, y). Thus,
we need to prove that qo-vo: Cy 5y — Ay, (y) strictly preserves these colimits.
Note that vy sends the fibre over ¢1(f) to the fibre over v1t1(f) = s1q:(f), so
it suffices to know that g restricted to E 4 () strictly preserves ®-colimits,
which is the case by construction of the colimits on the fibres of A.

It is easy to see that for any morphism 5: b — b’ the push-forward functor
Ag: Ay — Ay strictly preserves the chosen colimits, since 3, -qo: £ — Ap —
Ay equals qy - Bs: By — Ey — Ay. [

For later use, we record the following observations, which hold not only in
the case of ordinary categories but also in that of categories enriched in a
suitable monoidal category whose unit object is terminal.
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Remark 13.5. Let C be a category with ®-colimits, H: C' — E a ®-cocontinuous
functor, e an object of E and @: H/e — C the projection. For any functor
D:J — H/e and any colimiting cylinder n: ¢ = C(QD—,c) with ¢ € &
there exists a unique €: Hc — e in E and a unique colimiting cylinder
v: ¢ = HJe(D—,(c,€)) such that Q(v) = n.

Moreover, if C' is equipped with chosen ®-colimits, then there exists a
unique choice of ®-colimits on H /e that is strictly preserved by Q.

Suppose S: A — H /e is a functor, where A has chosen ®-colimits. Then
S strictly preserves ®-colimits if and only if Q.S: A — C does so.

Theorem 13.6. Given a small class of Set-colimits ®, there exists a 2-
functor

R-Alg, — OpFib-®-Colim (13.2)

that commutes with the forgetful functors into Cat?, where R is the right part
of the AWFS on Cat induced by .

Proof: We shall denote the 2-category OpFib-®-Colim, by .# in order to
save space. We are to prove that each R-algebra A — B is a split opfi-
bration whose fibres are equipped with chosen ®-colimits and whose push-
forward functors strictly preserve these. The first assertion follows from
Theorem [8.10] so we only need to concern ourselves with the chosen colimits.
The rest of the proof is divided in a series of steps: (a) define on Rg a struc-
ture of an object of .Z, for all g € Cat?; (b) any morphism of R-algebras is
a morphism in .%, so we have a 2-functor KI(R) — .% over Cat?; (c) the
image of any parallel pair of morphisms in KI(R) under the 2-functor of (b)
has a coequaliser in .%, provided that its image under KI(R) — Cat? has an
absolute coequaliser in Cat?; (d) this means that we can left Kan extend it
to a 2-functor ((13.2)).

We start by proving (a). The fibres of any R-algebra are categories with
chosen ®-colimits: any such fibre is an R-algebra over 1, by Corollary [2.16],
and the restriction of R to Cat/1 is isomorphic to T, by Corollary ; note
that the unit 2;: 1 — T'1 is always a right adjoint. It remains to prove
that for any morphism : b — 0/ in B the push-forward functor 4, — Ay
preserves the chosen colimits. We claim that it is enough to prove it for free
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R-algebras, since there will be a split coequaliser in Cat/B

Tg
Kpg[ﬂ)Kg—pmél
A Ag

Pg

— where p denotes the R-algebra structure of g — which then lifts to a (non-
split) coequaliser in the 2-category of split opfibrations. Taking the fibre over
b € B of this split coequaliser, we obtain a coequaliser in T-Alg, that splits
in Cat. In particular, for any functor d into A

col(g, d) = py(col(@, (A, - d))

because p strictly preserves the chosen colimits. Taking fibres over b and ¥/,
we have a commutative square in Cat where all the categories have chosen
®-colimits and the horizontal functors strictly preserve them.

Therefore, if the push-forward functors of Rg preserve the chosen ®-colimits,
then so does the ones of g: by commutativity of the square, [, - p, strictly
preserves ®-colimits, and

B.(col(¢,d)) = Bupp(col(p, (Ag)p - d)) = col(¢, Bs - vy - (Ag)p - d) = col(¢, Bs - d).

Now we prove that the push-forward functors of a free R-algebra Rg strictly
preserve chosen ®-colimits. By the description of K¢ as a comma object
(10.4), its objects are triples (x,b,&) where x € TA, be B and &: (Tg)(x) —
ip(b) is a morphism in T'B. If we denote by z;,: (Kg), — Kg the inclusion
of the fibre over b € B and t,: Kg — TA the projection of the comma
object, we showed in Lemma that t, - z,: (Kg), — T'A strictly preserves
®-colimits. It is clear that the triangle on the left hand side commutes, since

6*(37767 5) = (x.?b/aiB(ﬁ) ’ 5)

(Kg)y—L2TA  Tglip(h) 2= TA
o o
(Kg)y Tyg/ip(V)

pry
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But (K g)y is the slice category T'g/ip(b), and t,- 2, is the projection into T'A,
so we have a commutative triangle as in the right hand side. We can now
apply the observations of Remark to deduce that, since pry - S, strictly
preserve ®-colimits, so does .. This completes the proof of (a).

The next step in the proof is to verify (b), which is easy. Let g: A — B
and g: A" — B’ be R-algebras, (h,k): ¢ — ¢’ a morphism of R-algebras, and
b e B. Taking fibres over b and k(b) we obtain a commutative square in Cat?
displayed on the left, where the solid arrows are in . and the dotted arrow
is the restriction of h to fibres.

J— A;c " 1 1
l b k(b)
i (h7k) g/ B _k> B/

The codomain part of this diagram is displayed on the right hand side. We
deduce that the dotted functor is a morphism in .%# from the fact that the
codomain functor R-Alg, — Cat is a fibration — Corollary — and the
vertical morphisms, as pullback squares, are cartesian.

From (a) and (b) together we deduce that there is a 2-functor KI(R) — .#
that commutes with the canonical 2-functors into .# 2. If a pair of morphisms
between free R-algebras has an absolute coequaliser in Cat?, they form a
parallel pair of morphisms in .# with an absolute coequaliser in Cat?. By
monadicity of .# — Lemma — their coequaliser exists in .#, and it is
preserved by the forgetful 2-functor into Cat?. This proves (c).

Finally, (d) is the general observation that, for any 2-monad S on a 2-
category &7, the 2-functor KI(S) — S-Alg, is dense with a density presenta-
tion given by coequalisers of those pairs whose image under KI(S) — & have
absolute coequalisers in 7. Therefore the left Kan extension of KI(R) —
Z to a 2-functor exists. For background on density presentations
see [13, 14, Ch 5]. n

In many instances, the 2-functor of the theorem is an isomorphism. For
example, it is not hard to verify this when ® is the class for initial objects

{& — Set}.

13.3. Split opfibrations with fibrewise chosen colimits are not al-
ways R-algebras. In this example we show that for a certain, very simple
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class of colimits, the 2-functor of Theorem is not an isomorphism. De-
note by R the 2-monad of the lax orthogonal AWF'S induced by a class of col-
imits ®, and by S the 2-monad whose 2-category of algebras is
OpFib-®-Colim, — Lemma [13.4] In fact, we prove that the restriction of
the 2-monad morphism S — R given by Theorem to Cat/1 + 1 is not
an isomorphism.

Let Ri41 and Sy, be the restrictions to Cat/1+4 1. The latter was described
in the course of the proof of Theorem [13.6] and sends g: A — 1 + 1 to the
split opfibration — just a functor over 1 + 1 — with fibres T'(A) and T'(A;)
over 0 and 1 respectively. Here we are writing 0, 1 for the two objects
of the discrete category 1 + 1. The 2-monad morphism Si,; — Rj,; of
Theorem has component at g a functor that on the fibres over 0 is
the unique T'(Ag) — (Kg)o that composed with the inclusion (Kg)y — Kg
corresponds to

T A, Gl

TA
% T1 Tg
g 10

1—14+1—T(1+1)
0 1141
where the unlabelled natural transformation is the unique that yields the
identity transformation when precomposed with i4,. Note that we used that
T is lax-idempotent.

Below we shall exhibit an example where the functor T'(Ag) — (Kg)o is
not an isomorphism, and therefore neither is S;.1 — Ry,1.

Consider the class of colimits ® = {AZ: 1 — Set}. The colimit of a
functor v: 1 — Set that picks out a set v, weighted by A — the tensor
product of v by & —is col(AZJ,v) = F. The completion of a small category
A under these colimits consists of the full subcategory ®A < [A°P, Set]
consisting of the representables together with the initial object: the presheaf
constant at . A category A has chosen ®-colimits if there is an assignment
of an initial object 0(a) € A for each object a € A.

We can explicitly describe the 2-monad T associated to ®. Let (|A| x N)q,
be the codiscrete, chaotic or indiscrete category with objects |A| x N, and
N: A — (JA| xN)q, the unique functor that on objects is given by a — (a, 0).
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Define T'A as the oplax colimit in Cat depicted below.

(Al x N)en

\ / (13.3)

Then T'A has objects of the form either a € A or (a,n) € |A| x N, the functors
j and 74 are fully faithful and T'A((a,n),d’) = 1, TA(a,(a’,n)) = &. In
particular, all the objects of the form (a,n) are 1n1t1a1 in TA. We can equip
T A with chosen ®-colimits by defining 0(a) = (a,0) and 0((a,n)) = (a,n+1)
for n e N.

We next show that i4: A — T A is the free category with chosen ®-colimits
on A. Suppose f: A — B is a functor and that B has chosen ®-colimits, ie
a choice of an initial object 0(b) for each b € B. By the universal property of
the colimit (13.3)), to give a functor f : TA — B is equivalent to giving a pair
of functors h: A — B and k: (A x N)a, — B with a natural transformation
a: h = k- N. To say that f preserves the chosen initial objects means
that k(a,0) = f7(,0) = 0(f(a)) and k(a,n) = fj(a,n) = O(f(a,n — 1))
for n = 1. Therefore, k is determined, and h = f if we require f 14 = f.
Finally, a natural transformation o will have initial objects as the domain
of its components, so it clearly exists and it is unique. This completes the
proof of the existence and uniqueness of f , and T'A is the free category with
chosen ®-colimits on A.

Given a functor g: A — 1 + 1, consider p,: Kg — 1+ 1. Its fibre (Kg)o
over 0 has objects pairs z € TA, (T'g)x — i1:1(0) in T(1 + 1). For any
a € A, ig(a) is an object of (Kg)y precisely when a € Ay, since (Tg)i(a) =
i111(ga) — 11.1(0) exists — and is the identity — when ga = 0 in 1 + 1. On
the other hand, any of the chosen initial objects (a,n) € T'A will be objects
of (Kg)o. Indeed, (Tg)(a,n) is initial in T'(1 + 1), and thus it has a unique
morphism into i;41(0). Therefore, the objects of (Kg)y can be described as
(Kg)o| = |Aog| + {(a,n) : a € A;n = 0}. On the other hand, the objects
of T(Ap) can be described as |T(Ag)| = |Ao| + (|]Ag| x N). The comparison
functor T Ay — (K g) sends a € Ay to a as an object of (K g)o; it sends (a, n),
where a € Ay and n = 0 to (a,n), now thought as an object of (Kg)g. It is
clear that if a € Ay, then (a,0) does not belong to the image of T Ay — (K g)o,
and this functor cannot be an isomorphism.
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14. Example: Lawvere’s generalised metric spaces

This section studies the example of the 2-category of Lawvere’s generalised
metric spaces and a lax idempotent AWFS that arises from the Cauchy com-
pletion construction. The left and right part of the AWFS, and its under-
lying WF'S, can be described in terms of Cauchy sequences. For instance,
the AWF'S factorises a distance-decreasing function f between (usual) metric
spaces as a dense isometry Ay followed by a distance-decreasing function py
with the property that any Cauchy sequence in its domain converges when-
ever its image under py converges.

The lax idempotent AWFS described in this section is related but not a
particular instance of the one of Section [I3] The difference resides in that
the 2-monad that induces the AWFS in the named section is that for chosen
colimits, while in the present section it will be the 2-monad that freely adds
absolute colimits, not chosen ones.

Let R, be Lawvere’s symmetric monoidal closed category of non-negative
real numbers [18], [19]. It has objects non-negative real numbers together with
an extra object co, and a unique morphism a — ( if a > . This category
is complete and cocomplete, with limit and colimit of a functor f: J — R
given by col(f) = inf{f(j) : j € J} and lim(f) = sup{f(j) : j € J}. These
inf and sup are defined in the usual way, with the obvious extension to allow
for oo.

The tensor product of the monoidal structure is given by addition, with
a+00 = o0+« = o0, and unit object 0. The internal hom [« 8] is f—«v if this
real number is non-negative, and 0 otherwise; [a, 0] = o0 and [0, a] = 0 for
a # o, and [00,0] = 0. Observe that the unit object 0 € R, is a terminal
object.

Categories enriched in R, are Lawvere’s generalised metric spaces, which
we will refer to simply as spaces when no confusion is possible. These struc-
tures are just as metric spaces, with the difference that the distance function
is not symmetric and it can take co as a value. A generalised metric space X
is symmetric if X (z,y) = X(y,x) for all z,y € X. A symmetric space is the
same as a pseudometric space, only that the distance can attain the value
0. Equivalently, it is the same as a family of pseudometric spaces. Functors
enriched in R, are distance-decreasing functions.
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The functor R, (0, —): R, — Set takes only two values, 1 on 0 € R, and
@) everywhere else. It can therefore be considered as a functor R, — 2,
which has a left adjoint 2 — R, given by L — oo and T — 0.

The underlying category 2-functor can be regarded as a 2-functor R -Cat —
Preord, where a < o’ when the distance from a to @' is zero. It has a left
adjoint that sends a poset X to the generalised metric space with points X
and X (z,2") = 0 if x < 2’ and oo otherwise.

The completion of a space A under colimits is the space A = [AP R, ]
of distance-decreasing R -valued functions on A°P.

Let f: A — B be a distance-decreasing function. The R, -functor & f is
explicitly given by Zf(¢)(b) = inf,ca B(b, f(a)) + ¢(a) and it has a right
adjoint r given by r(¢) = ¥ (f—). The adjunction Zf — r is a coretract
adjunction, ie the unit is an identity, precisely when &2 f if full and faithful,
equivalently, when f is so, which is to say, f is an isometry.

The 2-functor from R -Cat to Preord that sends a space to its underlying
preorder is a 2-monad morphism between the respective free split opfibra-
tion 2-monads. This is so because these 2-monads are given by taking a
comma object along an identity morphism, and the 2-functor, as a right ad-
joint, preserves limits. In particular, a split opfibration in R,-Cat is a split
opfibration in Preord.

Definition 14.1. A sequence of points (z,,) in a metric space X is Cauchy
when it satisfies the usual definition of a Cauchy sequence. Two Cauchy
sequences in X are equivalent when they are equivalent in the usual sense.

Every Cauchy sequence in R, converges. If the sequence takes the value
oo only finitely many times, this is the completeness of R,. Otherwise, we
know that there exists ny such that for all n > ny both [o0,z,] < 1 and
[z,,00] < 1. Of these two conditions, the first is trivial, as it amounts to
0 < 1, while the second means oo < 1 if x,, # oo, which is a contradiction. It
follows that x,, = oo for all n > ng, and (z,) converges.

In Section [2.2] we have recalled the definition of Set-module or profunctor
and in Section that of Cat-module. An R,-module ¢: X - Y, between
spaces X and Y, is a matrix ¢(y,x) € Ry, x € X,y € Y, satisfying the
inequality Y (v/,y) + ¢(y,x) + X (z,2") = ¢(y/,2'). An R, -module from the
trivial R, -category ¢: I - X is given simply by ¢(x) € R, for each x € X,
such that X (2/,2) + ¢(x) = ¢(2'). R, -categories and R,-modules form a
2-category with the obvious composition: if ¢: X - Y and v: Y —» 7



LAX ORTHOGONAL FACTORISATION SYSTEMS 81

are R -modules, then (¢ - ¢)(z,2) = inf,¥(z,z) + ¢(y,x). Left adjoint
morphisms in this 2-category are called Cauchy modules. An R, -module ¢
as before is convergent when it is representable by a morphism f: X — Y
ie if ¢y, ) = Y(y, f(2)).

Lemma 14.2 (Lawvere). Let X be a generalised metric space. There is a
bijection between the set of Cauchy modules I - X and the set of equivalence
classes of Cauchy sequences in X . Furthermore, this bijection sends a Cauchy
module ¢ to the equivalence class of Cauchy sequences (x,,) such that ¢(z,) <
1/n and ¢*(z,) < 1/n, and conversely a Cauchy sequence (x,,) to the module
given by y — lim, X (y, z,).

Proposition 14.3. The generalised metric space QA 1is isomorphic to the
space with points equivalence classes of Cauchy sequences in A and distance

QA([ral, lyn]) = lim Al 32).

A priori, the assignment A — QA is the object part of a pseudomonad on
R.-Cat. Next we see that this pseudomonad is in fact a 2-monad. We call
a generalised metric space X posetal if its underlying preorder is a poset, ie
if X(z,y)=0= X(y,x) implies x = y.

Lemma 14.4. (1) The underlying preorder of X is a poset — it satisfies the
antisymmetry condition — and the same holds for QX. (2) Both & and Q)
are 2-monads. Their multiplications are characterised by being left adjoints
to the respective units. (3) Any normal pseudo-Q-algebra, and in particular
any strict QQ-algebra, is a poset.

Proof: Note that #X is a poset since R, is one. Therefore, & is a 2-
functor, since the pseudofunctor constraints P¢g - Zf =~ P(g- f) and 1 =
Z1 have components in a poset, therefore they are identities. Furthermore,
& is a 2-monad since both the associativity and unit constraints of the
pseudomonad & are isomorphisms between morphisms into &, and £ X is
a poset. The same holds for (), as there exists a pseudomonad morphism ) —
& whose components, the inclusions of the categories of Cauchy modules into
all modules, reflect identities.

By the considerations above, both & and (@) restrict to the full subcategory
of R, -Cat consisting of the posetal spaces, which we denote by R, -Catgep.
This is a locally posetal 2-category, and the multiplication of any lax idem-
potent 2-monad on such a 2-category is characterised by being left adjoint
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retract to the unit. In particular, my: £2°X — PX is characterised by
being a left adjoint retract of the Yoneda embedding yzy: X — 22X.
However, the retract condition is automatically satisfied: yzx is full and
faithful, so myx - y»x = 1, but this isomorphism must be an identity since
P X is a poset. The same arguments apply to () instead of Z.

It is very easy to verify that posets are closed under retracts in the category
of preorders. Then, any normal pseudo-Q-algebra X, as a retract of QX, is
a poset. [ |

Lemma 14.5. Let g: A — B be a distance-decreasing function between gen-

eralised metric spaces. If a Cauchy sequence (xz,) in A has associated Cauchy
module ¢ € QA, then g(x,) has associated Cauchy module (Qg)(¢) € QB.

Definition 14.6. A Cauchy sequence (z,) in a generalised metric space X
source converges to x if lim,, X (x,,z) = 0; we say that x is a source limit of

Observe that lim,, X (z,,x) = 0 alone need not imply that (z,) is a Cauchy
sequence, by the lack of symmetry on distance of X.
Let ¢ € QX be the Cauchy module associated to a Cauchy sequence (x,,)

in X. It is obvious from the definition that x is a source limit of (z,,) if and
only if ¢*(z) = 0.

Lemma 14.7. Let (x,,) be a Cauchy sequence in the generalised metric space
X. Its associated module is represented by x if and only if (x,) converges to
x. In this case, if (x,) source converges to y, then X (z,y) = 0.

The lemma above says that a limit of a convergent sequence is initial — in
the underlying preorder — amongst the source limits of the sequence.

Proposition 14.8. The 2-monads on R, -Cat given by completion under a
class of colimits are simple. In particular, &2 and Q) are simple.

Proof: Lemma ensures that the hypotheses of Corollary are satis-
fied. |

Observe that the proposition above is not a particular instance of Theo-
rem [13.1] since the 2-monad ® on R,-Cat, where X c ZX is the com-
pletion of X under colimits of a class, may be different from the 2-monad
To whose algebras are R, -categories with chosen colimits of that class; eg

one can build an example with the non-posetal space X = {0,1}, where
X(0,1) =0= X(1,0).
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Proposition 14.9. The following conditions on a distance-decreasing func-
tion f: A — B between generalised metric spaces are equivalent.
(1) Qf: QA — QB has a right adjoint retract.

(2) f is an isometry and for each b € B there exists a Cauchy sequence (x,)
in A such that B(f—,b) = lim,, A(—, x,).

Proof: Lemmall3.2]says that Q f has a right adjoint precisely when B(f—,b) €
P2 A belongs to Q A, which is equivalent to the existence of a Cauchy sequence
as in (2). The unit of this adjunction is an identity if and only if f is full
and faithful: an isometry. ]

Corollary 14.10. The equivalent conditions in Proposition are further
equivalent to requiring that f be a dense isometry if the space B is symmetric.

Proof: If the conditions of Proposition[14.9 hold, we obtain lim,, B(f(z,,),b) =
0 for all b € B and some Cauchy sequence (z,), and f is dense. To prove the
converse, given b € B, there is a Cauchy sequence (x,) in X such that both
lim,, B(f(z,),b) and lim,, B(b, f(z,)) equal 0. Therefore,

B(f(a)7 b) - hTanB(f(a)a f(xn>) - h?gn A(CL, xn)

which is one of the equivalent conditions in Proposition [14.9] |

Remark 14.11. For a distance-decreasing function g: A — B, the space Kg
— the comma object Qg | yp — has points (¢, b) such that (Qg)(¢) = B(—,b)
in @B. Equivalently, (Qg(¢))*(b) = 0. By Lemma [14.5] this is equivalent to
lim, B(g(x,),b) = 0 where (z,) is any Cauchy sequence of the equivalence
class x associated to ¢. The distance of K¢ is given by the formula

Kg((x,b), (x',b") = max{lim A(x,,z), B(b,V')}.
n
The R, -functor A\,: A — Kgsends a to (¢4, g(a)), where ¢, is the equivalence
class of Cauchy sequences that converge to a; ie the equivalence class of the
Cauchy sequence that is constant on a. We know from the general theory,
but it is also readily verified, that A\, is an isometry.

Proposition 14.12. A distance-decreasing function g: C — D s an R-
algebra if and only if for each equivalence class x = [x,]| of Cauchy sequences
and each source limit b € B of g(x,) there is an element p(x,b) € A over b
such that for alla e A

A(p(x,b),a) = max{lirxln A(zy,a), B(b,g(a))} € Ry. (14.1)
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Proof: One implication is clear, since an R-algebra structure provides the
choice of elements. For the converse, suppose that a choice p(x,b) € A exists.
First observe that there is a choice of elements p/(x,b) that satisfy the same
properties and in addition p’(c,, g(a)) = a, where ¢, is the sequence constant
at a € A. To see this, define p/'(x,b) = p(x,b) unless (x,b) = (¢4, g(a)) in
which case set p'(cq, g(a)) = a. To verify that p’ satisfies (14.1]), observe
that lim, A((cz)n,a) = A(a,a) = B(g(a),g(a)). The equality says
precisely that the chosen elements can be extended to a left adjoint enriched
functor p’ 4 ;. Furthermore, p'(A\;(a)) = a by definition, so the inequality
Ala,a) = A(p'N(a),p'A\y(a)) is an equality; in other words, p'- A\, = 1 as
R, -functors. The fact that gp'(x,b) = b means that (p/,1) is a morphism
Rg — ¢. In order to have a retract adjunction (p/,1) 4 (A, 1), which is, by
Lemma[11.5] to say that (p/, 1) is an R-algebra structure, it remains to prove
that the unit of p’ < ), is sent to the identity by p,, but this is immediate

from py(x,0) = b = py(Ag(p'(x,0))). u

Corollary 14.13. A distance-decreasing function g: A — B into a sym-
metric generalised metric space B is an R-algebra if and only if for each
equivalence class x = [x,] of Cauchy sequences and each limit b e B of g(x,,)
there is an object p(x,b) € A over b such that (x,) converges to p(x,b).

Proof: Observe that a Cauchy sequence (x,) converges to p precisely when
A(p,a) = lim, A(z,,a) for all a € A. One way of seeing this is by applying
Lemma[14.7, Together with the fact that the maximum in Proposition
equals lim, A(x,,a) as a consequence of the symmetry of B, we obtain the
result. |

If in the corollary above the spaces A and B are metric spaces, ¢ is an
R-algebra if the convergent Cauchy sequences in A are precisely those for
which their image under ¢ converges in B. This is so since lim, x, in A
always satisfy g(lim, z,) = lim, g(x,).

Theorem 14.14. There is a lax idempotent AWFES (L, R) on the 2-category of
generalised metric spaces, with underlying WFS (L, R), that satisfies: (1) A
morphism f is an L-coalgebra, equivalently f € L, if and only if f is as in
Proposition [14.9. (2) A morphism g is an R-algebra, equivalently g € R, if
and only if it is as in Proposition . (8) The fibrant replacement 2-monad
is Q, so the fibrant objects are the Cauchy complete generalised metric spaces.
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Proof: The categories R, -Cat(X, QY") are posets since QY is a poset. There-
fore, the statements (|1)) and (2)) follow from Theorem[11.7. The statement
is a consequence of Corollary [9.3] n

Finally, the AWFS of the previous theorem restricts to the 2-category of
metric spaces. The associated WFS on metric spaces has been considered
in [23, Examples 4.18] while studying Lawvere completeness as outlined in [5].

Corollary 14.15. The AWFS of Theorem restricts to the 2-category
of symmetric generalised metric spaces — pseudometric spaces. The left class
consists of dense isometries. The right class consists of those g: A — B
satisfying the following condition: for all Cauchy sequence (x,) in A such
that (g(x,)) converges to b, there exists a limit of (x,) that lies over b. The
AWES also restricts to the 2-category of metric spaces, where it becomes an
orthogonal factorisation system.

Proof: If A is symmetric so it is QA, by, for example, Proposition [14.3] For
the same reason, QA is metric when A is so; QA is the classical Cauchy
completion of A. Then, K¢ is symmetric for any g: C' — D between sym-
metric spaces; see Remark [14.11] Therefore, the factorisation of a morphism
between symmetric spaces is through a symmetric space. Corollaries [14.10
and [14.13] together with the fact that the underlying preorder of a metric
space is discrete, conclude the proof. |
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