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IMAGE FUSION WITH SIMULTANEOUS CARTOON AND
TEXTURE DECOMPOSITION

MAHDI DODANGEH, ISABEL NARRA FIGUEIREDO AND GIL GONÇALVES

Abstract: Image fusion is a technique that merges the information of multiple im-
ages, representing the same scene, to produce a single image that should gather the
major and meaningful information contained in the different images. On the other
hand, cartoon+texture image decomposition is another image processing technique,
that decomposes the image into the sum of a cartoon image, containing the major
geometric information, i.e., piece-wise smooth regions, and a textural image, con-
taining the small details and oscillating patterns. We propose a model to perform
the fusion of multiple images, relying on gradient information, that provides as well
a cartoon and texture decomposition of the fused image. The model is formulated
as a variational minimization problem and solved with the split Bregman method.
The suitability of the proposed model is illustrated with some earth observation
images and also medical images.
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1. Introduction
Image fusion is an image processing tool, that generates a single composite

image from multisource images, of the same scene. It is particularly im-
portant in remote sensing (it makes possible, for example, to combine the
information of earth observation images acquired by different sensors or satel-
lites, for improving earth surveillance and monitoring) and in medicine (the
fused image obtained from different medical imaging modalities may improve
diagnosis and prognosis).

In this paper we propose a variational model for image fusion (we refer to
[4, 6] for two related variational models) and that performs simultaneously
a cartoon + texture decomposition of the fused image.

The proposed model fuses the gradients of the input images and combines
this fusion with perceptual enhancement and intensity correction. At the
same time it also does the decomposition of the fused image into cartoon
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and textural parts, adopting the generalized denoising model of [3], based on
total variation regularization. Finally we apply the split Bregman method
[5] to solve the model.

After this introduction, the rest of the paper is organized in three sec-
tions: Section 2 describes the model, Section 3 explains the application of
the split Bregman method and finally in Section 4 some experimental results
are shown.

2. Proposed Model
Let Ii : Ω→ [0, 1], i = 1, . . . , N , be (normalized) grayscale and multisource

images, where Ω ⊂ R2 represents the pixel domain, and for a pixel x ∈ Ω
Ii(x) is the intensity of Ii at x. We define g :=

∑N
i=1wi∇Ii, a weighted

average of the gradients of Ii with weights defined by wi := |∇Ii|/
∑N

j=1 |∇Ij|,
where |.| is the Euclidean nom and ∇ the gradient operator. We also define

I0 :=
∑N

i=1 ziIi, a weighted average of the input images Ii (a possible choice

for these weights is zi := wi or zi := |Ii|/
∑N

j=1 |Ij|).
In [4] the fusion model corresponds to the following minimization problem

min
I

∫
Ω

[
|∇I − g|+ η

2
|I − 1

2
|2 +

µ

2
|I − I0|2

]
dx

= min
I

[
‖∇I − g‖L1(Ω)

η

2
‖I − 1

2
‖2
L2(Ω) +

µ

2
‖I − I0‖2

L2(Ω)

]
,

where L1(Ω) and L2(Ω) are the spaces of, respectively, absolutely and square
integrable functions in Ω, with norms denoted by ‖.‖L1(Ω) and ‖.‖L2(Ω), re-
spectively. In this model, the fused image I is searched in such a way, that
its gradient matches the combined gradient g (the function g merges the gra-
dient information of all the different input images Ii). In addition the linear
combination of fitting terms η

2‖I −
1
2‖

2
L2(Ω) + µ

2‖I − I0‖2
L2(Ω) (as proposed in

[1]) makes the fused image I to be perceptually more uniform and close to
the average I0 (the weighted sum of the several input images); η and µ are
two positive parameters that balance the influence of each term.

On the other hand, in [3] the following model for image cartoon+texture
decomposition is defined

min
(u,v)

∫
Ω

[
h(x)|∇u|+ 1

2θ
|u+ v − f |2 + α|v|

]
dx

= min
(u,v)

[
TVh(u) +

1

2θ
‖u+ v − f‖2

L2(Ω) + α‖v‖L1(Ω)

]
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Here f : Ω ⊂ R2 → R is the input (grayscale) image and the goal is to find a
decomposition u+v of f , that is f ∼ u+v, where the image u represents the
geometric information of f (i.e., the cartoon or piecewise smooth regions) and
the image v captures the texture information. The function h is an edge de-
tector, that vanishes at object boundaries (such as h(|∇f |) = 1/(1 + β|∇f |2),
with β an arbitrary positive constant), TVh(u) is the total variation norm of
the function u weighted by h and θ > 0 is a very small parameter, so that we
almost have f = u + v. The terms TVh(u) and ‖v‖L1(Ω) act as regularizers
for u and v, respectively, and α > 0 is a regularization parameter.

By combining the ideas of these two aforementioned models, we propose
in this paper a variational model for multisource image fusion that simulta-
neously performs a cartoon and texture decomposition of the fused image.
Given the normalized grayscale multi-source images {Ii}Ni , the combined gra-
dient function g and the average image I0, already defined, we search for a
fused image in the form u+ v, as the solution of the following unconstrained
optimization problem (herein denoted by P)

min
(u,v)

[
‖∇(u+ v)− g‖L1(Ω) + TVh(u) + α‖v‖L1(Ω)

+
1

2θ
‖(u+ v)− I0‖2

L2(Ω) +
η

2
‖(u+ v)− 1

2
‖2
L2(Ω)

]
.

where for simplicity h = 1.

3. Numerical Solution
Since the objective functional in P is convex, the solution of P can be com-

puted by minimizing separately, with respect to u and v, that is by solving
the cartoon and texture subproblems (denoted by C and T , respectively):

Subproblem C - v being fixed, find u solution of

min
u

[
‖∇(u+ v)− g‖L1(Ω) + TVh(u)

+
1

2θ
‖(u+ v)− I0‖2

L2(Ω) +
η

2
‖(u+ v)− 1

2
‖2
L2(Ω)

]
.

Subproblem T - u being fixed, find v solution of

min
v

[
‖∇(u+ v)− g‖L1(Ω) + α‖v‖L1(Ω)

+
1

2θ
‖(u+ v)− I0‖2

L2(Ω) +
η

2
‖(u+ v)− 1

2
‖2
L2(Ω)

]
.
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Due to the structure of subproblems C and T , involving particular L1 and
L2 terms (that are convex functions) a suitable iterative method for approxi-
mating their solutions, and that we adopt in this paper, is the split Bregman
method [5].

Firstly, extra variables are introduced through the constraints d1 = ∇(u+
v) − g, d2 = ∇u, for subproblem C, and e = ∇(u + v) − g, z = v for
subproblem T . The goal is to separate completely the L1 and L2 terms
in each subproblem. Then we enforce these constraints with the Bregman
iteration process [2]. Therefore we have a sequence of cartoon and texture
subproblems, respectively Ck and T k, for k = 1, 2, . . ., as follows:
Subproblem Ck - vk being fixed, find (uk+1, dk+1

1 , dk+1
2 ) solution of

min
(u,d1,d2)

[
‖d1‖L1(Ω) + ‖d2‖L1(Ω)+

1

2θ
‖(u+ vk)− I0‖2

L2(Ω) +
η

2
‖(u+ vk)− 1

2
‖2
L2(Ω)

+
λ1

2
‖d1 −∇(u+ vk) + g − bk1‖2

L2(Ω)

+
λ2

2
‖d2 −∇u− bk2‖2

L2(Ω)

]
,

bk+1
1 = bk1 − dk+1

1 +∇(uk+1 + vk)− g,

bk+1
2 = bk2 − dk+1

2 +∇uk+1.

Subproblem T k - uk+1 being fixed, find (vk+1, ek+1, zk+1) solution of

min
(v,e,z)

[
‖e‖L1(Ω) + α‖z‖L1(Ω)+

1

2θ
‖(uk+1 + v)− I0‖2

L2(Ω) +
η

2
‖(uk+1 + v)− 1

2
‖2
L2(Ω)

+
λ3

2
‖e−∇(uk+1 + v) + g − ck‖2

L2(Ω)

+
λ4

2
‖z − v − wk‖2

L2(Ω)

]
,

ck+1 = ck − ek+1 +∇(uk+1 + vk+1)− g,

wk+1 = wk − zk+1 + vk+1.
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The constants λi, for i = 1, 2, 3, 4 are the fixed penalty parameters, used in
the Bregman approach.

The minimization problem in subproblem Ck is solved by iteratively min-
imizing with respect u, d1 and d2, alternatively. Similarly, in subproblem
T k the minimization problem is also solved by iteratively minimizing with
respect v, e and z, separately. Consequently we have that:

- The formula for uk+1 is derived from the Euler-Lagrange equation, i.e.
it is the solution of the following PDE (partial differential equation) in Ω,
hereafter denoted by “cartoon PDE”(

η + 1
θ − (λ1 + λ2)∆

)
uk+1 = −

(
η + 1

θ − λ1∆
)
vk

−λ1div(dk1 + g − bk1)− λ2div(dk2 − bk2) +
1

2
η +

1

θ
u0

where ∆ and div are the Laplace and divergence operators, respectively, with
the non-homogeneous Neumann boundary condition on the boundary ∂Ω of
Ω

∂uk+1

∂n
=

λ1

λ1 + λ2
(d1 + g − bk1 −∇vk) · n

+
λ2

λ1 + λ2
(d2 − bk2) · n

where n is the unit outward normal to ∂Ω and “·” denotes the inner product
in R2.
- The formulas for dk+1

1 and dk+1
2 are explicit using the shrinkage operators,

so at each pixel (i, j) in Ω

dk+1
1 i,j = shrink

(
(∇(uk+1 + vk)− g + bk1)i,j,

1
λ1

)
,

dk+1
2 i,j = shrink

(
(∇uk+1 + bk2)i,j,

1
λ2

)
,

where for z, γ in R

shrink(z, γ) =
z

|z|
·max(|z| − γ, 0).

- The formula for vk+1 is derived again from the Euler-Lagrange equation,
thus vk+1 is the solution of the following PDE in Ω, hereafter denoted by
“texture PDE”

(η + 1
θ + λ4 − λ3∆)vk+1 = −(η + 1

θ − λ3∆)uk+1

−λ3div(ek + g − ck) + λ4(z
k − wk) + 1

2η + 1
θI0,
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with the non-homogeneous Neumann boundary condition

∂vk+1

∂n
= (e−∇uk+1 + g − ck) · n, on ∂Ω.

- The formulas for ek+1 and zk+1 are also explicit using the shrinkage operators
(likewise for dk+1

1 and dk+1
2 ).

Summarizing, the split Bregman method for P is :

Algorithm

Input - Multisource images Ii, i = 1, 2, . . . , N .

Initialize - u0 = I0, fix θ, η, α, λi (i = 1, 2, 3, 4), tol,
and fix v0, b0

1, b
0
2, c

0, d0
1, d

0
2, e

0 ω0, z0 equal to zero.

While max{|uk − uk−1|, |vk − vk−1|} > tol

Cartoon part -

uk+1 solution of the “cartoon PDE”,

dk+1
1 = shrink(∇(uk+1 + vk)− g + bk1,

1
λ1

),

dk+1
2 = shrink(∇uk+1 + bk2,

1
λ2

),

bk+1
1 = bk1 − dk+1

1 +∇(uk+1 + vk)− g,

bk+1
2 = bk2 − dk+1

2 +∇uk+1.

Texture part -

vk+1 solution of the “texture PDE”,

ek+1 = shrink(∇(uk+1 + vk)− g + ck, 1
λ3

),

zk+1 = shrink(vk+1 + wk, αλ4 ),

ck+1 = ck − ek+1 +∇(uk+1 + vk+1)− g,

wk+1 = wk − zk+1 + vk+1.

End

Output - Fused image uk + vk, where uk is the cartoon part and vk the
texture part.
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Figure 1. Top left: Multispectral (R,G,B) scene of Sidney, Aus-
tralia. Top middle: Panchromatic image. Bottom left: Cartoon.
Bottom middle: Fused Image. Right: Texture.

4. Experiments
In this section we apply the proposed technique to three different types of

images. In the experiments, we use the following parameters η = 102, θ =
10−5, λ1 = λ3 = 1, λ2 = 10, λ4 = 104, α = 1, and tol = 10−4.

The first example, displayed in Figure 1, shows an EO (earth observation)
image, obtained with the remote sensing satellite WorldView-2. The EO im-
age was downloaded freely from Digital Globe Inc. (www.digitalglobe.com),
and acquired on April 3rd 2011 over Sydney (Australia). For this experi-
ment we consider the panchromatic band (with a high spatial resolution of
0.46 meters at nadir) and three visible multispectral bands (Red,Green,Blue)
(with a low spatial resolution of 1.84 meters at nadir and a high spectral res-
olution). The goal is to fuse the high spatial and high spectral images in a
single image and extract from it the cartoon and texture information. We
fuse each multispectral band (64 × 64 pixels) with the panchromatic image
(256 × 256 pixels), and to this end we first perform a pre-processing step,
where each multispectral image is up-sampled to the panchromatic image
size, by using a bi-cubic interpolation. In Figure 1 we see that our model
produces a fused image with significant improvements. Also note that the
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cartoon is almost the same as the fused image, and the texture information
is meaningful.

Figure 2. Top left: Polyp image obtained with Pillcam Colon
2, by courtesy of University Hospital of Coimbra, Portugal. Top
right: Fused Image. Bottom left: Cartoon. Bottom right: Tex-
ture.

Figure 2 shows the results of our method applied to a medical (RGB) image
(with 536 × 536 pixels), acquired with the wireless capsule Pillcam Colon 2
of Given Imaging. It displays a colonic polyp (the reddish region) exhibiting
strong texture. Here we fuse each channel with the grayscale version of the
three color image. Again the results confirm that the cartoon has almost
all the details of the fused image, and the textural image captures the small
features on the polyp surface.

Finally, Figure 3 shows the outcome of our method for a standard test
image, downloaded from the IPOL archive (http://www.ipol.im/).
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INESC and Dep. of Mathematics, University of Coimbra, Portugal

E-mail address: gil@mat.uc.pt
URL: http://www.mat.uc.pt/∼gil/


