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Abstract: The aim of this paper is to estimate the probability distribution of
power TGARCH processes by establishing bounds for their finite dimensional laws.
These bounds only depend on the parameters of the model and on the distribu-
tion function of its independent generating process. The application of this study
to some particular models allows us to conjecture that this procedure is an ade-
quate alternative to the corresponding estimation using the empirical distribution
functions, particularly useful in the development of control charts for this kind of
models.
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1. Introduction

The knowledge of the true theoretical law of conditional heteroskedastic
models remains an open question to which it seems difficult to answer. The
most part of the analysis undertaken for these models is dedicated to the
study of properties or probabilistic summaries of those laws. But the use of
these models, for instance within the quality control theory, needs the assess-
ment of the probability of certain regions depending on the process. In order
to answer this problem, Pawlak and Schmid [8], Gonçalves and Mendes-Lopes
[6] and Gonçalves, Leite and Mendes-Lopes [4] developed studies to find
bounds for the finite dimensional laws of certain transformations of ARCH
and TGARCH processes. These authors showed for some particular situa-
tions the usefulness of this methodology in the evaluation of control charts
for conditional heteroskedastic models.
For a real stochastic processX = (Xt, t ∈ Z) let us defineX+

t = max(Xt, 0),
X−

t = max(−Xt, 0) and X t the sigma field generated by Xt, Xt−1, ...
The processX follows a power δ generalized threshold autoregressive condi-

tionally heteroskedastic model with orders p and q, denoted δ-TGARCH(p, q),
if for real constants α0 > 0, αi ≥ 0, βi ≥ 0, γj ≥ 0, (i = 1, ..., p, j = 1, ..., q)
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and a sequence of independent and identically distributed real random vari-
ables, (Zt, t ∈ Z), with zero mean, unit variance and Zt independent of X t−1

we have, for every t ∈ Z,
Xt = σtZt

σδ
t = α0 +

p∑
i=1

[αi(X
+
t−i)

δ + βi(X
−
t−i)

δ] +
q∑

j=1

γjσ
δ
t−j,

with δ ̸= 0, provided the following convention is considered for δ < 0 :
(X+

t )
δ = 0 if Xt < 0 and (X−

t )
δ = 0 if Xt > 0. The process Z = (Zt, t ∈ Z)

is called the generating process of X. If γj = 0, j = 1, ..., q, we say that X
follows a δ-TARCH(p) model.
This class of models includes the more significant and useful conditional

heteroskedastic models present in literature like GARCH and GTARCH
(Gonçalves, Leite and Mendes-Lopes [3] and Pan, Wang and Tong [7]).

We consider in the following that
q∑

j=1

γj < 1 which is a necessary condition

of strict and weak stationary of X and also to its stationarity up to the
δ-order ([3]). Moreover, under this condition σt is X t−1-measurable.
The main characteristic of threshold conditionally heteroskedastic models

is the fact that they allow to take into account different reactions in the
volatility according to the sign of the process values even for values with the
same absolute size. So, these models capture the so-called leverage effect very
common in financial time series of daily returns (Francq and Zakoian [2]).
The introduction of the exponent allows to take into account long memory
in the shocks of the conditional variance (Ding, Granger and Engle [1]). A
not so very common, but yet still present characteristic in some daily returns
series is skewness, positive in some cases and negative in others (Taylor [10]).
We note that X has a symmetric marginal distribution (relatively to the
origin) if and only if the same happens to its generating process Z.
We point out this relation between the symmetry of the marginal distri-

bution of a δ-TGARCH process and the symmetry of its generating process
to stress the importance of studying the distributions of the δ-TGARCH
process and not only the distributions of some transformations of these pro-
cesses as Pawlak and Schmid [8] did for the squared of a GARCH process.
The transformation considered by these authors for the GARCH process only
produces conclusions for the process itself if the marginal distribution of the
generating process is symmetric.
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In this paper we propose bounds for the finite dimension laws of the process
X following a δ-TGARCH(p, q) model with δ > 0 and, whenever possible,
with δ < 0. These bounds are expressed in terms of the distribution function
of the independent generating process, Z, and it becomes clear that the
marginal law of X is, in certain regions, strongly controlled by that of the
process Z. This fact is rather relevant as we know that these laws have in
general quite different characteristics; for example, the marginal law of X is
leptokurtic even if it doesn’t happen with that of the independent generating
process.
We remark that the regions where the bounds are valid seem to be larger

than those theoretically stated, as suggested by the simulation studies done
to evaluate the quality of those bounds.
So far as we know, the study here developed strongly enlarges the results

on the subject present on literature. In fact we consider a wide class of
general conditionally heteroskedastic models and we establish bounds for the
distribution of the finite dimensional laws of the process X.
In Section 2 we study the marginal distribution of X. Section 3 begins

with a preliminary bound for the distribution function of the 2n-dimensional
vector

(
X+

1 , X
−
1 , ..., X

+
n , X

−
n

)
, which reveals useful in the bounding of the

joint marginal distributions of X established in the last part of this Section.
In Section 4 we illustrate the overall good quality of the theoretical bounds
obtained by means of a simulation study with n = 2.

2. Bounds for the marginal laws

Let X = (Xt, t ∈ Z) be a δ-TGARCH(p, q) process, δ ̸= 0, and let us
denote by FXt

the distribution function of Xt and by FZ the distribution
function of Zt.

Defining θ =

[
α0

(
1 + 1

1−γτ

q∑
j=1

γj

)] 1
δ

, where γτ = max
1≤j≤q

γj, we have

σt ≥ θ, if δ > 0, and σt ≤ θ, if δ < 0.

In consequence, and taking into account that FXt
(x) = E

[
FZ

(
x
σt

)]
, the

following bounds are easily obtained:

a) for x ≥ 0, we have



4 E. GONÇALVES, J. LEITE AND N. MENDES LOPES

- if δ > 0, FXt
(x) ≤ FZ

(
x
θ

)
; if δ < 0, FXt

(x) ≥ FZ

(
x
θ

)
;

b) for x < 0,
- if δ > 0, FXt

(x) ≥ FZ

(
x
θ

)
, if δ < 0, FXt

(x) ≤ FZ

(
x
θ

)
.

To complete the bounding of FXt
we must consider some additional as-

sumptions. Namely, we suppose that the generator process is δ-integrable,

that is E
(
|Z0|δ

)
< +∞, and

Sδ =

p∑
i=1

(αiϕ1,δ + βiϕ2,δ) +

q∑
i=1

γi < 1,

where E
[(
Z+
t

)δ]
= ϕ1,δ and E

[(
Z−
t

)δ]
= ϕ2,δ.

Under these assumptions, X is strict and weakly stationary of order δ ([3]);
moreover, E

(
σδ
t

)
is finite, independent of t and equal to

E
(
σδ
t

)
=

α0

1− Sδ
.

In addition, we suppose that (Zt) are absolutely continuous random vari-
ables with a differentiable probability density fZ .
The following result may then be established.

Theorem 1. Supposing X a δ-TGARCH(p, q) under the previous assump-
tions and, considering the function

hδ (x) = (1 + δ) fZ

(
x

y
1
δ

)
+

x

y
1
δ

f ′
Z

(
x

y
1
δ

)
,

where y ∈ [α0,+∞[, we have

a) if x ≥ 0,

(a1) hδ (x) ≥ 0, ∀y ∈ [α0,+∞[ =⇒ FXt
(x) ≥ FZ

(
x

[E(σδ
t )]

1
δ

)
;

(a2) hδ (x) ≤ 0, ∀y ∈ [α0,+∞[ =⇒ FXt
(x) ≤ FZ

(
x

[E(σδ
t )]

1
δ

)
;

b) if x < 0,



DISTRIBUTION ESTIMATION OF POWER TGARCH PROCESSES 5

(b1) hδ (x) ≥ 0,∀y ∈ [α0,+∞[ =⇒ FXt
(x) ≤ FZ

(
x

[E(σδ
t )]

1
δ

)
;

(b2) hδ (x) ≤ 0,∀y ∈ [α0,+∞[ =⇒ FXt
(x) ≥ FZ

(
x

[E(σδ
t )]

1
δ

)
.

Proof. We restrict ourselves to the proof of the conditions in a) as those
referred in b) are analogously obtained.

For t ∈ Z and x ∈ R, we may write FXt
(x) = E

[
FZ

(
x

(σδ
t )

1
δ

)]
. For x ∈ R

arbitrarily fixed, let us consider the function Rδ : [α0,+∞[ −→ [0, 1] such

that Rδ (y) = FZ

(
x

y
1
δ

)
for which we have

dRδ

dy
(y) = − x

δy
1
δ+1

fZ

(
x

y
1
δ

)
,

and

d2Rδ

dy2
(y) =

(1 + δ)x

δ2y
1
δ+2

fZ

(
x

y
1
δ

)
+

x2

δ2y
2
δ+2

f ′
Z

(
x

y
1
δ

)
=

x

δ2y
1
δ+2

hδ (x) .

As referred above, under the previous hypotheses, E
(
σδ
t

)
exists and is

independent of t. As for x ≥ 0 and hδ (x) ≥ 0, Rδ is a convex function,
Jensen’s inequality allows to write

FXt
(x) = E

[
FZ

(
x(
σδ
t

) 1
δ

)]
≥ FZ

(
x[

E
(
σδ
t

)] 1
δ

)
.

Similarly, as Rδ is a concave function when x > 0 and hδ (x) ≤ 0, we have

FXt
(x) = E

[
FZ

(
x(
σδ
t

) 1
δ

)]
≤ FZ

(
x[

E
(
σδ
t

)]1
δ

)
.�

From the previous results we conclude that to bound FXt
we have to discuss

the sign of the function

hδ (x) = (1 + δ) fZ

(
xy−

1
δ

)
+ xy−

1
δf ′

Z

(
xy−

1
δ

)
,∀y ∈ [α0,+∞[;

namely, we are interested in hδ ≤ 0, when δ < 0, and hδ ≥ 0, when δ > 0.
In the following we illustrate this discussion for some distributions of the
generator process Z and some values of δ.
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Example 1. Let us consider Zt following a standard normal distribution.
For y ∈ [α0,+∞[, we have

hδ (x) = fZ

(
x

y
1
δ

)[
(1 + δ)−

(
x

y
1
δ

)2
]
, x ∈ R.

So, it is obvious that ∀x ∈ R, hδ (x) ≤ 0 if δ ≤ −1.

Let us consider now −1 < δ < 0. As hδ (x) ≤ 0 ⇔ |x| ≥ y
1
δ

√
1 + δ

and y
1
δ ≤ α

1
δ

0 , we may assure that hδ (x) ≤ 0 at least for

x ∈
]
−∞,−α

1
δ

0

√
1 + δ

]
∪
[
α

1
δ

0

√
1 + δ,+∞

[
.

Analogously we conclude that, if δ > 0, hδ (x) ≥ 0 at least for

x ∈
[
−α

1
δ

0

√
1 + δ, α

1
δ

0

√
1 + δ

]
, taking into account that, in this case, y

1
δ ≥ α

1
δ

0 .

Taking into consideration these results, we present in Figure 1 the bounds
of the distribution function of a δ-TGARCH(1, 1), with α0 = 10, α1 = 0.3,
β1 = 0.5, γ1 = 0.2 and a standard Gaussian generator process, for δ equal
to −1

2 , −
1
3 ,

1
2 , 1,

3
2 and 2, representing, in each case, the bounds FZ

(
x
θ

)
and

FZ

(
x
[
E
(
σδ
t

)]−1
δ

)
and the empirical estimation of FXt

(x). This empirical

distribution was obtained by a simulation study considering a sample of
10 000 observations of the δ-TGARCH(1, 1) process X.
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Figure 1. Plots of FZ

(
x
θ

)
(red), FZ

(
x
[
E
(
σδ
t

)]−1
δ

)
(blue) and

the estimate of FXt
(x) (green), for X ∼ δ-TGARCH(1, 1) and

Zt ∼ N (0, 1)
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According with the previous study these bounds are theoretically validated

for x between the lines x = ±α
1
δ

0

√
1 + δ, when δ > 0, and outside of these

lines, when δ < 0. Nevertheless, the previous plots lead us to conjecture that
these bounds are still valid for x outside those intervals, which is understand-
able since our results only establish sufficient conditions for the validity of
these bounding; moreover, the quality of the bounds seems to be strongly
related to the corresponding value of Sδ (for the chosen increasing values of δ,
Sδ is approximately equal to 0.888, 0.739, 0.529, 0.520, 0.544 and 0.6, respec-
tively). In what concerns the bounding accuracy, we stress the high quality

of the bounds related to the function FZ

(
x
[
E
(
σδ
t

)]− 1
δ

)
that depends on all

the model parameters.

Example 2. Let us consider random variables Zt following a centered and
reduced distribution based on the Student law with parameter n, n > 2,

that is, with density fZ (x) = 1√
(n−2)π

Γ(n+1
2 )

Γ(n
2 )

(
1 + x2

n−2

)−n+1
2

, x ∈ R. So,

f ′
Z (x) = − x(n+1)

n−2+x2fZ (x), x ∈ R.

As, for y ∈ [α0,+∞[ , hδ (x) = fZ

(
x

y
1
δ

)
(1+δ)(n−2)y

2
δ+(δ−n)x2

y
2
δ (n−2)+x2

, x ∈ R, we have

the following discussion:
i) hδ (x) ≤ 0, ∀x ∈ R, if δ ≤ −1;

ii) hδ (x) ≤ 0, ∀x ∈
]
−∞,−α

1
δ

0

√
(1+δ)(n−2)

n−δ

]
∪
[
α

1
δ

0

√
(1+δ)(n−2)

n−δ ,+∞
[
, if

−1 < δ < 0;

iii) hδ (x) ≥ 0, ∀x ∈
[
−α

1
δ

0

√
(1+δ)(n−2)

n−δ , α
1
δ

0

√
(1+δ)(n−2)

n−δ

]
, if 0 < δ < n;

iv) hδ (x) ≥ 0,∀x ∈ R, if δ ≥ n.

As in the Example 1, a simulation study was developed considering four δ-
TGARCH models with generator process following the previous distribution
with n = 6, parameters δ = 1, α0 = 10, α1 = 0.3, β1 = 0.5 and γ1 = 0.2
and orders (1, 1), (2, 1) , (1, 2) and (2, 2). We note that the values of Sδ are,
respectively, 0.5, 0.688, 0.75 and 0.938. The bounds obtained in each one of
these cases are plotted in Figure 2.
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Figure 2. Plots of FZ

(
x
θ

)
(red), FZ

(
x
[
E
(
σδ
t

)]−1
δ

)
(blue) and

the estimate of FXt
(x) (green), for X ∼ 1-TGARCH(p, q) and

Zt =
√

2
3W , with W ∼ t6

Despite being in a very different situation, the behaviour of these bounds
are similar to those of the previous example; in particular, we highlight that
the bounding accuracy seems also to be dependent on the Sδ value.

Example 3. Let us consider a mixture of two Gaussian distributions (not
necessarily symmetric), that is

fZ (x) = p1f1 (x;m1, s1) + p2f2 (x;m2, s2) ,

where p1, p2 ∈ ]0, 1[ with p1 + p2 = 1, and where fk (·;mk, sk) is the Gaussian
probability density with mean mk and variance s2k.
In order to obtain a centered and reduced generator process, we have the

following relations p2 = 1−p1, m2 =
p1m1

p1−1 , and v2 =

√
1−p1(m2

1+s21)−(1−p1)
(

p1m1
p1−1

)2
1−p1

.

To analyze the sign of the function hδ we restrict ourselves to the case
δ = 1.
As f ′

k (x;mk, sk) = fk (x;mk, sk)
(
− (x−mk)

s2k

)
, we have, for x ∈ R,

h1 (x) = 2fZ

(
x

y

)
+

x

y
f ′
Z

(
x

y

)
=

2∑
k=1

pkfk

(
x

y
;mk, sk

)2−
(
x
y −mk

)
x
y

s2k


and so h1 (x) ≥ 0 if, at least, x

y ∈
2∩

k=1

[
mk−

√
m2

k+8s2k
2 ,

mk+
√

m2
k+8s2k

2

]
, that is

x
y ∈ [l1, l2], with l1 = max

k∈{1,2}

mk−
√

m2
k+8s2k

2 and l2 = min
k∈{1,2}

mk+
√

m2
k+8s2k

2 .
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As this theoretical study leads us only to a sufficient condition for the
positivity of h1, we may improve this study using numerical and graphical
methods.
So, let (p1,m1,s1) = (0.65,−0.15, 0.4) and (p1,m1,s1) = (0.6, 0.3, 0.4) be

two different set of parameters, denoted A and B respectively, associated
to the distribution considered above. In Figure 3 we plot the function h1

corresponding to each one of these cases.

A

-4 -2 2 4

0.5

1.0

1.5

B

-4 -2 2 4

0.5

1.0

1.5

Figure 3. Function h1 when Zt follows a mixture of Gaussian
distributions with parameters A, (p1,m1,s1) = (0.65,−0.15, 0.4)
and B, (p1,m1,s1) = (0.6, 0.3, 0.4)

Analyzing these plots and using numerical methods we conclude, in case A,
that h1 (x) ≥ 0, ∀y ∈ [α0,+∞[, if x

y ∈ [−0.714, 2.353] and also if

x ∈ [−0.714α0, 2.353α0]. Similarly, in case B, we have the same result if
x
y ∈ [−2.198, 0.788], and also if x ∈ [−2.198α0, 0.788α0].

A simulation study is developed for this kind of generator process dis-
tribution, considering the laws associated to the cases of parameter sets
A and B. Unlike the previous examples we take now skewed distribu-
tions for Zt. Namely, in cases denoted A1 e A2, we choose (p1,m1,s1) =
(0.65,−0.15, 0.4) (positive skewness); in cases denoted B1 e B2, we take
(p1,m1,s1) = (0.6, 0.3, 0.4) (negative skewness). Regarding the δ-TGARCH
process we consider in all the cases δ = 1, α0 = 10, α1 = 0.15, β1 = 0.5 and,
in A1 and B1, γ1 = 0.2; in A2 and B2 we take γ1 = 0.6. So, the values for Sδ

are equal to 0.416, 0.816, 0.430 and 0.830 in the cases A1, A2, B1 and B2,
respectively. The corresponding plots are presented in Figure 4.

Also in this asymmetrical case, the conclusions are similar to the previous
ones. Moreover, this example reinforces the conjecture that the bounding
accuracy is better for smaller values of Sδ.
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Figure 4. Plots of FZ

(
x
θ

)
(red), FZ

(
x
[
E
(
σδ
t

)]−1
δ

)
(blue) and

the estimate of FXt
(x) (green), for X ∼ 1-TGARCH(1, 1) and

Zt ∼ NM

3. Bounds for the finite dimensional laws

In this section we concentrate our study on δ-TGARCH processes with
positive power δ and generator process with diffuse distribution. To develop
bounds for the distribution function of the finite dimensional laws of the
process, we begin by an auxiliary study on the bounding of the distribution
function of

(
X+

1 , X
−
1 , ..., X

+
n , X

−
n

)
.

3.1. Bounds for the distribution of
(
X+

1 , X
−
1 , ..., X

+
n , X

−
n

)
.

Let X = (Xt, t ∈ Z) be a δ-TGARCH(p, q) process, δ > 0, for which
the law of Zt is diffuse.
As in Gonçalves, Leite and Mendes-Lopes [4], it is easy to establish the

following upper bound for the distribution function of
(
X+

1 , X
−
1 , ..., X

+
n , X

−
n

)
:

∀ (x1, x∗1, ..., xn, x∗n) ∈
(
R+

0

)2n
, n ∈ N,

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≤

n∏
t=1

[
FZ

(xt
θ

)
− FZ

(
−x∗t

θ

)]
.

In fact, taking into account the definitions ofX+
t and X−

t and the positivity
of σt, we have

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) = P

(
−x∗t
σt

≤ Zt ≤
xt
σt
, t = 1, ..., n

)
.
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So, as σt > θ and Zt are i.i.d. and diffuse random variables, the announced
result follows from the inequality

P

(
−x∗t
σt

≤ Zt ≤
xt
σt
, t = 1, ..., n

)
≤ P

(
−x∗t

θ
≤ Zt ≤

xt
θ
, t = 1, ..., n

)
=

n∏
t=1

[
FZ

(xt
θ

)
− FZ

(
−x∗t

θ

)]
.

We note that, when δ is negative, a reversed inequality is obtained using
the same technique.

As previously, the methodology used to obtain the other bound is more
refined and leads us to a precise approximation of the distribution function
under study. However, it is only valid for positive δ.
Let us begin by considering the following result.

Lemma 1. Under the previous conditions, we have

P (Vt ≤ Zt ≤ Wt, t = 1, ..., k) =
k∏

t=1

E [FZ (Wt)− FZ (Vt)] ,

where Vt and Wt, such that Vt ≤ Wt, are X0 - measurable random variables,
t ∈ {1, ..., k}.

Proof. Using expectation and conditional expectation properties and tak-
ing into account that Z1, ..., Zk are i.i.d. diffuse random variables and also
that they are independent from X0, it is easy to conclude that

P (Vt ≤ Zt ≤ Wt, t = 1, ..., k) = E
[
E
(
1l[V1,W1]×...×[Vk,Wk] (Z1, ..., Zk)

∣∣X0

)]
=

k∏
t=1

E [FZ (Wt)− FZ (Vt)] .�

In the next theorem we present the required lower bound. For simplicity,
we restrict the presentation of this study to δ-TARCH(p) (that is, γ1 = ... =
γq = 0) and δ-TGARCH(1, 1) models; more general cases use the same
procedure with a more complicated framework.
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Theorem 2. Let X be a δ-TGARCH(p, q) process, δ > 0, such that

E
(
|Z0|δ

)
< +∞ and Sδ < 1. Supposing Zt absolutely continuous with a

differentiable density fZ , let us define, for each y ∈ [α0,+∞[, the function

hδ (x) = (1 + δ) fZ

(
x

y
1
δ

)
+ x

y
1
δ
f ′
Z

(
x

y
1
δ

)
.

For (x1, x
∗
1, ..., xn, x

∗
n) ∈

(
R+

0

)2n
such that

xt hδ (xt) + x∗t hδ (−x∗t ) ≥ 0, ∀y ∈ [α0,+∞[ ,

where t =

{
1, ...,min {p, n} if q = 0
1, ..., n, if q = 1

, we have:

a) if q = 0 and

(a1) 1 ≤ p ≤ n,

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

≥
p∏

t=1

[
FZ

(
xt

u
1/δ
t

)
− FZ

(
− x∗

t

u
1/δ
t

)] n∏
t=p+1

[
FZ

(
xt

v
1/δ
t

)
− FZ

(
− x∗

t

v
1/δ
t

)]
,

(a2) p > n ≥ 1

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

n∏
t=1

[
FZ

(
xt

u
1/δ
t

)
− FZ

(
− x∗

t

u
1/δ
t

)]
,

where ut =
t−1∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
+ E

(
σδ
t

) [
1−

t−1∑
i=1

(αiϕ1,δ + βiϕ2,δ)

]
and vt = α0 +

p∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
;

b) if p = 1 and q = 1,

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

n∏
t=1

[
FZ

(
xt

w
1/δ
t

)
− FZ

(
− x∗

t

w
1/δ
t

)]
,

where wt = α0

t−1∑
j=1

γj−1
1 +

t−1∑
j=1

γj−1
1

[
α1 (xt−j)

δ + β1
(
x∗t−j

)δ]
+ γt−1

1 E
(
σδ
t

)
.
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Proof. Let (x1, x
∗
1, ..., xn, x

∗
n) ∈

(
R+

0

)2n
. We introduce the random vari-

ables Ũt = α0 +
t−1∑
i=1

[
αi (xt−i)

δ + βi
(
x∗t−i

)δ]
+

p∑
i=t

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
,

t ∈ {1, ..., n} .

(a1) Let us begin by considering q = 0 and 1 ≤ p ≤ n.

As δ > 0, if X+
t ≤ xt and X−

t ≤ x∗t , t ∈ {1, ..., n}, we have

- if t ∈ {2, ..., p},

σδ
t = α0 +

t−1∑
i=1

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
+

p∑
i=t

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
≤ Ũt,

as for i ∈ {1, ..., t− 1}, 1 ≤ t− i ≤ p− 1 < n and for i ∈ {t, ..., p}, t− i ≤ 0;

- if t = 1, σδ
1 = α0 +

p∑
i=1

[
αi

(
X+

1−i

)δ
+ βi

(
X−

1−i

)δ]
, thus σ1 = Ũ1;

- and, if t ∈ {p+ 1, ..., n},

σδ
t = α0 +

p∑
i=1

[
αi

(
X+

t−i

)δ
+ βi

(
X−

t−i

)δ]
≤ α0 +

p∑
i=1

[
αi (xt−i)

δ + βi (x
∗
t−i)

δ
]
= vt,

as, for i ∈ {1, ..., p}, 1 ≤ t− i ≤ n− 1.
Using the definitions of X+

t and X−
t , the previous bounds and lemma, and

taking into consideration that Ũ
1
δ
t , t = 1, ..., p, and v

1
δ
t , t = p + 1, ..., n, are

X0-measurable, we are able to write

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥

≥ P

(
− x∗t

Ũ
1
δ
t

≤ Zt ≤
xt

Ũ
1
δ
t

, t = 1, ..., p,−x∗t

v
1
δ
t

≤ Zt ≤
xt

v
1
δ
t

, t = p+ 1, ..., n

)

=

p∏
t=1

E

[
FZ

(
xt

Ũ
1
δ
t

)
− FZ

(
− x∗t

Ũ
1
δ
t

)]
n∏

t=p+1

[
FZ

(
xt

v
1
δ
t

)
− FZ

(
−x∗t

v
1
δ
t

)]
.
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For a1 and a2 arbitrarily fixed inR+
0 and R−

0 , respectively, let us consider
the function Rδ : [α0,+∞[ −→ [−1, 1] defined by

Rδ (y) = FZ

(
a1

y
1
δ

)
− FZ

(
a2

y
1
δ

)
.

It is easy to show that

d2Rδ

dy2
(y) =

1

δ2y
1
δ+2

[a1 hδ (a1)− a2 hδ (a2)] .

So, considering for each t, t ∈ {1, ..., p} , a1 = xt and a2 = −x∗t , we have

the convexity of Rδ if xt hδ

(
xt

y

)
+ x∗t hδ

(
−x∗

t

y

)
≥ 0. Thus, applying Jensen

inequality, we obtain

p∏
t=1

E

[
FZ

(
xt

Ũ
1
δ
t

)
− FZ

(
− x∗

t

Ũ
1
δ
t

)] n∏
t=p+1

[
FZ

(
xt

v
1
δ
t

)
− FZ

(
− x∗

t

v
1
δ
t

)]
≥

≥
p∏

t=1

[
FZ

(
xt

[E(Ũt)]
1
δ

)
− FZ

(
− x∗

t

[E(Ũt)]
1
δ

)]
n∏

t=p+1

[
FZ

(
xt

v
1
δ
t

)
− FZ

(
− x∗

t

v
1
δ
t

)]
.

As, under the hypotheses, E
(
Ũt

)
exists and is equal to

ut =
t−1∑
i=1

[
αi (xt−i)

δ + βi (x
∗
t−i)

δ
]
+ E

(
σδ
t

) [
1−

t−1∑
i=1

(αiϕ1,δ + βiϕ2,δ)

]
,

the inequality presented in point (a1) is then established.

(a2) The inequality corresponding to q = 0 and p > n ≥ 1 is analogously
obtained.
In fact, as δ > 0, if X+

t ≤ xt and X−
t ≤ x∗t , t ∈ {1, ..., n}, we obtain

- if t ∈ {2, ..., n}, σδ
t ≤ Ũt, as, for i ∈ {1, ..., t− 1}, 1 ≤ t− i ≤ n− 1 and,

for i ∈ {t, ..., p}, t− i ≤ 0;

- if t = 1, σδ
1 = α0 +

p∑
i=1

[
αi

(
X+

1−i

)δ
+ βi

(
X−

1−i

)δ]
, and so σ1 = Ũ1.
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In consequence, we have the inequality

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥ P

(
− x∗t

Ũ
1
δ
t

≤ Zt ≤
xt

Ũ
1
δ
t

, t = 1, ..., n

)
,

from which the referred condition is similarly deduced.

b) The proof of this last inequality is also analogous to the previous ones.
In fact, if X+

t ≤ xt and X−
t ≤ x∗t , t ∈ {1, ..., n}, and introducing

W̃t = α0

t−1∑
j=1

γj−1
1 +

t−1∑
j=1

γj−1
1

[
α1 (xt−j)

δ + β1
(
x∗t−j

)δ]
+ γt−1

1 σδ
1,

we may write:

- if t ∈ {2, ..., n}, σδ
t ≤ α0 + α1 (xt−1)

δ + β1 (x
∗
t−1)

δ + γ1σ
δ
t−1 ≤ W̃t;

- if t = 1, we have σ1 = W̃1, and so

F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (x1, x
∗
1, ..., xn, x

∗
n) ≥ P

(
− x∗t

W̃
1
δ
t

≤ Zt ≤
xt

W̃
1
δ
t

, t = 1, ..., n

)
,

with W̃
1
δ
t X0-measurable (t = 1, ..., n). Following the same steps the inequal-

ity in b) is obtained. �

3.2. Bounds for the distribution function of (X1, ..., Xn).

We present now bounds for the distribution function of (X1, ..., Xn)
considering the three following regions for (x1, ..., xn) ∈ Rn: [0,+∞[n,
]−∞, 0]n \ {0, ..., 0} and Rn\ (]−∞, 0]n ∪ [0,+∞[n) .

3.2.1. Region [0,+∞[n.

Let X be a δ-TGARCH(p, q) process with δ > 0. Then, for every
(x1, ..., xn) ∈ [0,+∞[n, n ∈ N, it is easily concluded that

F(X1,...,Xn) (x1, ..., xn) ≤
n∏

t=1

FZ

(xt
θ

)
.

For the lower bound, we begin by writing the distribution function as a
sum of probabilities of sets where the variables are bounded, up or above, by
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zero like, for n = 2,

F(X1,X2) (x1, x2) = P (X1 < 0, X2 < 0) + P (X1 < 0, 0 ≤ X2 ≤ x2)+

+P (0 ≤ X1 ≤ x1, X2 < 0) + P (0 ≤ X1 ≤ x1, 0 ≤ X2 ≤ x2) .

In order to facilitate the reading, we introduce some notation and illustrate
its use in the case n = 3. As ]−∞, xt] = ]−∞, 0[∪ [0, xt], let us denote these

intervals as C
(−1)
t = ]−∞, 0[ and C

(+1)
t = [0, xt]. We note that the exponent

used in this notation is also used as a number, that is, C
(−1)

2

t = C
(+1)
t and

C
(−1)

3

t = C
(−1)
t , for example. In this way, we have

3∏
t=1

]−∞, xt] =
3∏

t=1

(
C

(+1)
t ∪ C

(−1)
t

)
= C

(+1)
1 × C

(+1)
2 × C

(+1)
3 ∪ C

(+1)
1 × C

(+1)
2 × C

(−1)
3 ∪

∪ C
(+1)
1 × C

(−1)
2 × C

(+1)
3 ∪ C

(+1)
1 × C

(−1)
2 × C

(−1)
3 ∪

∪ C
(−1)
1 × C

(+1)
2 × C

(+1)
3 ∪ C

(−1)
1 × C

(+1)
2 × C

(−1)
3 ∪

∪ C
(−1)
1 × C

(−1)
2 × C

(+1)
3 ∪ C

(−1)
1 × C

(−1)
2 × C

(−1)
3 .

This Cartesian product is written as the union of 23 Cartesian products,
where the exponents are the arrangements with replacement of the num-
bers (+1) and (-1), three to three. For the condensed representation of this

union, we consider the triplet
(
(−1)⌊

k−1
22
⌋ , (−1)⌊

k−1
21
⌋ , (−1)⌊

k−1
20
⌋
)
, where ⌊x⌋

denotes the integer part of number x. With this triplet and with k ranging
from 1 to 23, we recover the arrangements with replacement of the numbers
(+1) and (-1), three to three, in the same order as that displayed. So,

3∏
t=1

]−∞, xt] =
23∪
k=1

(
C

(−1)⌊k−1
22 ⌋

1 × C
(−1)⌊k−1

21 ⌋
2 × C

(−1)⌊k−1
20 ⌋

3

)

=
23∪
k=1

(
3∏

t=1

C
(−1)⌊ k−1

23−t⌋
t

)
.

The result concerning the lower bound can then be stated.
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Theorem 3. Let X be a δ-TGARCH(p, q) process such that Zt are diffuse
variables. For every (x1, ..., xn) ∈ [0,+∞[n, n ∈ N, we have

F(X1,...,Xn) (x1, ..., xn) ≥

≥ [FZ (0)]n +
n∑

k=1

F(X+
1 ,X−

1 ,...,X+
k ,X−

k )
(x1, 0, ..., xk, 0) [FZ (0)]n−k +

+
2n∑
k=1

k ̸=20,21,...,2n

F(X+
1 ,X−

1 ,...,X+
n ,X−

n )
(
ak,1, a

∗
k,1, ..., ak,n, a

∗
k,n

)
,

with ak,t =

{
xt, if

⌊
k−1
2n−t

⌋
is even

0, otherwise
and a∗k,t =

{
0, if

⌊
k−1
2n−t

⌋
is even

yt, otherwise
, and

yt arbitrarily fixed in [0,+∞[.

Proof. Let (x1, ..., xn) ∈ [0,+∞[n. Using the procedure previously re-

ferred, the following equality holds for the set
n∏

t=1
]−∞, xt] :

n∏
t=1

]−∞, xt] =
n∏

t=1

(
C

(+1)
t ∪ C

(−1)
t

)
=

2n∪
k=1

(
n∏

t=1

C
(−1)⌊ k−1

2n−t⌋
t

)
.

As C
(+1)
t ∩ C

(−1)
t = ∅, t = 1, ..., n, then

n∏
t=1

C
(−1)⌊

k1−1

2n−t⌋
t ∩

n∏
t=1

C
(−1)⌊

k2−1

2n−t⌋
t = ∅,

for k1, k2 ∈ {1, ..., 2n} such that k1 ̸= k2. So,

F(X1,...,Xn) (x1, ..., xn) =
2n∑
k=1

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)⌊ k−1

2n−t⌋
t

)
.

Let us evaluate now P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)⌊ k−1

2n−t⌋
t

)
, for k = 2n−j, with

j ranging from 0 to n.
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Taking into account that for k = 20 we have
n∏

t=1
C

(−1)⌊ k−1
2n−t⌋

t =
n∏

t=1
C

(+1)
t , we

obtain

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(+1)
t

)
= P (0 ≤ Xt ≤ xt, t = 1, ..., n)

= P
(
X+

t ≤ xt, X
−
t ≤ 0, t = 1, ..., n

)
= F(X+

1 ,X−
1 ,...,X+

n ,X−
n ) (x1, 0, ..., xn, 0) .

Taking k = 2n, we have
n∏

t=1
C

(−1)⌊ k−1
2n−t⌋

t =
n∏

t=1
C

(−1)
t , and so

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)
t

)
= P (Xt < 0, t = 1, ..., n)

= P (Zt < 0, t = 1, ..., n)

= [FZ (0)]n ,

since σt > 0, for t ∈ {1, ..., n}, and Z1, ..., Zn are i.i.d. diffuse variables.

Finally, let us analyze the case k = 2n−j, with j ∈ {1, ..., n− 1}. In this

case
n∏

t=1
C

(−1)⌊ k−1
2n−t⌋

t =
j∏

t=1
C

(+1)
t ×

n∏
t=j+1

C
(−1)
t , and so

P

(
(X1, ..., Xn) ∈

j∏
t=1

C
(+1)
t ×

n∏
t=j+1

C
(−1)
t

)
=

= P (0 ≤ Xt ≤ xt, t = 1, ..., j,Xt < 0, t = j + 1, ..., n)

= F(X+
1 ,X−

1 ,...,X+
j ,X−

j )
(x1, 0, ..., xj, 0)× [FZ (0)]n−j ,

taking into account that Zt is independent of X t−1.
For the remaining values of k, that is, for k ∈ {1, ..., 2n} such that

k ̸= 2n−j with j ranging from 0 to n, we obtain now a lower bound for

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)⌊ k−1

2n−t⌋
t

)
.

Let us fix arbitrarily (y1, ..., yn) in ]0,+∞[n.
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For t = 1, ..., n, we have [−yt, 0[ ⊂ C
(−1)
t . Denoting D

(−1)
t = [−yt, 0[ and

D
(+1)
t = C

(+1)
t , we get

P

(
(X1, ..., Xn) ∈

n∏
t=1

C
(−1)⌊ k−1

2n−t⌋
t

)
≥ P

(
(X1, ..., Xn) ∈

n∏
t=1

D
(−1)⌊ k−1

2n−t⌋
t

)
.

Considering now

ak,t =

{
xt, if

⌊
k−1
2n−t

⌋
is even

0, otherwise
and a∗k,t =

{
0, if

⌊
k−1
2n−t

⌋
is even

yt, otherwise
,

we obtain, if
⌊
k−1
2n−t

⌋
is even,

[
−a∗k,t, ak,t

]
= [0, xt] = D

(+1)
t and, if

⌊
k−1
2n−t

⌋
is odd,[

−a∗k,t, ak,t
]
= [−yt, 0] = D

(−1)
t ∪ {0}. So,

P

(
(X1, ..., Xn) ∈

n∏
t=1

D
(−1)⌊ k−1

2n−t⌋
t

)
= P

(
(X1, ..., Xn) ∈

n∏
t=1

[
−a∗k,t, ak,t

])
= P

(
X+

t ≤ ak,t, X
−
t ≤ a∗k,t, t = 1, ..., n

)
= F(X+

1 ,X−
1 ,...,X+

n ,X−
n )
(
ak,1, a

∗
k,1, ..., ak,n, a

∗
k,n

)
,

as (Zt) , and consequently (Xt), are diffuse random variables.
The conclusions obtained for all the values of k from 1 to 2n, give the stated

lower bound.�
We note that this theorem is valid for any value of δ, positive or negative.

3.2.2. Region ]−∞, 0]n \ {(0, ..., 0)}.

In the region ]−∞, 0]n \ {(0, ..., 0)}, the lower bound is also a natural gen-
eralization of the theorem related to the marginal distribution, that is,

F(X1,...,Xn) (x1, ..., xn) ≥
n∏

t=1

FZ

(xt
θ

)
.

In what concerns the upper bound for the distribution function in this
region, the following result is stated using again the distribution function of(
X+

1 , X
−
1 , ..., X

+
n , X

−
n

)
and it does not depend on the sign of δ.

Theorem 4. Let X be a δ-TGARCH(p, q) process such that (Zt) are
diffuse variables. For every (x1, ..., xn) ∈ ]−∞, 0]n \ {(0, ..., 0)}, n ∈ N,

F(X1,...,Xn) (x1, ..., xn) ≤ [FZ (0)]n − F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (0,−x1, ..., 0,−xn) .
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Proof. The beginning of the proof is analogous to that of theorem 3,
starting with the set ]−∞, 0]n.
Let (x1, ..., xn) ∈ ]−∞, 0]n \ {(0, ..., 0)}. Since

]−∞, 0]n =
n∏

t=1

(
C(+1)
t ∪ C(−1)

t

)
=

2n∪
k=1

(
n∏

t=1

C(−1)⌊ k−1
2n−t⌋

t

)
,

where, for t = 1, ..., n, C(−1)
t = ]−∞, xt[ and C(+1)

t = [xt, 0], and so

C(+1)
t ∩ C(−1)

t = ∅, then, F(X1,...,Xn) (0, ..., 0) = [FZ (0)]n is also equal to

F(X1,...,Xn) (0, ..., 0) =
2n∑
k=1

P

(
(X1, ..., Xn) ∈

n∏
t=1

C(−1)⌊ k−1
2n−t⌋

t

)
.

As for k = 2n,
n∏

t=1
C

(−1)⌊ k−1
2n−t⌋

t =
n∏

t=1
C

(−1)
t , the last term of this sum is

F(X1,...,Xn) (0, ..., 0) = [FZ (0)]n .
Moreover, the first one, corresponding to k = 1, is such that

n∏
t=1

C(−1)⌊ k−1
2n−t⌋

t =
n∏

t=1
C(+1)
t , and so

P

(
(X1, ..., Xn) ∈

n∏
t=1

C(+1)
t

)
= P (−xt ≤ Xt ≤ 0, t = 1, ..., n)

= F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (0,−x1, ..., 0,−xn) ,

Consequently,

F(X1,...,Xn) (x1, ..., xn) = [FZ (0)]n − F(X+
1 ,X−

1 ,...,X+
n ,X−

n ) (0,−x1, ..., 0,−xn) +

−
2n−1∑
k=2

P

(
(X1, ..., Xn) ∈

n∏
t=1

C(−1)⌊ k−1
2n−t⌋

t

)
,

from which we conclude. �

3.2.3. Region Rn\ (]−∞, 0]n ∪ [0,+∞[n).

In the region Rn\ (]−∞, 0]n ∪ [0,+∞[n), with n ∈ N\ {1}, we consider
only the δ-TGARCH model with positive power. We use the following sets
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of indices:

I+ = {t ∈ {1, ..., n} : xt > 0}, with η̆ = min I+ and #I+ = k;
I− = {t ∈ {1, ..., n} : xt < 0}, with η̈ = min I−;
I+∗ = {t ∈ I+ : t > η̈} such that #I+∗ = k∗;
I−∗ = {t ∈ I− : t > η̆} such that #I−∗ = κ∗.

The following theorem states an upper bound for the distribution function
in study.

Theorem 5. Let X be a δ-TGARCH(p, q) process such that δ > 0. Let
(x1, ..., xn) be any element of Rn\ (]−∞, 0]n ∪ [0,+∞[n), for n ∈ N\ {1}, with
k positive coordinates, for 1 ≤ k < n. Then,

(a) if x1 ≤ 0, we have

F(X1,...,Xn) (x1, ..., xn) ≤

≤ F(X1,...,Xη̆−1) (x1, ..., xη̆−1)
∏
t∈I+

FZ

(xt
θ

)
× [FZ (0)]n−k−(η̆−1) ,

(b) if x1 ≥ 0, we have

F(X1,...,Xn) (x1, ..., xn) ≤

≤ F(X1,...,Xη̈−1) (x1, ..., xη̈−1)
∏
t∈I+∗

FZ

(xt
θ

)
× [FZ (0)]n−k∗−(η̈−1) .

Proof. We present only the proof of part (a), as the other is analogous.
Let (x1, ..., xn) ∈ Rn\ (]−∞, 0]n ∪ [0,+∞[n), with n fixed in N\ {1}, such

that k of its coordinates are positive, with 1 ≤ k < n.
If x1 ≤ 0, we get

F(X1,...,Xn) (x1, ..., xn) = P (X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Xη̆ ≤ xη̆, ..., Xn ≤ xn)

= P

(
X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Zη̆ ≤

xη̆
ση̆

, ..., Zn ≤ xn
σn

)
with η̆ ≥ 2. So, for 1 ≤ t ≤ η̆ − 1, xt ≤ 0 and, for t = η̆, xt > 0.
For η̆ ≤ t ≤ n, we upper-bound each coordinate in the following way:

i) if xt ≤ 0, then, as σt > 0, we have xt

σt
≤ 0 and so

{
Zt ≤ xt

σt

}
⊆ {Zt ≤ 0};
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ii) if xt > 0, as σt ≥ θ, then xt

σt
≤ xt

θ and so,
{
Zt ≤ xt

σt

}
⊆
{
Zt ≤ xt

θ

}
.

Consequently

F(X1,...,Xn) (x1, ..., xn) ≤ P (X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Zη̆ ≤ uη̆, ..., Zn ≤ un) ,

where ut =

{
0, if xt ≤ 0
xt

θ , if xt > 0
, for t = η̆, ..., n, is non random. As Zη̆, ..., Zn

are independent variables and independent of X η̆−1, then

P (X1 ≤ x1, ..., Xη̆−1 ≤ xη̆−1, Zη̆ ≤ uη̆, ..., Zn ≤ un)

= F(X1,...,Xη̆−1) (x1, ..., xη̆−1)× FZ (uη̆)× ...× FZ (un) .

Taking into account the ut definition, we conclude that

F(X1,...,Xn) (x1, ..., xn) ≤
≤ F(X1,...,Xη̆−1) (x1, ..., xη̆−1)

∏
t∈I+

FZ

(xt
θ

)
× [FZ (0)]n−k−(η̆−1) . �

We point out that, in case (a), the dependence of the upper bound on
the distribution function of (X1, ..., Xt), with t < η̆ − 1, is addressed taking
into consideration the previous studies since all the components of the point
(x1, ..., xη̆−1) where this function is evaluated are non positives which enables
the use of the results stated for the region ]−∞, 0]n \ {(0, ..., 0)} . In case (b),
an analogous situation occurs with points belonging now to [0,+∞[n .
In the next theorem we complete the bound of the distribution function.

The proof is omitted due to its similarity with that of the previous one.

Theorem 6. Let X be a δ-TGARCH(p, q) process such that δ > 0. Let
(x1, ..., xn) be any point in Rn\ (]−∞, 0]n ∪ [0,+∞[n), for n ∈ N\ {1}, with
κ negative coordinates, for 1 ≤ κ < n. Then,

(a) if x1 ≤ 0, we have

F(X1,...,Xn) (x1, ..., xn) ≥

≥ F(X1,...,Xη̆−1) (x1, ..., xη̆−1)
∏
t∈I−∗

FZ

(xt
θ

)
× [FZ (0)]n−κ∗−(η̆−1) ,

(b) if x1 ≥ 0, we have
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F(X1,...,Xn) (x1, ..., xn) ≥

≥ F(X1,...,Xη̈−1) (x1, ..., xη̈−1)
∏
t∈I−

FZ

(xt
θ

)
× [FZ (0)]n−κ−(η̈−1) .

4. Simulation study

The theoretical bounds for the finite dimensional distributions of a pro-
cess X following a δ-TGARCH model are now evaluated by means of a sim-
ulation study. This study is devoted to the bounds obtained for F(X1,X2) as
in this case we are able to graphically compare the results, like we have done
in the marginal distributions.
We consider the δ-TGARCH(1, 1) model and we firstly resume the expres-

sions of the bounds obtained for n = 2. So, for each (x1, x2), we have
an upper and a lower bound for F(X1,X2) (x1, x2), denoted by LS (x1, x2)
and LI (x1, x2), respectively. In order to facilitate the presentation, we
consider R2 divided in its four quadrants, including the points (0, x2) and
(x1, 0) in the adequate odd quadrant. Denoting FZ (0) by a and considering

θ =
(

α0

1−γ1

)1/δ
, ϖ1 =

[
E
(
σδ
t

)]1/δ
, ϖ2 (x) =

[
α0 + α1x

δ + γ1E
(
σδ
t

)]1/δ
and

ϖ3 (x) =
[
α0 + β1x

δ + γ1E
(
σδ
t

)]1/δ
with y1 chosen as the greatest positive

real such that hδ (−y1) ≥ 0, we get

LS (x1, x2) =



FZ

(
x1

θ

)
FZ

(
x2

θ

)
, (x1, x2) ∈ 1.oQ

FZ

(
x1

ϖ1

)
FZ

(
x2

θ

)
,

(x1, x2) ∈ 2.oQ such that
hδ (x1) ≥ 0

a2 −
[
a− FZ

(
x1

ϖ1

)]
×

×
[
a− FZ

(
x2

ϖ3(−x1)

)]
,

(x1, x2) ∈ 3.oQ such that
hδ (−x1) ≥ 0 and hδ (−x2) ≥ 0

FZ

(
x1

θ

)
a, (x1, x2) ∈ 4.oQ



24 E. GONÇALVES, J. LEITE AND N. MENDES LOPES

and LI (x1, x2) =

=



FZ

(
x1

ϖ1

)
a+

+
[
FZ

(
x1

ϖ1

)
− a
] [

FZ

(
x2

ϖ2(x1)

)
− a
]
+

+
[
a− FZ

(
− y1

ϖ1

)] [
FZ

(
x2

ϖ3(y1)

)
− a
]
,

(x1, x2) ∈ 1.oQ such that
hδ (x1) ≥ 0 andhδ (x2) ≥ 0

FZ

(
x1

θ

)
a, (x1, x2) ∈ 2.oQ

FZ

(
x1

θ

)
FZ

(
x2

θ

)
, (x1, x2) ∈ 3.oQ

FZ

(
x1

ϖ1

)
FZ

(
x2

θ

)
,

(x1, x2) ∈ 4.oQ such that
hδ (x1) ≥ 0

In the sequel of the simulation study done for the marginal distribution
of X when the marginal distribution of the generator process is Gaussian
we consider the δ-TGARCH(1, 1) model, with α0 = 10, α1 = 0.3, β1 = 0.5,
γ1 = 0.2, and δ equal to 1

2 (Figure 5) and 2 (Figure 6). In each figure, the
same graphic is presented under four perspectives, with LS (x1, x2) in orange,
LI (x1, x2) in blue and, in green, the empirical estimate of F(X1,X2) (x1, x2),
calculated from 10 000 realizations of the X process. For readability, we only

present the region (x1, x2) ∈
[
−α

1
δ

0

√
1 + δ, α

1
δ

0

√
1 + δ

]2
, where it is assured

that hδ (x1) ≥ 0 and hδ (x2) ≥ 0. Nevertheless, we point out that the theo-
retical bounds for F(X1,X2) (x1, x2) by means of LS (x1, x2) and LI (x1, x2) are
valid in a larger region, as we easily see from their expressions. We considered

y1 = α
1
δ

0

√
1 + δ.

From Figures 5 and 6 we note that:
- in the first quadrant, the lower bound presents, in both cases, good qual-

ity, contrary to the upper bound that seems to be better with the increase
of δ;
- in the second quadrant, we observe a clear increase in the quality with

the increase of δ, especially in what concerns the upper bound;
- in the third and fourth quadrants, the quality of the lower bound increases

with δ, but it does not happen for the upper bound.
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Figure 5. Graphical representation of LS (x1, x2) (orange),
LI (x1, x2) (blue) and estimate of F(X1,X2) (x1, x2) (green), with

X ∼ 1
2-TGARCH(1, 1) and Zt ∼ N (0, 1).

Figure 6. Graphical representation of LS (x1, x2) (orange),
LI (x1, x2) (blue) and estimate of F(X1,X2) (x1, x2) (green), with
X ∼ 2-TGARCH(1, 1) and Zt ∼ N (0, 1).

It will be interesting to analyze if the quality of the bounds is related with δ
or, alternatively, with other parameters associated to the δ order stationarity,
as Sδ, for example, which is equal, in this study, to 0.529, when δ = 1

2 , and
0.6, when δ=2.
We point out that, by enlarging the region plotted, the bounds seem to be

still valid, as happened in the study of the marginal distribution.
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The bounds obtained for F(X1,X2) (x1, x2) reveal a very good quality, the
upper bound in the third and fourth quadrants needing eventually additional
attention.

5. Conclusion

In this paper we estimate the probability distribution of a power TGARCH
process, X = (Xt, t ∈ Z) , by establishing bounds for their finite dimensional
laws.
These bounds for the distribution function are expressed in terms of the

distribution function of its generating process and of the parameters of the
model. For n ≥ 2, they are established by means of a preliminary bound for
the 2n-dimensional vector

(
X+

1 , X
−
1 , ..., X

+
n , X

−
n

)
.

The overall good quality of these theoretical bounds is illustrated by a
simulation study with n = 1 and n = 2.
The examples presented show that the procedure here proposed is an alter-

native to the classical estimation of the finite dimensional laws of a process
by the empirical distribution functions.
We point out that this probabilistic methodology will be useful, in partic-

ular, to evaluate control charts with symmetric or asymmetric bounds for
the general class of conditional heteroskedastic processes considered in this
study. For some particular models of this wide class and in the context of
symmetrical control charts we have shown in [5] the interest and quality of
this methodology.
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