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Abstract: For a particular class of Galois structures, we prove that the normal
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interpret the normalisation functor as a Kan extension of the trivialisation functor.
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1. Introduction

For an admissible Galois structure Γ = (C ,X , I, H, η, ǫ, E ,F), the Fun-
damental Theorem [6] provides, for every monadic extension p : E → B, an
equivalence

SplΓ(E, p) ≃ X
↓FGalΓ(E,p)

between the category of central extensions (= coverings) of B that are split by
(E, p) and the category of discrete fibrationsG → GalΓ(E, p) of (pre)groupoids
in X over the Galois (pre)groupoid GalΓ(E, p), with components in the class
F . When, moreover, p : E → B is such that it factors through every other
monadic extension of B (i.e. when it is weakly universal), then every central
extension of B is split by (E, p), and the above equivalence becomes

CExtΓ(B) ≃ X
↓FGalΓ(E,p).

Now, as follows from Lemma 2.1 below, this restricts to an equivalence

CExtΓ(B) ∩MExtE(B) ≃ X
↓Split(F)GalΓ(E,p)

Received April 1, 2015.
Research partially supported by the Université catholique de Louvain, by the Centro de Ma-
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between the category of all monadic central extensions of B and that of those
discrete fibrations G → GalΓ(E, p) whose components are not only in F , but
are also split epimorphisms.
In particular, if Γ is such that every monadic central extension is normal,

the latter equivalence becomes

NExtΓ(B) ≃ X
↓Split(F)GalΓ(E,p). (1)

Examples of admissible Galois structures Γ for which every monadic central
extension is normal, are given by any Birkhoff subcategory (= a reflective
subcategory closed under subobjects and regular quotients) X of an exact
Mal’tsev category C , for E and F the classes of regular epimorphisms in C

and X , respectively (see [8]). Hence, in this case, the equivalence (1) holds
for every weakly universal monadic extension p : E → B.
The observation we wish to make here is that there is a much larger class of

Galois structures Γ for which the equivalence (1) holds for every weakly uni-
versal monadic extension, and that such a Γ need neither be admissible nor
satisfy the condition that every monadic central extension is normal, in gene-
ral. Among such Galois structures, there is every Γ = (C ,X , I, H, η, ǫ, E ,F)
such that

• C is an additive category, X is an arbitrary full reflective subcategory
of C , and E and F are the classes of all morphisms in C and X ,
respectively;

• more generally, C is a pointed protomodular category, X is a reflec-
tive subcategory of C with a protoadditive [3] reflector I, and E and
F are the classes of all morphisms in C and X , respectively;

• C is an exact Mal’tsev category, X is a Birkhoff subcategory of C ,
and E and F are the classes of regular epimorphisms in C and X ,
respectively—this is the case mentioned above.

In each of these cases, the following two conditions are satisfied, and we
will show that under these two assumptions the equivalence (1) is always
valid

• the left-adjoint functor I : C → X preserves those pullback-squares

D //

��

A

f
��

C g
// B
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for which f is a split epimorphism and f and g are in E .
• the induced Galois structure

ΓSplit = (C ,X , I, H, η, ǫ, Split(E), Split(F))

is admissible, where the classes Split(E) and Split(F) consist of those
morphisms in E and F , respectively, that are also split epimorphisms.

In fact, in each of these cases the equivalence (1) not only holds for every
weakly universal monadic extension, but for any weakly universal normal
extension p : E → B as well. The existence, for every B, of such a p is related
to that of a left adjoint to the inclusion functor NExtΓ(C ) → ExtE(C ) of the
category of normal extensions into that of extensions, and we conclude the
article with a closer look at this left adjoint. In particular, we explain how
it can be viewed as a Kan extension of the “trivialisation functor”, and we
give a criterion for its existence based on this idea.

2. A characterisation of normal extensions

Recall that a Galois structure [6, 7] Γ = (C ,X , I, H, η, ǫ, E ,F) consists of
an adjunction

C

I
''

⊥ X

H

ff

with unit and counit

η : 1C ⇒ HI and ǫ : IH ⇒ 1X ,

and two classes E and F of morphisms of C and X , respectively. E and F
are required to be closed under pullback and composition, and to contain all
isomorphisms, and one asks that I(E) ⊆ F and H(F) ⊆ E . Throughout, we
shall call the morphisms f : A → B in the class E extensions (of B) and write
(C ↓E B) and (X ↓F Y ) for the full subcategories of the comma categories
(C ↓ B) and (X ↓ Y ) determined by E and F , respectively (for B ∈ C and
Y ∈ X ).
With respect to Γ, an extension f : A → B is said to be
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• trivial if the naturality square

A
ηA

//

f

��

HI(A)

HI(f)
��

B ηB
// HI(B)

is a pullback;
• monadic if the change-of-base functor f ∗ : (C ↓E B) → (C ↓E A) is
monadic;

• central (or a covering) if it is “locally” trivial: there exists a monadic
extension p : E → B such that p∗(f) is a trivial extension; in this case
one says that f is split by p;

• normal if it is a monadic extension and if it is split by itself, i.e. f ∗(f)
is trivial.

We denote by TExtΓ(C ), MExtE(C ), CExtΓ(C ) and NExtΓ(C ) the full
subcategories of ExtE(C ) given by the trivial-, the monadic-, the central-,
and the normal extensions, respectively, and by TExtΓ(B), etc., the corres-
ponding full subcategories of the comma category (C ↓ B) (for B ∈ C ).
For a given monadic extension p : E → B, the full subcategory of (C ↓E B)
whose objects are split by p will be denoted SplΓ(E, p).
By definition, an extension is central when it is “locally” trivial. As it turns

out, it is monadic precisely when it is “locally” split epic (but this would not
make sense as a definition, of course!).

Lemma 2.1. An extension f : A → B is monadic if and only if there exists
a monadic extension p : E → B such that p∗(f) is a split epimorphism.

Proof : For the “only if” part, it suffices to take p = f . The other implication
follows easily by applying Beck’s monadicity theorem (see, for instance, [13,
Theorem 2.4]).

In the present article, we are particularly interested in those Galois structu-
res Γ = (C ,X , I, H, η, ǫ, E ,F) for which the left-adjoint functor I : C → X

preserves all pullback-squares

D //

��

A

f
��

C g
// B

(2)
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for which f is a split epimorphism and f and g are in E . For such a Γ, we
have that a normal extension is the same as a morphism which is “locally”
a split epic trivial extension. To see this, first of all notice that a simple
pullback-cancellation/composition argument yields

Lemma 2.2. If I : C → X preserves those pullbacks (2) for which f is a
split epimorphism and f and g are in E , then trivial extensions which are
also split epimorphisms are stable under pullback.

Next, recall (for instance, from [10, Proposition 1.6]) the following

Lemma 2.3. Consider a commutative diagram

A

a
��

// B //

b
��

C

c
��

A′
f ′

// B′ // C ′

with a, b, c ∈ E , and assume that f ′∗ : (C ↓E B′) → (C ↓E A′) reflects iso-
morphisms. The right-hand square is a pullback as soon as both the left-hand
square and the outer rectangle are pullbacks.

We are now in a position to prove

Proposition 2.4. Assume that I : C → X preserves those pullbacks (2)
for which f is a split epimorphism and f and g are in E . Then, for any
f : A → B in E , the following are equivalent

(1) f is a normal extension;
(2) there exists a monadic extension p : E → B such that p∗(f) is both a

trivial extension (i.e. f ∈ SplΓ(E, p)) and a split epimorphism.

Proof : To see that 1 implies 2, it suffices to take p = f .
Conversely, let f and p be as in 2, and consider the commutative diagram

E ×B A×B A //

p̄1
��

A×B A

p1

��

ηA×BA
// HI(A×B A)

HI(p1)
��

E ×B A
p̄

//

f̄
��

A

f
��

ηA
// HI(A)

E p
// B
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where the two squares on the left are pullbacks, and where p1 and p̄1 are
kernel pair projections of f and f̄ = p∗(f), respectively. We must prove that
the remaining square is a pullback as well. By Lemma 2.3, it will suffice if
we show the upper rectangle to be a pullback: indeed, since p is a monadic
extension, p∗ : (C ↓E B) → (C ↓E E) reflects isomorphisms, and this implies
that the same must be true for p̄∗ : (C ↓E A) → (C ↓E (E ×B A)).
To see that the upper rectangle is indeed a pullback, note that it coincides

with the outer rectangle of the commutative diagram

E ×B A×B A //

p̄1
��

HI(E ×B A×B A) //

HI(p̄1)
��

HI(A×B A)

HI(p1)
��

E ×B A
ηE×BA

// HI(E ×B A)
HI(p̄)

// HI(A).

Here, the right-hand square is the image under HI of the left-hand upper
square in the previous diagram, which is a pullback preserved by I, hence by
HI; the left-hand square is induced by the unit η and is a pullback, since p̄1
is a trivial extension by Lemma 2.2.
Note, finally, that f is a monadic extension by Lemma 2.1.

If we write SSplΓ(E, p) for the full subcategory of SplΓ(E, p) consisting
of those (A, f) ∈ SplΓ(E, p) for which p∗(f) is a split epimorphism, then
Proposition 2.4 may be expressed as an equality

NExtΓ(B) =
⋃

p

SSpl(E, p)

where p runs through all monadic extensions p : E → B of B. If there is a
single p : E → B with SSpl(E ′, p′) ⊆ SSpl(E, p) for every monadic extension
p′ : E ′ → B of B, this equality moreover simplifies to

NExtΓ(B) = SSpl(E, p).

Such a p often exists (assuming we are in the situation of Proposition 2.4):
since split epic trivial extensions are stable under pullback (by Lemma 2.2),
examples are given by any p : E → B which factors through every normal
extension ofB. For instance, p could be a weakly universal monadic extension
of B (= a weakly initial object of MExtE(B)) or a weakly universal normal
extension (= a weakly initial object of NExtΓ(B)).
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3. The classification theorem

Recall that an internal groupoid G in a category C is a diagram of the
form

G2

p1
//

m //

p2
// G1

σ



 d
//

c
// G0eoo (3)

with

G2
p2

//

p1
��

G1

d
��

G1 c
// G0

(4)

a pullback and such that de = 1 = ce, dm = dp1, cm = cp2, m(1, ec) =
1 = m(ed, 1), m(1 × m) = m(m × 1), dσ = c, cσ = d, m(1, σ) = ed, and
m(σ, 1) = ec.
An internal functor f : G′ → G between groupoids G′ and G in C is a

triple (f0 : G
′
0 → G0, f1 : G

′
1 → G1, f2 : G

′
2 → G2) of morphisms such that the

evident squares in the diagram

G′
2

f2
��

p′1
//

m //

p′2

// G
′
1

d′
//

c′
//

f1
��

G′
0e′oo

f0
��

G2

p1
//

m //

p2
// G1

d
//

c
// G0eoo

commute (from which it follows immediately that also σf ′
1 = f1σ). f is a

discrete fibration when those commutative squares are moreover pullbacks.
(Note that it suffices for this that the square f0c

′ = cf1 is a pullback.)
The category of groupoids and functors in C will be denoted by Gpd(C )

and, for a fixed groupoid G, the full subcategory of the comma category
(Gpd(C ) ↓ G) given by the discrete fibrations G′ → G, by CG. When E is a
class of morphisms in C , then C ↓EG will denote the full subcategory of C G

of those (f0, f1, f2) : G
′ → G for which f0, f1 and f2 are in E .

Any internal equivalence relation is a groupoid, which means in particular
that every morphism p : E → B determines, via its kernel pair (πp

1, π
p
2), an
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internal groupoid Eq(p), as in the diagram

Eq(p)×E Eq(p)
p
p
1

//

p
p
2

//
τ // Eq(p)

π
p
1

//

π
p
2

//

σ

��

E.δoo

Notice, for any discrete fibration of groupoids f : G′ → G, that G′ is an
equivalence relation as soon as G is.
Let us, from now on, consider a Galois structure Γ = (C ,X , I, H, η, ǫ, E ,F)

such that

• the left-adjoint functor I : C → X preserves those pullback-squares
(2) for which f is a split epimorphism and f and g are in E .

If p : E → B is an extension, then so are its kernel pair projections πp
1 and p

p
2,

hence I preserves the pullback (4) for G = Eq(p). Consequently, I(Eq(p))
is again a groupoid, in X , called the Galois groupoid of p. We denote it
GalΓ(E, p).
What we wish to prove now is that there is, under the additional condi-

tion 2. below, for every monadic extension p : E → B an equivalence

SSplΓ(E, p) ≃ X
↓Split(F)GalΓ(E,p) (5)

between the category of extensions (A, f) of B for which p∗(f) is a split epic
trivial extension, and the category of discrete fibrations (f0, f1, f2) : G

′ →
GalΓ(E, p) in X whose components f0, f1 and f2 are split epimorphisms
and are in F . When p is such that SSpl(E, p) = NExtΓ(B) (for instance,
if p is a weakly universal monadic extension, or a weakly universal normal
extension—see the end of the previous section) we then obtain

NExtΓ(B) ≃ X
↓Split(F)GalΓ(E,p)

Fix an extension p : E → B. By sending any extension (A, f) of B to the
discrete fibration induced by the right-hand pullback square in, and displayed
as the left-hand side of, the diagram

Eq(p̄)×P Eq(p̄)

��

p
p̄
1

//

p
p̄
2

//
// Eq(p̄)

��

π
p̄
1

//

π
p̄
2

// Poo
p̄=f∗(p)

//

p∗(f)
��

A

f
��

Eq(p)×E Eq(p)
p
p
1

//

p
p
2

//
// Eq(p)

π
p
1

//

π
p
2

// Eoo

p
// B,
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we obtain a functor Kp : (C ↓E B) → C
↓EEq(p). It turns out (see, for ins-

tance, [11, 12]) that C ↓EEq(p) is equivalent to the category (C ↓E E)T
p

of
(Eilenberg-Moore) algebras for the monad T p = p∗Σp, and that Kp : (C ↓E
B) → C

↓EEq(p) corresponds, via this equivalence, to the comparison functor
KT p

: (C ↓E B) → (C ↓E E)T
p

, whence

Lemma 3.1. [11, 12] An extension p : E → B is monadic if and only if the
functor Kp : (C ↓E B) → C ↓EEq(p) is an equivalence of categories.

Kp restricts to an equivalence

SSplΓ(E, p) ≃ C
↓TExtΓSplit

(C )Eq(p)
(6)

between the category of extensions (A, f) of B for which p∗(f) is a split epic
trivial extension, and the category of discrete fibrations (f0, f1, f2) : G

′ →
Eq(p) in C whose components f0, f1 and f2 are split epic trivial extensions
(= ΓSplit-trivial extensions—see the introduction, or below, for the notation
ΓSplit), and we are already halfway to proving (5).
In order to find an equivalence

C
↓TExtΓSplit

(C )Eq(p)
≃ X

↓Split(F)GalΓ(E,p), (7)

first of all notice that, since I(E) ⊆ F , the reflector I : C → X extends, for
any B ∈ C , to a functor IB : (C ↓E B) → (X ↓F I(B)) in an obvious way.
BecauseH(F) ⊆ E and since E is stable under pullback, IB has a right adjoint
HB : (X ↓F I(B)) → (C ↓E B), which sends an (X,ϕ) ∈ (X ↓F I(B)) to
the extension (A, f) ∈ (C ↓E B) defined via the pullback

A //

f

��

H(X)

H(ϕ)
��

B ηB
// HI(B).

This gives us, for every B in C , an adjunction

(C ↓E B)

IB
--

⊥ (X ↓F I(B))

HB

ll
(8)

which restricts to an equivalence

TExtΓ(B) ≃ (X ↓F I(B))
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whenever HB is fully faithful—a situation which is of interest:

Definition 3.2. [7] A Galois structure Γ is called admissible when each
functor HB : (X ↓F I(B)) → (C ↓E B) is fully faithful.

Now since I : C → X preserves those pullback-squares (2) for which f

is a split epimorphism and f and g are in E , the adjunction (8) induces an
adjunction

C ↓EG
++

⊥ X ↓FI(G)
jj

for every groupoid G (as in (3)) in C with d and c (hence, also p1, m and
p2) in E , and this, in its turn, would restrict to an equivalence

C
↓TExtΓ(C )G ≃ X

↓FI(G).

if Γ were admissible. However, instead of requiring this for Γ, we only ask
that

• the induced Galois structure

ΓSplit = (C ,X , I, H, η, ǫ, Split(E), Split(F))

is admissible, where the classes Split(E) and Split(F) consist of those
morphisms in E and F , respectively, that are also split epimorphisms.

In this case, we instead obtain an equivalence

C
↓TExtΓSplit

(C )G
≃ X

↓Split(F)I(G)

for every groupoid G in C with d and c in E . In particular, if G = Eq(p) for
some monadic extension p : E → B, we find the sought-after (7).
Combining (6) and (7), we obtain:

Theorem 3.3. Assume that Γ = (C ,X , I, H, η, ǫ, E ,F) is a Galois structure
such that

(1) the left adjoint I : C → X preserves those pullbacks (2) for which f

is a split epimorphism and f and g are in E .
(2) the induced Galois structure

ΓSplit = (C ,X , I, H, η, ǫ, Split(E), Split(F))

is admissible.
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Then, for any monadic extension p : E → B, there is an equivalence of
categories

SSplΓ(E, p) ≃ X
↓Split(F)GalΓ(E,p).

Hence, if p is such that SSpl(E, p) = NExtΓ(B) (for instance, if it is a weakly
universal monadic extension, or a weakly universal normal extension), there
is a category equivalence

NExtΓ(B) ≃ X
↓Split(F)GalΓ(E,p).

Weakly universal monadic extensions often exist: for instance, if C is a
Barr exact category [1] with enough (regular) projectives, and E is either the
class of regular epimorphisms or the class of all morphisms (in either case
the monadic extensions are precisely the regular epimorphisms), then clearly
every B admits a weakly universal monadic extension. It turns out that the
existence of a weakly universal monadic extension p : E → B at once implies
that of a weakly universal normal extension of B, if we are in the situation
of Theorem 3.3. Indeed, we have

Proposition 3.4. If Γ = (C ,X , I, H, η, ǫ, E ,F) satisfies the assumptions of
Theorem 3.3, and if there exists, for a given object B of C , a weakly univer-
sal monadic extension p : E → B, then the inclusion functor NExtΓ(B) →
MExtE(B) admits a left adjoint.
If there is such a p for every B, and if monadic extensions are stable under

pullback, then also the inclusion functor NExtΓ(C ) → MExtE(C ) has a left
adjoint.

Proof : Since ΓSplit is admissible, for every B in C the adjunction (8) induces
a reflection

(C ↓Split(E) B)
..

⊥ TExtΓSplit
(B).

nn

Because I : C → X preserves those pullback-squares (2) for which f is a split
epimorphism and f and g are in E , these reflections, in their turn, induce a
reflection

C
↓Split(E)G

..

⊥ C
↓TExtΓSplit

(C )G

ll

for every groupoid G (as in (3)) in C , with d and c (hence, also p1, m and
p2) in E . In particular, if G = Eq(p) for some extension p : E → B, we have
a reflection

C
↓Split(E)Eq(p)

..

⊥ C
↓TExtΓSplit

(C )Eq(p)
.ll

(9)
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To prove our first claim, it suffices now to observe that the inclusion functor
in (9) coincides, up to equivalence, with the inclusion functor NExtΓ(B) →
MExtE(B) whenever p is a weakly universal monadic extension: indeed, in
this case, an extension f : A → B is monadic if and only if p∗(f) is a split
epimorphism (by Lemma 2.1), and f is a normal extension if and only if
p∗(f) is, moreover, a trivial extension (by Proposition 2.4 and Lemma 2.2).
Thus, the equivalence Kp : (C ↓E B) → C ↓EEq(p) restricts to equivalences

MExtE(C ) → C ↓Split(E)Eq(p) and NExtΓ(B) → C
↓TExtΓSplit

(C )Eq(p)
, and the inclu-

sion functor in (9) to the inclusion functor NExtΓ(B) → MExtE(B).
The second claim follows from the first by Proposition 5.8 in [5], since

the stability under pullback of monadic extensions implies that of normal
extensions, by Lemma 2.2.

Notice that, whenever p : E → B is a weakly universal monadic extension,
its normalisation (=its reflection in NExtΓ(B)) must be weakly universal
too.
The reflector into NExtΓ(C ) is our object of study in the next section.

Here, we want to add that if we drop the assumption that a weakly universal
monadic extension p : E → B exists for every B, but instead require every
extension to be monadic, we still have a reflector MExtE(C ) = ExtE(C ) →
NExtΓ(C ). Before proving this, we note that Lemma 2.2 remains valid in
this situation (see, for instance, [9, Proposition 2.1]).

Lemma 3.5. If ΓSplit is admissible, then trivial extensions which are also
split epimorphisms are stable under pullback. Consequently, if a pullback of
a normal extension is monadic, it is a normal extension as well.

Proposition 3.6. Assume that Γ = (C ,X , I, H, η, ǫ, E ,F) satisfies the as-
sumptions of Theorem 3.3 and that every extension is monadic. The inclu-
sion functor NExtΓ(C ) → ExtE(C ) admits a left adjoint.

Proof : Let f : A → B be an extension. As in the proof of Proposition 3.4,
we have a reflection

C
↓Split(E)Eq(f)

..

⊥ C
↓TExtΓSplit

(C )Eq(f)
ll

since ΓSplit is admissible, and because I : C → X preserves those pullback-
squares (2) for which f is a split epimorphism and f and g are in E . Further-
more, the equivalence Kf : (C ↓E B) → C ↓EEq(f) induces an equivalence

(f ↓ (C ↓E B)) ≃ (Kf(f) ↓ (C ↓EEq(f))) = (Kf(f) ↓ (C ↓Split(E)Eq(f)))
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which, by Proposition 2.4 and Lemma 2.2, restricts to an equivalence

(f ↓ NExtΓ(B)) ≃ (Kf(f) ↓ C
↓TExtΓSplit

(C )Eq(f)
).

Since Kf(f), as an object of C ↓Split(E)Eq(f), has a reflection in C
↓TExtΓSplit

(C )Eq(f)
,

both categories (Kf(f) ↓ C
↓TExtΓSplit

(C )Eq(f)
) and (f ↓ NExtΓ(B)) have an

initial object. Consequently, f has a reflection in NExtΓ(B). Finally, since
normal extensions are stable under pullback by Lemma 3.5, we can apply
Proposition 5.8 in [5] and conclude that the inclusion NExtΓ(C ) → ExtE(C )
has a left adjoint.

In concluding this section, let us return to what we wrote in the intro-
duction. The examples of Galois structures given there do indeed satisfy
conditions 1 and 2 of Theorem 3.3: the former is well known to hold in the
case of an additive I : C → X (between additive categories C and X ), and
remains valid for a protoadditive I : C → X (between pointed protomodular
C and X ), by Proposition 2.2 in [4]. By Proposition 3 and Example 1 in
[2], it also holds if I : C → X is the reflector into a Birkhoff subcategory X

of an exact Mal’tsev category C . Moreover, condition 1 implies condition 2,
in each of these cases:

• when the adjunction I ⊣ H is a reflection, the admissibility of ΓSplit

can equivalently be described as the preservation by I : C → X of
every pullback (2) for which f is in Split(E) and g = ηC : C → HI(C)
is a reflection unit (see Proposition 2.1 in [9]).

• when, moreover, ηB : B → HI(B) is an extension for every B, we thus
have that the first condition of Theorem 3.3 implies the second.

4. The normalisation functor as a Kan extension

Let Γ = (C ,X , I, H, η, ǫ, E ,F) be a Galois structure such that the induced
Galois structure ΓSplit = (C ,X , I, H, η, ǫ, Split(E), Split(F)) is admissible.
For every B ∈ C , I ⊣ H induces an adjunction

(C ↓Split(E) B)
..

⊥ (X ↓Split(F) I(B))
mm

which, by admissibility, decomposes into a reflection followed by an equiva-
lence

(C ↓Split(E) B)
--

⊥ TExtΓSplit
(B)

nn

..

≃ (X ↓Split(F) I(B)).
mm
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In particular, we have that the inclusion functor TExtΓSplit
(B) → ExtSplit(E)(B)

admits a left adjoint, for every B ∈ C . Since, by admissibility of ΓSplit,
split epic trivial extensions are stable under pullback (Lemma 3.5), we can
apply Proposition 5.8 in [5] and conclude that also the inclusion functor
TExtΓSplit

(C ) → ExtSplit(E)(C ), which we denote by H̃1, has a left adjoint.

We call it T1, and we write η̃1 for the unit of the adjunction T1 ⊣ H̃1. When
also the inclusion functor H1 : NExtΓ(C ) → ExtE(C ) has a left adjoint I1
(as, for instance, in Propositions 3.4 and 3.6), we obtain a square of functors

ExtSplit(E)(C ) K
//

T1
��

ExtE(C )

I1
��

TExtΓSplit(C )
K̃

// NExtΓ(C )

(10)

in which K and K̃ are the inclusion functors. This square commutes, up to
natural isomorphism. Indeed, first of all, we have, for any split epic extension
p : E → B, that its reflection T1(f) in TExtΓSplit

(B) is also its reflection in
NExtΓ(B), since

(p ↓ NExtΓ(B)) = (p ↓ TExtΓSplit
(B))

by the right-cancellation property of split epimorphisms and by

Lemma 4.1. If ΓSplit is admissible, then a split epic extension is normal if
and only if it is trivial.

Proof : Every split epic extension is monadic (see [12]) and, by Lemma 3.5,
split epic trivial extensions are stable under pullback, which implies they are
normal.
For the converse, it suffices to consider, for any split epic normal extension

f : A → B, with section s : B → A, the diagram

A
〈sf,1〉

//

f
��

Eq(f)
π
f
2

//

π
f
1

��

A

f
��

B s
//

OO

A
f

//

OO

B

OO

in which each square is a pullback, and to use, again, Lemma 3.5.

In order to conclude from this that T1(f) is also the reflection in NExtΓ(C )
of f , for f a split epic trivial extension, we would like to apply, once more,
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Proposition 5.8 in [5]. While we have no reason to assume that arbitrary
normal extensions are stable under pullback, the pullback stability given in
Lemma 3.5 is easily seen to suffice, here. Whence

Lemma 4.2. Assume that ΓSplit is admissible, and let p : A → B be in
ExtSplit(E)(C ). The reflection T1(p) of p in the category TExtΓSplit

(C ) is also
its reflection in NExtΓ(C ) (irrespective of the existence of I1).

In particular, the square (10) indeed commutes, up to natural isomorphism,
whenever I1 exists.
What we want to prove now is that under the additional condition that

every extension is a regular epimorphism, the normalisation functor I1, when
it exists, coincides with the pointwise left Kan extension of K̃ ◦ T1 along K.
We shall first show that the functor K is dense, i.e. the functor

(K ↓ f)
P f

// ExtSplit(E)(C ) K
// ExtE(C )

where P f is the obvious forgetful functor admits f as colimit. For this, let
us consider the full subcategory Jf of (K ↓ f) determined by

p
f
1

π
q
1

//

π
q
2

//

r

��
00

00
00

00
00

00
0

π
f
1

q

��




















f

where q = (πf
2 , f), π

q
1 = (τ, πf

1 ), π
q
2 = (pf2 , π

f
2 ) and r = q ◦ πq

1 = q ◦ πq
2. One

can easily prove that the inclusion functor Lf : Jf → (K ↓ f) is final, i.e. for
any object P = (p, (p1, p0) : p → f) in (K ↓ f), the category (P ↓ Lf) is
non-empty and connected. Let us prove here that (P ↓ Lf) is connected.
Any three objects

p
f
1

r

��
==

==
==

==
==

==
==

==
=

p
(p1,p0)

//

(p′1,p
′
0)

//

〈(p′′1 ,p
′′
0 ),(p

′
1,p

′
0)〉

oo

(p1,p0)

��

π
f
1

q

����
��

��
��

��
��

��
��

�

f
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in (P ↓ Lf) are connected as shown in the commutative diagram

p

〈(p′′1 ,p
′′
0),(p

′
1,p

′
0)〉

��

p

(p′1,p
′
0)

��

p

〈(p′1,p
′
0),(p1,p0)〉

��

p

(p1,p0)

��

p
f
1

π
q
2

//

r

((

π
f
1

q

��
11

11
11

11
11

11
1

p
f
1

π
q
2

//
π
q
1

oo

r

��

π
f
1 .

q

vv
f

The last case to be considered can easily be deduced from this. Now, from
the assumption that f is a regular epimorphism (as is every morphism in E),

we conclude that q = (πf
2 , f) : π

f
1 → f is the coequaliser of its kernel pair

p
f
1

π
q
1

//

π
q
2

// π
f
1 .

This precisely means that the functor

Jf
Lf

// (K ↓ f)
P f

// ExtSplit(E)(C ) K
// ExtE(C )

has f as colimit.

Theorem 4.3. Assume that Γ = (C ,X , I, H, η, ǫ, E ,F) is a Galois structure
such that

(1) the induced Galois structure

ΓSplit = (C ,X , I, H, η, ǫ, Split(E), Split(F))

is admissible.
(2) every morphism in E is a regular epimorphism.

Then the inclusion functor H1 : NExtΓ(C ) → ExtE(C ) has a left adjoint I1
if and only if the pointwise left Kan extension of K̃ ◦ T1 along K exists and,
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in this case, I1 = LanK(K̃ ◦ T1).

ExtE(C )
I1=LanK(K̃◦T1)

**

ExtSplit(E)(C )
∼=

K̃◦T1

//

K

OO

NExtΓ(C ).

Proof : H1 has a left adjoint if and only if for all f in ExtE(C ), (f ↓ H1) has
an initial object. We are going to show that one has an isomorphism

(f ↓ H1) ∼= Cocone(K̃ ◦ T1 ◦ P
f)

for any f in ExtE(C ). This allows us to assert that H1 has a left adjoint if
and only if the pointwise left Kan extension LanK(K̃ ◦ T1) exists. Let f be
in ExtE(C ) and λf = (λf

p : p → f)p∈ExtSplit(E)(C ) be the cocone defined by the
comma square

(K ↓ f) //

P f

��
⇒λf

1

f
��

ExtSplit(E)(C )
K

// ExtE(C ).

The density of K implies that one has an isomorphism

(f ↓ ExtE(C )) → Cocone(K ◦ P f)

defined on an objet G = ((g1, g0) : f → g, g) by

λG = (λG
p = (g1, g0) ◦ λ

f
p : p → g)p∈ExtSplit(E)(C ).

Now, when g is in NExtΓ(C ), one can associate with λG a cocone

λ̃G = (λ̃G
p : K̃T1(p) → g)p∈ExtSplit(E)(C )

on K̃ ◦ T1 ◦ P
f where λ̃G

p is the (unique) factorisation of λG
p : p → g through

η̃1p : p → T1(p) = K̃T1(p) (see Lemma 4.2). The assignment G 7→ λ̃G extends
to the desired isomorphism.
Now let us suppose that the normalisation functor I1 exists. Since K is

dense, one has a left Kan extension

ExtE(C )
1ExtE (C )

))

ExtSplit(E)(C )
⇑1K

K
//

K

OO

ExtE(C )
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and it is preserved by I1 (see [14]), that is I1 is the left pointwise Kan exten-
sion of the functor I1 ◦K ∼= K̃ ◦ T1 along K:

ExtE(C )
1ExtE (C )

))

I1=I1◦1ExtE (C )

&&

ExtSplit(E)(C )
⇑1K

K
//

K

OO

K̃◦T1

88
ExtE(C )

I1

//

∼=

⇑
1I1

∗1K

NExtΓ(C ).

Corollary 4.4. If Γ = (C ,X , I, H, η, ǫ, E ,F) satisfies the assumptions of
Theorem 4.3 and if the coequaliser (let us write f for its codomain) of

T1(p
f
1)

T1(τ,π
f
1 )

//

T1(p
f
2 ,π

f
2 )

// T1(π
f
1 )

exists in NExtΓ(C ) for every f in ExtE(C ), then the normalisation functor
I1 exists and I1(f) = f .
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