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ABSTRACT: In this paper we propose a variational method for image contrast en-
hancement, by keeping the image details and correcting the non-uniform illumina-
tion. It is a minimization problem, where the objective functional consists of two
different fitting terms: a L' term that matches the gradients of the input and recon-
structed images, for preserving the image details, and a L? term that measures the
misfit between the reconstructed image and the mean value of the input image, for
reducing the image variance and thus correcting the illumination. For solving this
minimization problem we apply the split Bregman method, which is an efficient
and fast iterative method suitable for this type of non-differentiable and convex
minimization problem, involving a L' term. Some experimental results show the
effectiveness of the method.
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1. Introduction

Image contrast enhancement is an image processing technique, whose pur-
pose is to improve the image quality, for human interpretation of the image
contents or for supplying a good input in automated image processing sys-
tems.

In the literature there exists a plethora of contrast enhancement methods,
which are based, for example, on histogram equalization, edge enhancement,
edge sharpening, filtering and restoration. For a detailed description of these
type of methods see for example the book [7]. In this paper we focus on a
particular variational PDE (partial differential equation) approach for con-
trast enhancement. We refer for example to the book [1] for an overview
of the application of functional analysis techniques and the theory of partial
differential equations to different image processing problems, such as restora-
tion of degraded images, denoising, segmentation, inpainting, decomposition
into cartoon and texture, optical flow and image classification.
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In the variational approach, used herein, the objective is to minimize an ap-
propriate energy (or functional), whose corresponding Euler-Lagrange equa-
tion involves a PDE, that can be afterwards solved by a suitable compu-
tational method. Our energy functional is a modification of that proposed
in [8]. It is composed of two fitting terms. One fits the gradients of the
input and reconstructed images, it is measured with the L!'-norm, and aims
at preserving image details. The L'-norm is the chosen measure because it
has the property of better preserving discontinuities, when compared to the
L?-norm. The second term fits the reconstructed image with the mean value
of the input image, in the L?-norm, for correcting non-uniform illumination.
Due to its particular structure, we then choose the split Bregman method
[5] to solve this variational problem. This is a particular efficient iterative
method applicable to a wide class of L1-regularized optimization problems.

After this introduction the rest of the paper includes the description of the
variational problem in Section 2, its numerical solution in Section 3, some
applications in Section 4 and finally the paper ends with some conclusions
and comments.

2. Description of the model

In [8] it is proposed the following variational model for contrast enhance-
ment

muin{/Q]Vu—Vf|2dx+)\/Q(u—a)2da:}

— min { | Vu = V£l + Al = @l |

where f : Q@ — R is the original (grayscale) input image, Q C R? repre-
sents the image pixel domain, z is a point (i.e. a pixel) in 2, V denotes the
gradient operator, |.| is the Euclidean norm in R?, @ is the mean value of
the reconstructed image u : Q — R, L*(2) is the space of square integrable
functions in Q, and ||.||;2(q) denotes the L*>-norm. This model contains two
quadratic fitting terms. The first fits the gradients of v and f, and conse-
quently aims at preserving image details. The second term intends to reduce
the effect of nonuniform illumination by fitting u and its mean value u, thus
by decreasing the image variance. The parameter A is a positive constant
that balances the influence of the two fitting terms. After replacing u by f,

(1)
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the mean value of the input image f, it is shown that the problem does not
depend on the value f, and the problem is solved, for f = 0 in the Fourier
domain, using the discrete Fourier transform.

In this paper we modify the model (1) by replacing the L*norm by the
L'-norm for measuring the misfit between Vu and V f and we also replace
the mean value © by f. This yields the following variational model

m&n{/Q\Vu—Vﬂdxng/Q(u—f)de}

: A =
= min {||Vu =Vl + Slu = flq }

(2)

where L'(9) is the space of absolutely integrable functions in Q and ||| z1(q)
denotes the L'-norm. The reason for replacing the L?norm by the L!'-norm
is related to the fact that the L?norm of the gradient tends to smear image
discontinuities, as opposed to the L'-norm that tends to preserve the discon-
tinuities, which in image processing corresponds to sharp edges. In addition
to this advantage, the presence of the L' fitting term in (2) permits the use
of fast and effective algorithms for computing its solution. In effect, problem
(2) belongs to the general class of L!-regularized problems of the form

min { [l9(u)l| 1 o) + H () }

where both [[¢(u)| 1) and H(u) are convex functions. This kind of mod-
els can be efficiently solved with the split Bregman method of [5]. This is
an appropriate algorithm for solving non-differentiable convex minimization
problems, involving L' or TV (total variation) terms. We refer to [3, 4, 6, 9]
for a few examples of different applications of the method.

In our case ¢p(u) = Vu — Vf and H(u) = A|u — fHLz(Q), and in the next
section we apply split Bregman method to solve (2).

3. Numerical solution based on split Bregman method

A critical and first aspect of the split Bregman method is the separation of
the L' and L? terms, which is achieved by introducing an auxiliary variable.
Thus, we first replace (2) by the following constrained optimization problem
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. A 3
min {0 + 5l = Tl
subject to d=Vu -V,

and then reformulate it as an unconstrained problem, by introducing a qua-
dratic penalty function, that is

. A r
muln{HdHLl(Q) + 5“” — flli2@)
o
+20ld = (Vu— V)

Then, the split Bregman method consists in solving the following sequence
of problems for £ =0,1,2,...

( (uk+17 dk+1)

(3)

D P
argmin {|dpxo) + 5w = Flsqq)

FSld = (V= V) = 830} W

\ pEtl — pk 4+ VukJrl _ Vf — JFL

where the new vector b* results from the Bregman iteration [2], that is a
strategy for enforcing the constraint d = Vu — V f, using a fixed penalty
parameter o.. This strategy is an alternative to the conventional continuation
technique to solve (3) with an increasing sequence of penalty parameters oy <
as < ... < ay, tending to oo, for accurately enforcing the constraint. The
minimization problem in (4) is solved by iteratively minimizing with respect
u and d, alternatively, which means the following two steps are performed.

Step 1- Minimization with respect to u (with d fixed)

A ;
kL = arg 1n {5”“ - f”%%ﬁ)

«
+51d" = (Vu = V) =l |,

for which the optimality condition (derived from the Euler-Lagrange equa-
tion) is, in €

U

(5)

(A — aA)uF ™t = \f — adiv(d® + Vf —bb),
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with A and div denoting the Laplace and divergence operators, respec-

tively, along with the non-homogeneous Neumann boundary condition on
the boundary 02 of )

k+1
ou _(d
on
where “” denotes the inner product in R? and n is the unit outward normal
to 0f2.
This problem can be solved efficiently with the Gauss-Seidel method, since

the system is diagonally dominant. The solution ukJrl at each pixel (z j) in
Q) (excepting in 0f2) is defined by

—Vf—0b"n

1 <
k+ k
U; L= o1 {OZUZ'J + Afij — avy }

U= (Usy) = () +ui+u st +ul)
ok = (vf;) = (div(d" + V f — b))

Here we use finite differences for approximating the derivatives in the gradient
V and divergence div operators, respectively. In particular the discretization
used for vf ; is obtained by applying backward finite differences for divd® and
divb* and centered finite dlfferences for Af

Jrfz'k—l,j g f ij-1t fj+1 —4 Zkg
The Neumann boundary condition is implicitly imposed in 052, the boundary
of the rectangular pixel domain, by using backward finite differences, in the

right and top sides, and forward finite differences in the left and bottom
sides.

Step 2- Minimization with respect to d (with u fixed)

dk+1 = arg Hldin { HdHLl(Q)

(8
#lld = (Ve =) = Vg b

This problem can be explicitly solved using shrinkage operation (known as
well as soft thresholding) at each pixel (i, j)

1
dfjl = shrink ((VukH —V/f+ bk). | —)
’ 2¥) o
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where for z,v € R

shrink(z,~) = ﬁ x max(|z| —~,0).
2

Summarizing, the split Bregman method for model (2) is as follows:

Algorithm -

Input - Original image f.

Initialize - «° = f, d° = b° = 0, and fix \, a, tol.
While |u* — u*~1| > tol

uFtl = Hﬁ[@U%—)\f—@vk}, in €,

W = ("~ Vf—b)-n, indQ,

d* = shrink (VuFtt — V f 4+ 0F, 1),
prtl — pF + Vuktt — Vf — JFt1
End

Output - Image u”.

4. Applications

Some results obtained with our proposed model are shown in this sec-
tion. All the experiments were implemented with the software MATLAB®
R2014a (The Mathworks, Inc.)

Figure 1 shows the contrast enhancement with our method for a standard
test image (a scalar image with 512 x 343 pixels), downloaded from the TPOL
archive (http://www.ipol.im/). As this figure demonstrates, the details are
kept and the dark regions become more visible in the enhanced image. In
addition, and as expected, when A increases (\ is the parameter associated
with the fitting term intended to reduce the non-uniform illumination) the
result tends to the mean value of the input image.

Figure 2 depicts the results of our method applied to a medical (RGB -
red, green, blue) image (with 536 x 536 pixels), acquired with the wireless
capsule Pillcam Colon 2 of Given Imaging. It displays a colonic polyp (the
reddish region in the top left subfigure) exhibiting strong texture. We applied
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Fi1GURE 1. Top left: Original image. Top right: A = 0.005,
a = 1. Bottom left: A = 0.01, a = 1. Bottom right: A = 0.05,
a=1.

the algorithm independently to each channel. The original medical image
(the top left subfigure) has a non-uniform illumination, with low contrast
in some regions, that is corrected and enhanced with the proposed method.
The influence of the model parameters (A and «) is also illustrated in these
results. Increasing A results in an averaged image, tending to the mean value
of the input image, and by increasing « the contrast enhancement is enforced.

In Figure 3 we can see the results for another medical image (with size
536 x 536 pixels). It is an inhomogeneous illuminated retinal fundus image,
provided by the company Retmarker (http://www.retmarker.com/), and ob-
tained from a patient screened according to the Diabetic Retinopathy Screen-
ing Program of Portugal. We have processed with our method the grayscale
version (second column) as well as each color channel separately (first col-
umn). Again these results show the good contrast enhancement improvement
achieved with our method.

5. Conclusions

In this paper we propose an inverse variational model for contrast enhance-
ment together with the split Bregman method for its numerical solution. Ap-
plications of the proposed method to different types of images show its good
performance. The model involves some parameters that are tuned and fixed
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F1GURE 2. Top left: Polyp image obtained with Pillcam Colon
2, by courtesy of University Hospital of Coimbra, Portugal. Top
right: A = 1, @ = 150. Bottom left: A = 1, a = 200. Bottom
right: A =2, a = 200.

manually. In the future an automatic or self-adapting method for choosing
these parameters will be studied.
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