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1. Introduction
A quandle [19] is a set A equipped with two binary operations � and �−1

such that the following identities hold (for all a, b, c ∈ A):

(A1) a� a = a = a�−1 a (idempotency);
(A2) (a� b) �−1 b = a = (a�−1 b) � b (right invertibility);
(A3) (a�b)�c = (a�c)�(b�c) and (a�−1b)�−1c = (a�−1c)�−1 (b�−1c)

(self-distributivity).

This structure is of interest in knot theory, since the three axioms above
correspond to the Reidemeister moves on oriented link diagrams. From a
purely algebraic viewpoint, quandles capture the properties of group conju-
gation: given a group (G, ·, 1), by defining the operations a � b = b · a · b−1

and a�−1 b = b−1 ·a · b on the underlying set G one gets a quandle structure.
Quandles and quandle homomorphisms form a category denoted Qnd. This

category, being a variety in the sense of universal algebra [7], is an exact cate-
gory (in the sense of Barr [1]). The variety Qnd has some interesting categor-
ical properties, as recently observed in [9, 10, 2]. The present work continues
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this line of research, by investigating the properties of the adjunction between
the variety of quandles and its subvariety AbSymQnd of abelian symmetric
quandles, in particular from the viewpoint of the categorical theory of central
extensions [16].

The variety AbSymQnd of abelian symmetric quandles is the subvariety of
Qnd determined by the two additional identities

a� b = b� a

and

(a� b) � (c� d) = (a� c) � (b� d).

AbSymQnd is a Mal’tsev variety (actually even a naturally Mal’tsev one [18],
see Section 2), and it turns out to be an admissible subvariety of Qnd: this
fact guarantees the validity of a Galois theorem of classification of the cor-
responding central extensions (see [15, 16]).

This is particularly interesting by keeping in mind that the variety Qnd is
not congruence modular, since it contains the variety of sets as a subvariety.
However, the subvariety AbSymQnd of abelian symmetric quandles yields an
adjunction

Qnd

I
--

⊥ AbSymQnd

H

jj (1)

that is similar to the classical one

V
I

))
⊥ Vab
U

hh (2)

where V is any modular variety and Vab its subvariety of abelian algebras in
the sense of commutator theory [12]. Many interesting results in the categor-
ical theory of central extensions discovered in the last years actually concern
subvarieties of Mal’tsev varieties (see [11], for instance, and the references
therein). The example investigated in the present paper is then of a rather
different nature, and will be useful to establish some new connections between
algebraic quandle theory and categorical algebra.

To explain the main result of this paper more precisely, let us briefly recall
how the categorical notions of trivial extension and of central extension are
defined in any variety V with respect to a chosen subvariety X of V . A surjec-
tive homomorphism f : A→ B in V is a trivial extension if the commutative
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square induced by the units of the reflection

A

f
��

ηA // HI(A)

HI(f)
��

B ηB
// HI(B)

is a pullback. A surjective homomorphism f : A → B is a central exten-
sion when there exists a surjective homomorphism p : E → B such that the
extension π1 : E ×B A→ E in the pullback

E ×B A
π1

��

π2 // A

f
��

E p
// B

of f along p is a trivial extension. In any modular variety V the central
extensions defined in this way, relatively to the adjunction (2), are pre-
cisely the surjective homomorphisms f : A → B whose kernel congruence
Eq(f) = {(a1, a2) ∈ A×A | f(a1) = f(a2)} is central in the sense of commu-
tator theory: [Eq(f), A× A] = ∆A, where ∆A is the smallest congruence on
A (see [14, 17]). In the present paper we characterize the central extensions
corresponding to the adjunction (1) as those surjective quandle homomor-
phisms f : A→ B such that (a condition equivalent to) [Eq(f), A×A] = ∆A

holds and, moreover, each fiber f−1(b) = {a ∈ A | f(a) = b} is an abelian
symmetric quandle, for any b ∈ B (Theorem (3.13)).

2. Symmetric quandles and abelian symmetric quandles
A quandle A is symmetric if it satisfies the additional identity:

a� b = b� a, (3)

for all a, b ∈ A. We write SymQnd for the corresponding category of sym-
metric quandles, which is then a subvariety of the variety Qnd of all quandles.
Here below we observe that the category SymQnd is a Mal’tsev variety [20],
which will be shown to be an admissible subcategory of Qnd for the categor-
ical theory of central extensions [16].

Proposition 2.1. [2] The category SymQnd is a Mal’tsev variety.
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Proof : Let p be the ternary term defined by

p(a, b, c) = (a� c) �−1 b.

We then have the identities

p(a, a, b) = (a� b) �−1 a = (b� a) �−1 a = b,

p(a, b, b) = (a� b) �−1 b = a.

�

Recall that a quandle A is abelian [19] if it satisfies the additional axiom

(a� b) � (c� d) = (a� c) � (b� d)

for all a, b, c, d ∈ A. Note that this axiom is equivalent to the following
one:

(a� b) �−1 (c� d) = (a�−1 c) � (b�−1 d). (4)

Remark 2.2. Not all abelian quandles are symmetric. Indeed, recall that a
quandle A is trivial if a�b = a = a�−1b for all a, b ∈ A. Any trivial quandle
is abelian, but it is not symmetric (as long as it has at least two elements).

Let us write AbSymQnd for the category of abelian symmetric quandles,
U : AbSymQnd→ SymQnd and V : SymQnd→ Qnd for the inclusion functors.
Since AbSymQnd is a subvariety of SymQnd and SymQnd is a subvariety
of Qnd, both these functors have left adjoints, denoted by ab : SymQnd →
AbSymQnd and sym : Qnd→ SymQnd, respectively:

Qnd

sym
,,

⊥ SymQnd

V

jj

ab
--

⊥ AbSymQnd.

U

ll

We are now going to show that abelian symmetric quandles are the internal
Mal’tsev algebras in SymQnd.

Definition 2.3. An internal Mal’tsev algebra in a variety V is an algebra
A ∈ V with a homomorphism pA : A × A × A → A such that pA(a, a, b) = b
and pA(a, b, b) = a.

Let us write Mal(V) for the category of internal Mal’tsev algebras in C. In a
Mal’tsev category, thus in particular in the category SymQnd, any morphism
preserves the Mal’tsev operation (see Corollary 4.1 in [13], for instance): this
means that the subcategory Mal(SymQnd) is full in SymQnd. The following
observation has been found independently by Bourn [2]:
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Theorem 2.4.

AbSymQnd = Mal(SymQnd).

Proof : Let A ∈ AbSymQnd, and let pA : A × A × A → A be the Mal’tsev
operation on A defined by pA(a, b, c) = (a� c) �−1 b. We have to check that
it is a quandle homomorphism. For any a, b, c, x, y, z ∈ A we have

pA((a, b, c) � (x, y, z)) = pA(a� x, b� y, c� z)

= ((a� x) � (c� z)) �−1 (b� y)

= ((a� c) � (x� z)) �−1 (b� y)

=
(
(a� c) �−1 b

)
� ((x� z) �−1 y)

= pA(a, b, c) � pA(x, y, z).

This shows that A belongs to Mal(SymQnd).
Conversely, when A ∈ Mal(SymQnd), the unique internal Mal’tsev opera-

tion on A is necessarily given by (any of) the Mal’tsev operations of the theory
of the variety SymQnd. Accordingly, it is defined by pA(a, b, c) = (a�c)�−1b,
and it is such that pA(a, b, a) = a�−1 b. Moreover, pA : A× A× A→ A pre-
serves the binary operation �, so that the equality

pA((a, b, a) � (x, y, x)) = pA(a, b, a) � pA(x, y, x)

gives

(a� x) �−1 (b� y) = (a�−1 b) � (x�−1 y).

This is precisely the identity (4), and the quandle A belongs to AbSymQnd.
�

We now recall the definition of two classes of morphisms in Qnd, first
investigated by Bourn, that will be important for our work:

Definition 2.5. [2] Let Σ be the class of split epimorphisms f : A→ B with
a given section s : B → A (i.e. f ◦ s = 1B) in the category Qnd such that the
map s(b) �− : f−1(b)→ f−1(b) is surjective, for any b ∈ B.

In other words, the split epimorphism f with section s is in Σ if, for any
b ∈ B and a ∈ f−1(b), there is a ka ∈ f−1(b) such that s(b) � ka = a.

Remark 2.6. This element ka also depends on b, so that one should write
kb,a, instead. We shall simply write ka, however, to simplify the notations.
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Given an internal equivalence relation (R, r1, r2) on A, i.e. a congruence
on A, we write δR : A→ R for the homomorphism defined by δR(a) = (a, a).
An equivalence relation (R, r1, r2) is said to be a Σ-equivalence relation if the
split epimorphism r1 : R → A with section δR : A → R belongs to the class
Σ.

Given a quandle homomorphism f : A→ B, we write (Eq(f), f1, f2) for the
kernel pair of f , where f1 : Eq(f)→ A and f2 : Eq(f)→ A are the canonical
projections: in a variety of universal algebras Eq(f) is simply the kernel
congruence on A defined by Eq(f) = {(a1, a2) ∈ A× A | f(a1) = f(a2)}.

Definition 2.7. [5, 6, 2] A morphism f : A → B in Qnd is Σ-special if
(Eq(f), f1, f2) is a Σ-equivalence relation.

The following result is a direct consequence of Theorem 3.9 in [2], and will
be useful later on:

Theorem 2.8. Let f : A → B be a Σ-special homomorphism in Qnd. Then
any congruence R on A permutes with Eq(f) in the sense of the composition
of relations:

R ◦ Eq(f) = Eq(f) ◦R.

Corollary 2.9. Given a pushout of surjective homomorphisms

A
f

//

g
��

B

h
��

C
l

// D

where f is Σ-special, the induced homomorphism A
(g,f)−−→ C ×D B to the

pullback is surjective.

Proof : The proof is essentially the same as the one given in [9], Lemma 1.7
(which is adapted from [8]). �

3. Central extensions in the category of quandles
If C is a finitely complete category, a double equivalence relation C in C is

an equivalence relation internal in the category of equivalence relations in C.
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It can be represented by a diagram

C
p1 //

p2
//

π2
��

π1
��

S

s2
��

s1
��

R
r1 //

r2
// A,

(5)

where r1 ◦ π1 = s1 ◦ p1, r1 ◦ π2 = s2 ◦ p1, r2 ◦ π1 = s1 ◦ p2 and r2 ◦ π2 = s2 ◦ p2.
In this case one usually says that C is a double equivalence relation on the
equivalence relations R and S.

Definition 3.1. Given equivalence relations R and S on A, a double equiva-
lence relation C on R and S (as in (5)) is called a centralizing relation when
the square

C
p2 //

π1
��

S
s1

��

R r2
// A

is a pullback.

Definition 3.2. A connector between R and S is an arrow p : R ×A S → A
such that

1. p(x, x, y) = y 1’. p(x, y, y) = x
2. xSp(x, y, z) 2’. zRp(x, y, z)
3. p(x, y, p(y, u, v)) = p(x, u, v) 3’. p(p(x, y, u), u, v) = p(x, u, v)

In the Mal’tsev context [3] the existence of a connector between R and
S is already guaranteed by the existence of a partial Mal’tsev operation
p : R ×A S → A, i.e. when the identities p(x, x, y) = y and p(x, y, y) = x in
Definition 3.2 are satisfied. Accordingly, in a Mal’tsev category the existence
of a double centralizing relation on R and S is equivalent to the existence
of a partial Mal’tsev operation. Moreover, a connector is unique, when it
exists: accordingly, for two given equivalence relations, having a connector
becomes a property.

In a Mal’tsev variety a congruence R on an algebra A is called algebraically
central if there is a centralizing double relation on R and A× A, this latter
being the largest equivalence relation on A. In terms of commutators, this
fact is expressed by the condition [R,A× A] = ∆A.
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Also, in the variety Qnd of quandles we shall say that a surjective homo-
morphism f : A→ B in Qnd is an algebraically central extension if its kernel
congruence Eq(f) is algebraically central: there is a connector between Eq(f)
and A× A.

Given a homomorphism f : A → B in Qnd, each fiber f−1(b) (for b ∈ B)
is a subquandle of A. We shall say that f has abelian symmetric fibers if
f−1(b) ∈ AbSymQnd.

Lemma 3.3. Consider the following pullback

E ×B A
π2 //

π1
��

A

f
��

E p
// B.

If f : A → B has abelian symmetric fibers then so does π1 : E ×B A → E.
Moreover, if p : E → B is a surjective homomorphism, then f : A → B has
abelian symmetric fibers if π1 : E ×B A→ E has abelian symmetric fibers.

Proof : The first assertion follows from the fact that if (e, a) ∈ E ×B A then
the fibers π−1

1 (e) and f−1(f(a)) are isomorphic. The proof of the second
assertion is similar, the surjectivity of p guaranteeing that, for any a ∈ A,
there exists e ∈ E such that (e, a) ∈ E ×B A. �

Lemma 3.4. [2] Let f : A→ B be a split epimorphism, with section s : B →
A, in Σ. Consider the following pullback of f along a split epimorphism
p : E → B

E ×B A
π2

//
oo

(t◦f,1A)

π1
��

OO

(1E ,s◦p)

AOO

sf
��

E
oo t

p
// B.

Then (1E, s ◦ p) and (t ◦ f, 1A) are jointly epimorphic.

Proof : Let (e, a) ∈ E ×B A; we shall show that (e, a) can be rewritten as a
product of two elements in the images of (1E, s◦p) and (t◦f, 1A), respectively.
Since the split epimorphism f is in Σ, there exists an element ka ∈ f−1(f(a))
such that sf(a) � ka = a. Also, we always have e = (e �−1 tp(e)) � tp(e).
Accordingly, by using the fact that f(a) = f(ka) and p(e) = f(a), we see
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that

(e, a) = ((e�−1 tp(e)) � tp(e), sf(a) � ka)

= (e�−1 tp(e), sf(a)) � (tp(e), ka)

= (e�−1 tp(e), sp(e)) � (tf(ka), ka)

= (e�−1 tp(e), sp(e�−1 tp(e))) � (tf(ka), ka)

= (1E, s ◦ p)(e�−1 tp(e)) � (t ◦ f, 1A)(ka).

�

Corollary 3.5. Let R be an equivalence relation and S be a Σ-equivalence
relation on the same quandle A in Qnd. If there is a connector on R and S,
then it is unique.

Proof : This follows directly from Lemma 3.4. �

Lemma 3.6. Let R be an equivalence relation and S be a Σ-equivalence
relation on the same quandle A. For a homomorphism p : R ×A S → A, the
following conditions are equivalent :

(1) p is a partial Mal’tsev operation: p(x, y, y) = x and p(x, x, y) = y;
(2) p is a connector between R and S.

Proof : We only have to prove that 1. implies 2. Remark that in any variety,
in particular in Qnd, the equivalence relation R is the kernel pair of the
canonical quotient r : A→ A/R, and S the kernel pair of s : A→ A/S.

R×A S

p

""EEEEEEEEEEEEEEEEEEEE
oo iS

p1 //

p2
//

π2

��

π1

��

OO

iR

S

s2

��

s1

��

OO

δS

R
r1 //

r2
//

oo δR A.
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By assumption we have that p ◦ iS = s2 and p ◦ iR = r1. To see that
(x, p(x, y, z)) ∈ S, we have to prove that s ◦ p = s ◦ r1 ◦ π1. The equalities

s ◦ p ◦ iS = s ◦ s2

= s ◦ s1

= s ◦ s1 ◦ p1 ◦ iS (p1 ◦ iS = 1S)

= s ◦ r1 ◦ π1 ◦ iS (s1 ◦ p1 = r1 ◦ π1)

and

s ◦ p ◦ iR = s ◦ r1 = s ◦ r1 ◦ π1 ◦ iR,

imply that s ◦ p = s ◦ r1 ◦ π1 by Lemma 3.4. A similar argument shows that
(z, p(x, y, z)) ∈ R.

Now, to see that

p(x, y, p(y, u, v)) = p(x, u, v),

let us consider (a, b, c, d) ∈ R×A R×A S and write φ(a, b, c, d) = p(a, b, p(b, c, d))
and ψ(a, b, c, d) = p(a, c, d). Observe that

φ(a, b, c, c) = p(a, b, p(b, c, c)) = p(a, b, b) = a = p(a, c, c) = ψ(a, b, c, c)

for all (a, b, c, c) ∈ R×A R×A S, and

φ(e, e, e, f) = p(e, e, p(e, e, f)) = p(e, e, f) = ψ(e, e, e, f)

for all (e, e, e, f) ∈ R×A R×A S. Now, let (x, y, u, v) ∈ R×A R×A S: since
the split epimorphism s1 : S → A with section δS : A → S is in Σ, there
exists k(u,v) = (u, kv) ∈ s−1

1 (u) such that (u, v) = (u, u) � (u, kv). Then one
can write

(x, y, u, v) = (x�−1 u, y �−1 u, u, u) � (u, u, u, kv)

for all (x, y, u, v) ∈ R×A R×A S. It follows that φ(x, y, u, v) = ψ(x, y, u, v).
A similar argument shows that p(p(x, y, u), u, v) = p(x, u, v). �

Lemma 3.7. Let f : A→ B be an algebraically central extension with abelian
symmetric fibers, then Eq(f) is isomorphic to a product Q × A, where Q is
an abelian symmetric quandle.
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Proof : Let C be the centralizing relation on Eq(f) and A× A; consider the
following diagram

C

c2
��

c1
��

//
// A× A

����
Eq(f)

q
��

//
//// A

��

f
// B

Q //
//
1

where q is the coequalizer of c1 and c2. By the Barr-Kock theorem [1, 4],
the lower squares are pullbacks. By Lemma 3.3, the homomorphisms Q→ 1
have abelian symmetric fibers, hence Q is an abelian symmetric quandle. �

As a consequence, any algebraically central extension f : A → B has its
kernel pair Eq(f) isomorphic to a product of an abelian algebra and A.

Proposition 3.8. If f : A→ B has symmetric fibers, then it is Σ-special.

Proof : Consider the kernel pair of f

Eq(f)
f2 //

f1
��

A
δf

oo

f
��

A

δf

OO

f
// B

One has to check that (f1, δf) is in Σ. Let a ∈ A and (a, a′) ∈ f−1
1 (a), then

in particular f(a) = f(a′), so that a′ �−1 a is such that f(a) = f(a′ �−1 a).
It follows that (a, a′ �−1 a) ∈ Eq(f), and then

(a, a) � (a, a′ �−1 a) = (a� a, a� (a′ �−1 a)) = (a, (a′ �−1 a) � a) = (a, a′).

�

Remark 3.9. Observe that when a split epimorphism f : A→ B with section
s : B → A has symmetric fibers, then s(b) � − : f−1(b) → f−1(b) is always
injective: if x ∈ f−1(b) and y ∈ f−1(b) are such that s(b) � x = s(b) � y,
since s(b) ∈ f−1(b), we get x � s(b) = y � s(b), and hence x = y by right
invertibility.

The results in [2] will be useful to show that the category of abelian sym-
metric quandles is admissible with respect to surjective homomorphisms in
the category of quandles. In the following we shall characterize categorically
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central and normal extensions in Qnd with respect to the adjunction between
the category of quandles and the category of abelian symmetric quandles:

Qnd

I
--

⊥ AbSymQnd
H

jj

The following theorem shows that the functor I preserves a certain type of
pullbacks. This is equivalent to the admissibility condition of the subvariety
AbSymQnd of Qnd.

Theorem 3.10. In the previous adjunction, the reflector I : Qnd→ AbSymQnd
preserves all pullbacks in Qnd of the form

P

p1
��

p2 // H(X)

φ
��

A
f

// H(Y )

(6)

where φ : H(X)→ H(Y ) is a surjective homomorphism lying in the subcate-
gory AbSymQnd and f : A→ H(Y ) is a surjective homomorphism.

Proof : Consider the following commutative diagram where:

• the square on the back is the given pullback, where φ : H(X)→ H(Y )
is a surjective homomorphism in the subcategory AbSymQnd;
• the universal property of the unit ηP : P → HI(P ) induces a unique

arrow HI(p2) : HI(P )→ H(X) with HI(p2) ◦ ηP = p2;
• the universal property of the unit ηA : A → HI(A) induces a unique

arrow HI(f) : HI(A)→ H(Y ) with HI(f) ◦ ηA = f ;
• (P ′, π1, π2) is the pullback of HI(p1) along ηA.

P
p2 //

p1

��

γ
��

ηP

((QQQQQQQQQQQQQQQQ H(X)

φ

��

P ′ π2
//

π1����������
HI(P )

HI(p1)

��

HI(p2)
99ttttttttt

A

ηA ((QQQQQQQQQQQQQQQQ
f

// H(Y )

HI(A)
HI(f)

99ttttttttt
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The quandle homomorphism p1 is Σ-special by Lemma 3.3 since φ has abelian
symmetric fibers, thus the homomorphism γ is surjective by Corollary 2.9.
The fact that π1 ◦ γ = p1 and HI(p2) ◦ π2 ◦ γ = p2 implies that γ is also
injective. Indeed, this latter property follows from the fact that the pullback
projections p1 and p2 are jointly monomorphic. Accordingly, the arrow γ is
bijective, thus an isomorphism. Since ηA is a surjective homomorphism it
follows that the right face of the diagram is a pullback (see Proposition 2.7
in [16], for instance), and the pullback 6 is preserved by the functor I, as
desired. �

Corollary 3.11. The functor I preserves products of the type A×Q where
Q is an abelian symmetric quandle and A is any quandle.

Proof : Remark that A×Q is the following pullback

A×Q p2 //

p1
��

Q

��

A // 1

where 1 is the terminal object in Qnd, i.e. the trivial quandle with one
element. �

Lemma 3.12. Consider the following pullback

E ×B A
π2 //

π1
��

A

f
��

E p
// B.

(7)

If f is an algebraically central extension with abelian symmetric fibers, then
π1 is an algebraically central extension with abelian symmetric fibers.

Moreover, if p : E → B is a surjective homomorphism, then f is an al-
gebraically central extension with abelian symmetric fibers if π1 is an alge-
braically central extension with abelian symmetric fibers.

Proof : First remark that we already know that the property of having abelian
symmetric fibers is preserved and reflected by pullbacks along surjective ho-
momorphisms by Lemma 3.3.

Let f : A→ B be an algebraically central extension with abelian symmetric
fibers. Write pf : A×Eq(f)→ A for the connector between A×A and Eq(f).
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Define the quandle homomorphism pπ1 : (E ×B A) × Eq(π1) → E ×B A as
pπ1 ((e, a), (e′, b), (e′, c)) = (e, pf(a, b, c)). We have

pπ1((e, a), (e′, b), (e′, b)) = (e, pf(a, b, b)) = (e, a)

and

pπ1((e, a), (e, a), (e, b)) = (e, pf(a, a, b)) = (e, b).

It is then a connector by Lemma 3.6.
Now let π1 : E×BA→ E be an algebraically central extension with abelian

symmetric fibers. Write pπ1 : (E×B A)×Eq(π1)→ E×B A for the connector
between (E ×B A) × (E ×B A) and Eq(π1). The surjectivity of p : E → B
implies the surjectivity of the homomorphism π̂2 : (E ×B A) × Eq(π1) →
A× Eq(f) defined by

π̂2((e, a), (e′, b), (e′, c)) = (a, b, c).

First let us show that Eq(π̂2) ⊂ Eq(π2 ◦ pπ1). Let

(((e0, a), (e′0, b), (e
′
0, c)), ((e1, a), (e′1, b), (e

′
1, c))) ∈ Eq(π̂2).

Since f has abelian symmetric fibers by Lemma 3.3, it is Σ-special by Propo-

sition 3.8. This means that the split epimorphism Eq(f)
f1

// A
δf

oo is in Σ. In

other terms, for all b ∈ A and all (b, c) ∈ f−1
1 (b) there exists k(b,c) ∈ f−1

1 (b),
where k(b,c) = (b, kc), such that (b, b) � k(b,c) = (b, c). Such a k(b,c) = (b, kc)
is unique by Remark 3.9: it follows that, for any (b, c) ∈ Eq(f), the element
kc ∈ A such that f(kc) = f(b) = f(c) and b � kc = c is unique. Then, for
i ∈ {0, 1}, we have

((ei, a), (e′i, b), (e
′
i, c)) = ((ei, a)�−1(e′i, b), (e

′
i, b), (e

′
i, b))�((e′i, b), (e

′
i, b), (e

′
i, kc)).

Consequently we remark that

π2 ◦ pπ1((ei, a), (e′i, b), (e
′
i, c))

= π2 ◦ pπ1(((ei, a) �−1 (e′i, b), (e
′
i, b), (e

′
i, b)) � ((e′i, b), (e

′
i, b), (e

′
i, kc)))

= π2(pπ1((ei, a) �−1 (e′i, b), (e
′
i, b), (e

′
i, b)) � pπ1((e

′
i, b), (e

′
i, b), (e

′
i, kc))

= π2(((ei, a) �−1 (e′i, b)) � (e′i, kc))

= π2((ei �
−1 e′i) � e′i, (a�

−1 b) � kc) = (a�−1 b) � kc

for both i ∈ {0, 1}. This implies the existence of a quandle homomorphism
pf : A×Eq(f)→ A such that pf ◦ π̂2 = π2 ◦pπ1, i.e. pf(a, b, c) = (a�−1 b)�kc
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where kc is the unique element such that b� kc = c as above. Moreover, we
have

pf(a, b, b) = (a�−1 b) � b = a

for (a, b, b) ∈ A× Eq(f) and

pf(a, a, b) = (a�−1 a) � kb = a� kb = b

for (a, a, b) ∈ A× Eq(f), so pf is a connector by Lemma 3.6. �

Before stating our main result, we recall that a surjective homomorphism
f : A→ B is a normal extension when the homomorphism f1 in the pullback
of f along itself is a trivial extension:

Eq(f)

f1
��

f2 // A

f
��

A
f

// B

Theorem 3.13. Given a surjective homomorphism f : A → B in Qnd, the
following conditions are equivalent:

(1) f is an algebraically central extension with abelian symmetric fibers;
(2) f is a normal extension;
(3) f is a central extension.

Proof : Let f : A → B be an algebraically central extension with abelian
symmetric fibers, then its kernel pair Eq(f) is isomorphic to a product Q×A
with Q an abelian symmetric quandle by Lemma 3.7. Corollary 3.11 shows
that f is then a normal extension.

Every normal extension is a central extension.
Let f : A → B be a central extension. Then there is a surjective homo-

morphism p : E → B such that the first projection π1 : E×AB → E in the
pullback (7) is a trivial extension. Then f : A→ B is an algebraically central
extension with abelian symmetric fibers by Lemma 3.12, because π1 is the
pullback of a morphism lying in AbSymQnd. �
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