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ABSTRACT: We present the frame £(T) of the unit circle by generators and rela-
tions in two alternative ways. The first is the localic counterpart of the Alexandroff
compactification of the real line while the other can be understood as a localic ana-
logue of the quotient space R/Z. With an eye on a prospective point-free description
of Pontryagin duality, we then show how the usual group operations of the frame
of reals can be lifted to the new frame £(T), endowing it with a canonical localic
group structure.
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1. Introduction

One of the main differences between localic topology and classical topology
is that the category of localic spaces (i.e., the category of locales and localic
maps) is a category whose dual category (i.e., the category of frames and
frame homomorphisms) is an algebraic category [12]. This means, in partic-
ular, that one has free frames and quotient frames, and therefore that one
can present frames and locales by generators and relations, exactly in the
same way as with groups or many other familiar algebraic structures: if S' is
a set of generators, R is a set of relations u = v, where u and v are expres-
sions in terms of the frame operations starting from elements and subsets of
S, then there exists a frame Frm(S|R) such that for any frame L, the set of
frame homomorphisms Frm(S|R) — L is in a bijective correspondence with
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functions f: S — L that turn all relations in R into identities in L (see [21]
for more details and some basic examples).

This is a very useful tool that allows, for instance, to define products in the
category of locales with a construction that closely parallels the construction
of the Tychonoff topology on a product space [7, 12|, with advantage to
the localic side (see [13]), or to define the frame of reals [15] just from the
rationals, independently of any notion of real number, adding a new way
of introducing the reals to the familiar classical ones (see [2]). For more
examples see, for instance, the presentations of the Vietoris locale of a locale
[14], the exponentials of locally compact locales [10], the Yosida locale of an
abelian lattice-ordered group [17], the frame of complex numbers [4, 5], the
frames of upper reals and lower reals [8], the frame of extended reals [3], the
frame of partial reals [18] and the assembly of a frame [16].

Our aim with this paper is to settle the following question posed to us by
Bernhard Banaschewski in a private communication:

Any idea how the topology of the unit circle fits in with frame
presentations by generators and relations?

We provide two equivalent alternative presentations of the frame £(T) of
the unit circle. The first is the point-free counterpart of the Alexandroff
compactification of the real line while the second is motivated by the standard
construction of the unit circle space as the quotient space R/Z. Then, we lift
the group operations of the frame of reals to the new frame £(T), endowing
it with a localic group structure.

The paper is organized as follows. We begin with a brief account of the
necessary background and terminology (Section 2). In Section 3 we carry
the construction of the Alexandroff extension of a frame. We then apply it
to the particular case of the frame of reals (Section 4), obtaining this way a
first presentation of the frame £(T). In Section 5 we present an alternative
set of generators and relations. In Section 6 we provide general criteria for
concluding that an equalizer e: E — L of a pair (f,g): L — M of frame
isomorphisms on a localic group L lifts the group structure from L into E.
We then use these results, in the last section, to obtain the group structure
of £(T) induced by the canonical one in £(R).
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2. Background

Frames. A frame (or locale) L is a complete lattice such that
aAN\/B=\{aNb|be B}

for all @ € L and B C L; equivalently, it is a complete Heyting algebra
with Heyting operation — satisfying the standard equivalence a A b < ¢ iff
a < b — c. The pseudocomplement of a € L is the element

a-=a—->0=\/{beL|aNnb=0}.

A frame homomorphism is a map h: L — M between frames which pre-
serves finitary meets (including the top element 1) and arbitrary joins (in-
cluding the bottom element 0). We denote by Frm the category of frames
and frame homomorphisms. The category of locales, denoted by Loc, is the
dual category of Frm.

An S C L is a subframe of L if it is closed under arbitrary joins and finite
meets (in particular, 0,1 € S). Note that for eacha € L, tfa={zx € L |z >
a} and Ja = {x € L | z < a} are frames (but, of course, not subframes of L).

The most typical example of a frame is the lattice OX of open subsets of
a topological space X. The correspondence X +— OX is clearly functorial
(by taking inverse images), and consequently one has a contravariant functor
$: Top — Frm where Top is the category of topological spaces and continuous
maps. There is also a functor in the opposite direction, the spectrum functor
>:: Frm — Top, which assigns to each frame L its spectrum XL, the space of
all homomorphisms &: L — {0, 1} with open sets 3, = {£ € XL | {(a) =1}
for any a € L, and to each frame homomorphism h: L — M the continuous
map Lh: XM — XL such that Xh(§) = £ - h. The spectrum functor is right
adjoint to O, with adjunction maps

n: L —9OYL, a— ¥, and
ex: X - X0X, v — T (given by z(U) =1 iff z € U).

The former is the spatial reflection of the frame L and the latter is the
sobrification of the space X.

For general notions and results concerning frames and locales we refer to
Johnstone [12] or the more recent Picado-Pultr [19]. Here we recall a number

of basic notions needed in the paper.
A frame L is
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- reqular if a = \/{b € L | b < a} for every a € L, where b < a (b is rather
below a) means that b* V a = 1;

- completely regular if a = \/{b € L | b=<< a} for every a € L, where b<< a
(b is completely below a) means that there is {¢, | r € QN [0,1]} C L such
that b < ¢y, ¢ < a and ¢, < ¢, whenever r < s;

- compact if for each A C L such that \/ A = 1 there exists a finite FF C A
such that \/ F = 1;

- continuous if a = \/{b € L | b < a} for every a € L, where b < a (b is way
below a) means that a < \/ A for some A C L implies b < \/ F' for some
finite F' C A.

A frame homomorphism h: L — M is
- dense if h(a) = 0 implies a = 0;
- a quotient map if it is onto.

Of course that one-to-one frame homomorphisms are dense. On the other
hand, any dense frame homomorphism between regular frames with compact
codomain is one-to-one.

Each frame homomorphism h: L — M preserves arbitrary joins and thus
has a right adjoint h,: M — L given by the equivalence

h(a) <b iff  a < h.(b)

for all a € L and b € M. Specifically, h.(b) = \/{a € L | h(a) < b} for every
be M.

Given a pair of frame homomorphisms f,g: L — M, the embeddinge: £ C
L, where F is the subframe {z € L | f(z) = g(x)}, is the equalizer of f and ¢
in Frm. This means that for any frame homomorphism h: N — L such that
f-h = g-h there exists a unique h: N — E such that e - h = h (evidently,
h is given by h(z) = h(x) for every x € N).

Compactifications of frames. Given a frame L, a compactification of L
is an onto dense frame homomorphism h: M — L with a compact regular
domain M. A frame is called compactifiable if it has a compactification. The
set of all compactifications of L is preordered by the relation (hy: M; —
L) < (he: My — L) iff there exists a frame homomorphism ¢g: M; — M,
such that hy - g = hy. We denote by K(L) the corresponding poset induced
by the usual identification of equivalent elements. We need to recall the
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familiar description of K(L) in terms of certain binary relations on L, due to
Banaschewski [1].
A strong inclusion [1] on a frame L is a binary relation < on L such that

JIfz <a<b<ythen zqy.

) < is a sublattice of L x L.

) If a < b then a < b.

) If a < b then a < ¢ < b for some ¢ € L.
) If @ <0 b then b* < a*.

Ja=\{be L|b<a} forallaclL.

An ideal J of L is called a strongly reqular <1-ideal if for any x € J there
exists an y € J such that x < y. The strongly regular <-ideals of L form a
regular subframe of the frame J(L) of all ideals of L, that we denote by

Go(L). (2.1)

(1
(2
(3
(4
(5
(6

Let S(L) be the set of all strong inclusions on the frame L, partially ordered
as subsets of L x L. By Proposition 2 of [1], K(L) is isomorphic to S(L).
The isomorphism is given as follows: each compactification h: M — L of L
induces a strong inclusion < given by x < y iff h.(x) < h.(y); conversely,
given a strong inclusion relation <0 on L, the map &,(L) — L given by
I — \/ I is a compactification of L.

Moreover, a frame L has a least compactification if and only if it is regu-
lar and continuous. In this case, the least compactification is given by the
frame homomorphism \/: & (L) — L, where C denotes the strong inclusion
defined by

aCb iff a<0b and either 1(a”) or 1T is compact. (2.2)

Coproducts of frames. The coproduct L & M of two frames may be
constructed in the following simple way. First take the Cartesian product
L x M with the usual partial order and

DILxM)={UCLxM|lU=U#0}.

Call a U € ©(L x M) saturated if

(1) for any subset A C L and any b € M, if A x {b} C U then (\/ A,b) € U,
and
(2) for any a € L and any subset B C M, if {a} x B C U then (a,\/ B) € U.
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The set A (resp. B) can be void; hence, in particular, each saturated set
contains the set O = {(0,0),(a,0) | a € L,b € M}. It is easy to see that for
each (a,b) € L x M,
a®b=](a,b)UQ is saturated.
To finish the construction take
LeM={Ue®D(Lx M)|U is saturated }
with the coproduct injections
ip=(a—a®l): L—>LeM, tyy=0b—10b):M—Le&M.
Note that one has for each saturated U,
U=V{adb|(a,b)eU}=J{a®b]| (a,b) € U},
andifa®b<cddandb+#0thena<c.

Localic groups. We recall that a localic group [11] is a group in the category
of locales, i.e. a cogroup in Frm. Specifically, it is a frame L endowed with
three frame homomorphisms

pu:L—-L®L, ~:L—>L, e L—2={01}

satisfying

(nely) p=~1r&pn) - u

(e®lp) - p=(1Ar®e)-p=1,, and

Ve(y@ly) - p=V-(1,®7) p=or-¢
where o7: 2 — L sends 0 to 0 and 1 to 1, and V is the codiagonal homo-
morphism L & L — L. A localic group L is abelian when A - p = p for the
automorphism \: L & L — L & L interchanging the two coproduct maps
L—L®L.

Here, as usual, we make the (obvious) assumption that the cartesian prod-
ucts in the construction of coproducts are associative and we will work with
the factor 2 as a void one, meaning that L & 2 = 2 & L = L with coproduct
injections

1 o o 1
L—~L<"—2 and 2-—">L<~—1I.

The morphisms of localic groups (usually called LG-homomorphisms)

h: (L, p,v,e) = (L', 1,9, €)
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are frame homomorphisms h: L — L' such that
pW-h=(hoh)-u, +-h=h-v and €& -h=c¢.

The dual of the resulting category is the category of localic groups. See
[19] or [20] for more information on localic groups.

3. The Alexandroff extension of a frame

We shall say that an element a of a frame L is cocompact provided the
frame Ta is compact. In the sequel, coK(L) denotes the set of all cocompact
elements of L.

Remarks 3.1. (1) In case L = OX for some space X, then U € OX is
cocompact iff X \ U is compact. This justifies our terminology.

(2) a € L is cocompact if and only if for each B C L such that aVv (\/ B) =1
there exists a finite F* C B such that a V (\/ F)) = 1. Indeed, let a be
cocompact and let B C L satisfy a V (\/ B) = 1. Then {a Vb | b € B} is a
cover of Ta and therefore there is a finite F' C B such that 1 = \/,_z(aVb) =
aV (\/ F). For sufficiency, let B be a cover of ta. Then a VvV (\/ B) = 1 and
thus there exists a finite F' C B such that 1 =aV (\/ F) =/ F.

(3) coK(L) is a filter of L. Indeed:

(i) 1 € coK(L). (11 = {1} is obviously compact).

(ii) If @ € coK(L) and a < b, then b € coK(L) (since 10 C ta and \/ 1b =
\/ Ta). Consequently, coK(L) is closed under non-void joins.

(iii) If a1, a9 € coK(L) then a; A as € coK(L). In fact:
Let B be a cover of 1(a; A as). Then, for i = 1,2, {a; Vb | b € B} is a cover
of Ta; and so there exists a finite F; C B such that a; vV (\/ F;) = 1. Hence

L=(a1V(VF))A(a2V (VF)) < (a1 Naz) VV(FL U F) = V(R U F),
which shows that F} U F} is a finite subcover of T(a; A ag).
(4) coK(L) = L if and only if 0 is cocompact if and only if L is compact.

(5) The strong inclusion introduced in (2.2) can be equivalently stated as
a C b iff a < b and either a* or b is cocompact.

Proposition 3.2. For each continuous reqular frame L we have:

(1) If a < 1 then a* € coK(L).
(2) If a < b then a C b.
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(3) For every b € coK(L), there exists ¢ € coK(L) such that ¢ < b.
(4) If there is some b € coK(L) such that b < 1, then L is compact.

Proof: (1) Let B C L such that a*V (\/ B) = 1. Since L is continuous, there
exists b € L such that a« < b < 1. Therefore, there exists a finite F' C B
such that b < a* Vv (\/ F). Since L is also regular, a < b implies a < b and
we conclude that 1 =a* Vb <a*V (\F).

(2) Since L is regular, it follows immediately from (1) and Remark 3.1 (5).

(3) Let b € coK(L). Since L is continuous one has 1 = \/{a € L | a < 1}.
Thus there exists some finite F' C {a € L | a < 1} such that bV (\/ F') = 1.
Then, by (1), a* € coK(L) for every a € F and therefore ¢ = (\/ F)* =
Nger @ € coK(L) since it is a finite meet of cocompact elements. Finally,
cVvb>(VF)Vvb=1.

(4) Let b € coK(L) such that b < 1 and consider A C L satisfying \/ A = 1.
Then there exists a finite /7 C A such that bV (\/ F1) = 1 and a finite
Fy C A such that b <\/ F;. Thus there exists a finite F' = F} U F5 such that

VF=(NF)VINEF)>bVv(VF)=1 |
Now, given a frame L, consider the poset
/(L) = (L x{0})U (coK(L) x {1}) C L x 2

(endowed with the componentwise order). It is easy to check that /(L) is
a frame. Indeed, it is a subframe of L x 2, as it is closed under all suprema,

and finite infima (from the fact that coK(L) is a filter). In particular, for
A= (Ayx {0} U(A; x {1}) C (L), one has

VA {(\/(A0 UA),0) if A =@,
(V(AgU Ay),1) if A # 2.
We refer to 7 (L) as the Alexandroff extension of L.
Proposition 3.3. &7 (L) is a compact frame.

Proof: Let A C @7 (L) such that \/ A = (11,1). Then \/(4yU A;) = 11 and
there exists some b € coK(L) such that (b,1) € A. Consequently, there exists
a finite F* C Ay U Ay such that bV (\/ F)) = 1. It follows that for the finite
subset

B = ((FnAy) x {0}) U((Fn Ay x (1) U{(5,1)} C A
one has \/ B=(bV (V F),1) = (1,1). _
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Recall (2.1) and (2.2).

Proposition 3.4. Let L be a non-compact continuous reqular frame. The
map f: &c(L) — /(L) given by

D) = {(\/ 1,0) ifIn C§K(L) =@,
(VI,1) otherwise,

is a frame isomorphism with inverse g: & (L) — &c(L) given by
g(a,0)={xeLl|x<a} and g(b1)={zxelL|x<0b}

for every a € L and b € coK(L).

Proof: Consider the map ¢: &=(L) — 2 defined by

0 if INcoK(L) =g,

p(I) = .
1 otherwise.

It is easy to check that ¢ is a frame homomorphism. Putting ¢ together with

the frame homomorphism \/: & (L) — L, we get the frame homomorphism

fZ @E(L>—>LX2

given by I — (\/I,p(I)). Obviously, f(&=(L)) C &/(L). As an abuse of

notation, we shall consider &7 (L) as the codomain of f. Since f is dense,

o/ (L) is compact and & (L) is regular, we conclude that f is one-to-one.
The subsets

g(a,0)={xeLl|x<a} and g¢gb1)={xeL|x=<b}

are obviously ideals of L for any a € L and b € coK(L). On the other hand,
given a € L and x € g(a,0), by the continuity of L there exists y € L such
that z < y < a. Since L is regular, y € g(a,0) and, by Proposition 3.2 (2),
we conclude that x C y. Thus g(a,0) is a strongly regular C-ideal. Further,
given b € coK(L) and = € ¢(b,1), one has that x C b. Then there exists
y € L such that x C y C b and so y € g(b,1). It follows that g(b,1) is a
strongly regular C-ideal.

Moreover, we know by Proposition 3.2 (3) that g(b,1) N coK(L) # @ for
every b € coK(L) and thus f(g(b,1)) = (\V ¢(b,1),1). Finally, since L is non-
compact, it follows from Proposition 3.2 (4) that g(a,0) N coK(L) = @ for
every a € L and so f(g(a,0)) = (\ g(a,0),0). Accordingly, since L is regular
and continuous, we conclude that f-g = 147, and thus f is onto. |
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This shows that for non-compact continuous regular frames, the first pro-
jection my: @/(L) — L defined by m(a,0) = a and m1(b,1) = b is the least
compactification of L. We call it the Alexandroff compactification of L.

4. The Alexandroff compactification of £(R)

Let £(R) denote the frame of reals [2], that is, the frame generated by all
ordered pairs (p, q) of rationals, subject to the relations

(R1) (p,q) A (rs) = (pVT,q N s),
2) (p,q) V (r,8) = (p,s) whenever p <r < q <s,

(R
(R3) (p,q) = V{(r,s) | p<r<s<q},
(R4) \/{(p, q) | p,qgeQ} =1.

Further, let (p,—) =V .,(p,q) and (— q) = V,_,(p, q) for each p,q € Q.
Note that
(p7 Q)* - (_7p) \% (Q7_>7 (p7 _)* - <_7 p) and (_7 Q)* - <Q7_)

Remark 4.1. The assignment

(p,g) = pg) ={teQlp<t<gq}

for every p, ¢ € Q determines a canonical quotient frame homomorphism (see

2, p. 10])
h: &(R) = OQ,

since it is onto and it trivially turns the defining relations (R1)-(R4) of £(R)
into identities in OQ. Of course h is not one-to-one: e.g.,

h(V{(=a) [ ¢ <2} vV{(p,—) [ p*>2and p>0}) = Q= h(1).
Nevertheless, it is a dense map. Indeed, since {(p,q) | p,q € Q} is a join-
basis of £(R), it is enough to prove that h((p,q)) = @ implies (p, q¢) = 0, but
this is easy since (p,q) = @ implies that p > ¢ and by (R3) it follows that
(p,q) = 0. In particular, (p,q) = 0 if and only if p > ¢ in Q.

It is well known that (p, ¢)* is a cocompact element of £(R) for any p,q € Q
(since the frame 1((—, p) V (¢,—)) is compact for any p,q € Q, see [2]). We
characterize the cocompact elements of £(R) as follows:

Proposition 4.2. The following are equivalent for each a € £(R):

(1) a is cocompact.
(2) There exist p,q € Q such that (p,q)* < a.
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(3) There exist p,q € Q such that (p,q) Va = 1.

Proof: (3) = (2) is obvious and (2) = (1) follows from Remark 3.1 (3).
Finally, if a is cocompact then, since aV \/{(p, q) | p,q € Q} = 1, there exists
{(pi, q;)}?-; such that a V (Vi (pi,¢;)) = 1. Consequently, a V (p,q) =1 for
p = min; ; p; and ¢ = max}" | ¢;. ]

Since any element of £(R) is a join of basic generators (p, q) (by relation
(R1)), we have the following characterization:
Corollary 4.3. An element a of £(R) is cocompact if and only if there exist
p,q € Q and {p;, qi}icr € Q such that

a=(p,q)"V\V@piqg) =

el
Consequently, in o7 (£(R)) any element is a join of elements of the form

((p,q),0) and ((p,¢)",1)  (p,q€Q).

As we will show in detail, this yields an equivalent description of &7 (£(R)),
in terms of generators and relations, with the elements

po=ao () w ma=con (O

as basic generators.

Let 2(R) be the frame presented by generators (p, ¢) and p, ¢, with p, ¢ € Q,
and subject to the following relations:

(R1) (0, @) A (rys) = (pVr,qAs),

(R2) (p,q) V (r,s) = (p, s) whenever p <r < ¢ <s,
(R3) (p,a) = V{(r,s) [p<r<s<gq},

(S1) D, ¢ AT, 8 =7,5 whenever p < r < g < s,

(S2) p.qVT.S=DpVr,qAs,

(S3) p,q=V{r,s|r <pandq< s},

(S4) (p.q) AT, 8= (p,gAT)V (pV s,q),

(S5) (p,q) V7,8 =1 whenever p < r and s < q.

We have:

Lemma 4.4.
(1) If p > q then (p,q) = 0.
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(2) Ifp<rands<qthend q¢<T,s.

(3) If g <7 or s <p then (p,q) <7, 5.

(4) If p<r <q<sthen (p,q) VT, s =17,5.

(5) If r <p<s<qthen (p,q) VT, s =Tp.

(6) Ifp<q<r<sthenD ¢ AT,3=D0,3V(q,r).

(7) If p> q thenD,q = 1.

(8) If p<r <s<qthen (r,5) << (p,q) and 7,5 << D, q.

Proof: (1) Apply (R3).

(2) Apply (S3).

(3) If ¢ < r then, by (S4), (p,q) AT, 8= (p,q) V (pV s,q) = (p,q). Similarly,
if s <pthen (p,q) AT,8 = (p,q A7)V (p,q) = (p,q)

(4) Let p,q,r,s € Q such that p < r < g <s. Sincep <r and s < s+ 1 it

follows by (S5) that (p, s+1)V7, s = 1. Then, by (R2), (p, q)V(r, s+1)V7, s =
1. Hence, by (S1), (S4) and (3),

65=0,5N((p.q) V(r,s+1)VT5)
= (@SN Q) V(@3N (r;s+ 1))V (7,5 AT,3)
= () V(r,g) V(s,s+1) VT, 3=(p,q) VT,3.

(5) Similar to (4).

(6) If p < ¢ <r <s, then, by properties (4) and (5) and (R1), one has
(gs + VDS A((p—1,1) VD,3)
=((gs+)A(p=11) VD 5= (q.7) VD3,

PsgNAT, S

(7) Let r € Q such that ¢ < r < p. By (S5),9,¢= (r,7) VD, q = 1.

(8) First note that (p,q) AD,q = 0 for every p < ¢ in Q. Indeed, by (S4)
(p,q) AD,q¢ = (p,p) V (q,q) which is 0 by (R3). Therefore (p,q) <p,q and
7,4 < (p,q)*. Then, by (S5), for every p < r < s < ¢ in Q we have

(r,8)*V(p,q) >7,5V(p,g)=1 and 7,5 VD,¢>(r,s)VDhq=1.
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Hence (r,s) < (p,q) and 7,5 < P, ¢. From this it follows readily that

+r q+s Jrr Jrs

(r,s) < (B, 22) < (p,q) and T,8=<BL = <57

This interpolation can be repeated indefinitely and we get (r,s) << (p,q) and

~~ ~—~

r,s <<p,q. ]
Combining Lemma 4.4 with (R3) and (S3), we obtain immediately the

following;:

Proposition 4.5. A(R) is completely reqular. u
Further, we have:

Lemma 4.6. The set of generators of A(R) forms a join-basis.

Proof: We only need to check that finite meets of generators are expressible
as joins of generators. By (R1) and (S4), (p,q) A (r,s) and (p,q) AT, s are

obviously joins of generators. So it remains to check the case p,q AT, s. We
may assume that p < ¢ and r < s since the other cases are straightforward,
by Lemma 4.4 (7). Further, we may assume without loss of generality that
p<r. Ifp<r<gqg<swearedone by (S1). If p <r < s < ¢, then

D,q AT,8 =7,q, by Lemma 4.4 (2). Finally, the case p < ¢ < r < s follows
from Lemma 4.4(6). _

Theorem 4.7. The assignments

(p.@) = ((p,0),0)  and D4~ ((p,0)",1)
determine a frame isomorphism ¥: A(R) — o/ (L£(R)).
Proof: In order to show that W is a frame homomorphism it suffices to check
that it turns the defining relations (R1)—(R3) and (S1)—(S5) into identities

in the frame 7 (£(R)). Of course, it turns (R1)—(R3) into identities trivially,
so we only have to check it for relations (S1)—(S5).

(S1) Let p<r < ¢ <sin Q. Then
U(p,q) ANU(T5) = ((p.a)" A(r,s)", 1)
A(=r)Vi(s,—)),1)
—PAT)V (,)v( r)V(sVq,—)1)
)= ((p.5)" 1) =¥ (p, ).
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(S2) Let p,q,r,s € Q. Then

\If(p, ) \/\I/(r 3) =

:\I!(p\/r,q/\s).

(S3) Let p,q € Q. Then

‘I’(m) - ((pa Q)*v 1) - ((_7p) N (Q7_)? 1) - ( \/ (_7 T) v \/ (S’_)’ 1)

— V(s 1) | 7 < pand g < s} =\ {U(73) | r < pand ¢ < s},

(S4) Let p,q,r,s € Q. Then

U(p,q) ANU(T,3) = ((p,q),0) A((r,8)",1) = ((p, @) A ((—7) V (s,—)),0)
(pgAT)V(PV8,9),0)=V¥(p,gAr)V¥(pVs,q).

(S5) If p <7 and s < ¢ in Q, then

U(p,q) V(T 9) = ((p,q),0)V ((r,s)*,1) = ((p,q) V (—7) V (5,—),1)
= (((p,—) v ( r)V(s,=) A((—=q)V(=7)V(s,—)),1)
— 7)) A((—qVr)V(s,—)),1) =1

~—
*
—_
~—

since pAs<rands<qVr.

Moreover, by Corollary 4.3, ¥ is obviously onto. In order to verify that ¥
is also one-to-one, we only have to check that it is dense, since &7 (£(R)) is a
compact regular frame and A(R) is regular. First, note that ¥ (p,q) # (0,0)
for any p,q € Q. Furthermore, ¥(p,q) = (0,0) implies that (p,q) = 0 in
£(R). Consequently, p > ¢ by Remark 4.1. Then, (p,q) = 0 in A(R), by
(R3). The conclusion now follows from Lemma 4.6. u

Summarizing, since £(R) is a non-compact continuous regular frame [2],
2A(R) is its Alexandroff compactification.
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5. An alternative presentation for 2(R): the frame of the
unit circle

In this section we provide an equivalent presentation for 2((R). The moti-

vation for it comes from the description of the unit circle space as a quotient
of R.

Definition 5.1. The frame of the unit circle is the frame £(T) generated by

all ordered pairs (p, q), for p,q € Q, subject to the defining relations
(T1) (p,q) A (r,s) =(pVr,qAs) whenever gVs—pAr <1,

(p,q) V (r,8) = (p,s) whenever p < r < q <s,
(p,a) = V{(r,s) [ p<r <s<q},
Vo) =1,

(T5) (p,q) = (p+1,q+1).

Remarks 5.2. (1) If p > q then (p,q) = 0, by (T3).
(2) If g — p > 1 then (p,q) = 1. Indeed, by (T5), (T2) and (T3) one has

(h0) =V (p+m,q+m) = pg+n+1) = (p—p| - Lg+n—|p))

m=0

> (0, n)

(T2)
(T3)
(T4)

)

for every n € N. Given r,s € Q, (T5) and (T3) ensure that
(r,s) = (r—1Ir],s = [r]) <0, [s] = [r] +1) < (p, q).

Hence (p.q) >V, ,cq(r,s) = 1 by (T4).

(3) For any p, q € Q satisfying 0 < ¢ — p < 1 one has (p,q) = (r, s) for some
O0<r<landr<s<r+1 (just taker =p— [p| and s =q — |p]).

(4) Comparing (T1) with (R1) one notice some restriction on p,q,r,s. The
reason for it is that with no such restriction in (T1) we would have, for any
p,q € Qsatisfying ¢ —p < 1, (p.g) = (p,g) AN(p+1,¢+1) = (p+1,9),
which is 0 by remark (1). This would lead ultimately to the unwanted fact
£(T) ={0=1}!

(5) If p < r < s < qthen (r,s) << (p,q). Indeed, if g —p > 1, then the result
follows immediately from remark (2) above. On the other hand, if g —p < 1,
then it follows from (T1) that (r,s) A (s — 1,7) = 0. Therefore (s — 1,r) <
(r,s)* and consequently (r,s)* V (p,q) > (s —1,7) V (p,q) = (s — 1,q) = 1,
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by (T2) and remark (2). Hence (r,s) < (p,q). From this it follows that
(r,s) < (555, 57) < (p.q)

and since this interpolation can be continued indefinitely we conclude that
(r;s) =< (p, q)-

Combining Remark 5.2 (5) with (T3), we obtain immediately the following:
Proposition 5.3. £(T) is completely regular. |

Next we establish the precise relation between £(T) and the usual space T
of the unit circle.

Proposition 5.4. The spectrum of £(T) is homeomorphic to the space [0, 1)
endowed with the topology generated by the family of sets (p,q) and [0,p) U

{(q,1) for every p < q in QN {0, 1).
Proof: For each x € [0,1) let h,: £(T) — 2 be given by

he(pq) =1 f zep—1|pl,a—Ip)h)Up—-I[p)]—Lqg—[p]—1).

It is easy to show that h, turns the defining relations (R1)—(R5) into identities
and so h, € X&(T). Let p: [0,1) — X&(T) be given by p(x) = h,. In order
to show that p is one-to-one, let x1 # x9 in [0,1). If, say, 1 < x9, there
exist p,q € Q such that 1 < p < 29 < ¢ < 1 and then h, (p,q) = 0 and
hay,(p,q) = 1 and so hy, # hy,.

The function p is also onto. Indeed, given h € X.£(T), we distinguish two
cases:

(i) If 1((0,1)) = 0 then, by (R2),
h((p.q)) = h((0,1) vV (p—[p].q— Ip))) = h((0,(¢ — |p]) V1))

for every p,q € Q and so
Mp.q) =1 <= q—1[p]>1 <= 0ep—Ip]-1q-1[p] -1)
— 0elp—Ilpla—lphUp—Ipl-Lg—1Ip]-1)
<> ho((p,q)) = 1.
Hence h = hy = p(0).
(ii) If A((0,1)) = 1 then, by (R3) and the compactness of 2, there exist
D0, qo € Q such that 0 < py < gy < 1 and A((py, q)) = 1. Then

0<V{pe O )NQ[Ar((p,1) =1} = A{ge{0,1)NQ[A((0,¢)) =1} <1.
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Let

= V{p€(0,1)NQ[A((p,1) =1} = A{g € (0,1) N Q| h((0,q)) = 1}.
Then

hM(p,q) =1 < zn€p—plia—p))Up—[p| —Lg—[p] - 1)
and therefore h = h,, = p(zp).
It remains to show that p is a homeomorphism. For each open set %, ;) of

LL(T),

P (Cpg) ={z€0.1) [he €Ty g} = {z € [0.1) | hu((p9)) = 1}
={ze€l0,l)[zep—lpla—HUlp—Ip] -La—|p] - 1)}
=[0,g—[p] =) U{p—p].(a— [p]) A D).

Hence p is continuous. On the other hand, for each p,q € Q such that

O<p<qg<l,

p({p,q)) = {h. € X&(T) | p<x<q} ={h € ZL(T) | hp,q) =1} = X,y

and
p([0,p) U{q,1)) ={h, €e 2L€(T)|0<z<porg<az<l1}

= {h € ZL(T) | g, p+1) = 1} = E(gps1)
are open sets of J£(T). u

Corollary 5.5. The spectrum of £(T) is homeomorphic to the unit circle
T. |

Remark 5.6. It should be added that the homeomorphism p: [0,1) — X£(T)
induces a frame isomorphism OX£(T) — O([0,1)) taking ¥, to the in-
terval (p,q), as seen in the proof above of Proposition 5.4. Combining this
with the definition of the spatial reflection of a frame L, we conclude that
the frame homomorphism £(T) — O(T) taking (p, q) to (p, q) is the spatial
reflection map.

Finally, we investigate the relation between the frames £(T) and A(R).

Proposition 5.7. Let p: Q — (0,1)NQ be an order isomorphism. The map
O: A(R) — £(T) defined by

(.q) = ((p).¢(q)) and D,q— (¢(q),¢(p) +1)

for all p,q € Q s an onto frame homomorphism.
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Proof: In order to show that & is a frame homomorphism we only need
to check that ® turns the defining relations (R1)—(R3) and (S1)—(S5) of
</ (£(R)) into identities in £(T). We first note that Remarks 5.2 (1) and (2)

imply that ®(p, ¢) = 0 whenever ¢ < p and that Cb(m) = 1 whenever q < p.

(R1) follows directly from (T1) since ¢(p) — ¢(q) < 1 for all p,q € Q.
(R2) and (R3) follow directly from (T2) and (T3), respectively.
(S1) Let p <r < ¢ <sin Q. Then, by (T1),

®(p,q) A 2(75) = (¢(a), ¢(p) +1) A ((s),0(r) + 1)
1

A
= (p(q) V @(5),0(p) Ap(r) + 1) = (p(s), o(p) + 1) = (D, 9),

since ((@(p) +1) V (o(r) +1)) = (e(@) Ae(s) = o(r) +1 —9(q) <1 as
o(r) < (q).
(S2) Let p,q,r,s € Q. Then

®(D,q) VO (7.3) = (v(a), v(p) + 1) V (p(s), p(r) + 1)

= (p(q) A p(s),0(p) + 1)V (p(s), (p) V o(r) + 1)
= (p(g) Ne(s), o) Ve(r)+1) =D(pVr,gAs),

(by (T3) and (T2) since (q) A ¢(s) < ¢(s) < p(p) +1 <)V o(r) +1).
(S3) Let p,q € Q. Since ¢ is an order isomorphism, then, by (T3),
\/{CI)(?:S) |7 <pand g <s}=\V{(e(s),e(r)+1)|r<pandq<s}
= V{(e(s),o(r) +1) [ p(q) < ¢(s) <o(r) +1 <p(p)+1}
= (¢(a): o(p) + 1) = ©(p, q)-
(S4) Let p,q,r, s € Q. We distinguish several cases:
(i) If g<porr<p<q<sthen, by (T1),
D(p,q) NP(T,8) =0=D(p,g Ar)VO(pVs,q).
i) Ifs<r,p<g<r<sorr<s<p<qthen, by (T2) and (T3),
O(p,q) AP (7,3) = (¢(p),9(q)) = B(p,g AT) vV B(pV 5,q).
(iii) If r < p < s < ¢ then by (R1),

O(p,q) N (7,3) = (¢(s), 0(q)) = P(p,g A1)V O(pV 5,q).
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(iv) If p < r < ¢ < s then by (R1) and (R5),
O(p,q) A (7,5) = ((p). @(r)) = 2(p.g AT) V(P V 5,0).
(v) If p<r < s < q then by (iv) and (v),
®(p,q) A 2(75) = ((p), ¢(r)) V ((s), ¢(q)) = ®(p,g AT) V (pV 5, ).

(S5) Let p < r and s < ¢ in Q. If s < p then s < r and so ®(7,5) = 1.
Otherwise, if p < s then ¢(p) < ¢(s) < v(q) < ¢(r) + 1 and using (T2),
®(p,q) V & (7, 5) = (2(p), ¢(q) V (0(s), (1) + 1) = ((p), ¢ (r) + 1)
= o(F,p) = L.

In all, this shows that ® is actually a frame homomorphism. The ontoness
of @ follows from Remark 5.2 (3). Indeed, given p,q € Q such that 0 < p < 1
and p < ¢ < p+ 1 one has

(e '(p). ¢ (@) = (p,q) ifg<1 and

(a "N

q)(so_l(q—l),sfl(p)):(pﬂ) ifg>1 m

Corollary 5.8. The set of generators of £(T) forms a join-basis.

Proof: This is an immediate consequence of Lemma 4.6 and the fact that
the set of generators of 2A(R) is mapped by ® onto the set of generators of
£(T). _

Remark 5.9. Of course, the ontoness of ® also gives an alternative proof of
the fact that £(T) is a completely regular frame, since 2(R) is completely
regular (Proposition 4.5).

Proposition 5.10. Let f: £(R) — £(R) be the frame isomorphism given by
(p,q) = (p+1,q+1) for all p,q € Q. The equalizer of the pair (f, lgw)) is
the map e: £(T) — £(R) defined by

p,a) = V (p+n,q+n)
nez
Proof: Obviously, f is a frame isomorphism with inverse f~! given by (p, q)
(p—1,q—1) for each p,q € Q. In order to prove that e is a frame homomor-

phism, we will check that it turns defining relations (T1)—(T5) into identities
in £(R):
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We note that if g—p < 0 then e(p, ¢) = 0 and if g—p > 1 then p+n < p+n—+
1 < g+n < g+n+1forevery n € Z and thus e(p,q) = \,,cny(p+n,g+n) =1
by repeated application of (R2).

(T1) Let p,q,7,s € Q such that ¢V s —pAr < 1. Then
g+tn<r4+n+1<r+m
for each m > n in Z and
s+m<p+m+1<p+n

for each m < nin Z and so (p + n,q+n) A (r+m,s +m) = 0 for every
m # n in Z. Hence

e(p,q) Aer,s) = (V (p+mg+m) A(V (r+m,s+m)

nez meN
= \/GZ((p—i-n,q—l—n)/\(r—l—m,s—l—m))
= \/Z((p+n,q+n)/\(r+n,s+n))
= \/Z((pVT)‘f‘n,(q/\S)—i—n):e(p\/r,q/\s).

(T2) Let p,q,r,s € Q such that p < r < q < s. It is easy to check that
e(p,q) Ve(r,s) <e(p,s). On the other hand

e(p,q) Ve(r,s)=\ (p+n,q+n)Vv \ (r+m,s+m)

nez meN

>V (p+nqg+n)Vr+n,s+n))=\V(p+n,s+n)=ce(p,s).

ne nez

(T3) Let p,q € Q. Then
Vepag=Vpt+ngtn) =YV V. o o(rs)

neZ nez neZ p+n<r<s<qg+n
=V V (T+ns+n)= \ e(rs).
neZ p<r<s<q p<r<s<q

(T4) \/p,qu e(p,q) > ¢e(0,2) = \/neZ(nv n+2)=1
(T5) Let p,q € Q. Then

e(p,g) =V (p+nqg+n)=Vpp+n+l,g+n+1)=elp+1,q+1).

nez nez
Now, let
E={zecfR)]f(z) =a}
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be the equalizer of f and lgg). Obviously, by the definition of e, one has
that e(p,q) € E for every p,q € Q. Since {(p, q) }p4cq generates £(T), then
e(£(T)) € E. On the other hand, if x € E and p,q € Q are such that
(p,q) <z in £(R) then

(p+1,g+1)=f(p,q) < flx) =2
and

flo—1,q-1)=(p,q) <z = f(a).
Consequently, (p —1,¢g — 1) < x (since f is an isomorphism). By induction,
it follows that (p +n,q+ n) < x for every n € Z and thus

e(p,g) = V(+nq+n) <uz

nez
Hence

r=V{p.9) [ (p.9) <2} =V{ V(p+nq+n)|(pq <z}

nez

=V{e,q) | (p.9) <o} =e(V{(p.9) | (p.g) <2})
and therefore e(z) € e(£(T)). In conclusion, e(£(T)) = E. It suffices now to
show that e is one-to-one. Let
h: £R) = 1((—0) v (1,—))

be the frame homomorphism given by z — z V (—0) V (1,—). For each
p,q € Q such that 0 <p < 1and p <q <p+1 one has

(h-e)(p,q) = V (p+n,q+n)V(—0)V(1l—)

=@-Le-1)Vvp,gV(=0V(1-) =@V (=0)V(-)
Indeed:
e foreachn >2 (p—n,qg—n) < (p—n,0) < (—,0) by (R3);

e foreachn > 1, (p+n,g+n) < (1,g+n) < (1,—) also by (R3).
Moreover, (h-€)(p,q) # 0 by Remark 4.1. Then we may conclude that h - e is
dense by the fact that the set of generators of £(T) is a join-basis combined
with Remark 5.2 (2). Since £(T) is a regular frame and 1((—,0) V (1,—)) is
regular and compact, it follows that h - e, and hence e, is one-to-one. |

From now on, when convenient, we will identify the frame of the unit circle
with the complete sublattice e(£(T)) of £(R).

Corollary 5.11. £(T) is compact.
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Proof: This is now obvious since the frame homomorphism
h-e: £(T) = 1((—0) vV (1,-))
is one-to-one and 1((—,0) V (1,—)) is a compact frame. _

Corollary 5.12. £(T) is spatial.

Proof: Classically, the exponential map exp: R — T (x +— ¢*) may be de-
scribed as the coequalizer of the pair of continuous functions 1g,v: R — R
(v(x) = = + 27m). Since the contravariant functor O: Top — Frm is a left
adjoint, it turns colimits into limits. So one has the equalizer diagram

O (exp) O(7)

in Frm. It suffices now to combine the proposition with the well known
result that £(R) is isomorphic to O(R) (we note that the proof of this result
is constructively valid under the assumption that the closed intervals [p, |
are compact, see [2, Remark 4]). _

Corollary 5.13. The frame homomorphism ® from Proposition 5.7 is an
1somorphism.

Proof: It remains to show that ® is one-to-one. Since 2A(R) is regular and
£(T) is both regular and compact, it suffices to check that ® is a dense map.

So let p,q € Q. Then ®(p,q) = (v(q), ¢(p) + 1) # 0. In fact, applying the
equalizer e of the proposition, we have e(® (D, q)) = e(v(q), ¢(p) + 1), which
is non-zero by the canonical frame homomorphism £(R) — O(Q) (recall
Remark 4.1), since p(q) < 1 < ¢(p) + 1. Similarly, ®(p,q) # 0 whenever
p<gq,ie. (p,q) #0. By Lemma 4.6 we conclude that ® is dense. |

Remark 5.14. Tt is a straightforward exercise to check that the inverse of ®
is given by

0 if ¢ < p,
) P p—1Ip))e Ha—1p)) ifp<qg<|p]+1,
@ !(p,q) =1 - -
e g—Ip] 1), (p—1Ip)) ifp<|p]+1<qg<p+1,
1 ifqg>p+1,
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for every p,q € Q. Applying Lemma 4.4, this simplifies to

B (e e—lpD) e a—1p]) ifg<[p]+1,
d(p,q) =« - .
e Hg—lp) =1, —lp) iflp)+1<q

Further, by Remark 5.2 (2), this leads to
(7' (p), 7))  ifg<1,

¢ (p,q) = § — —
e (g—1),¢ (p) ifl<gq

for all p,q € Q and 0 < p < 1.

6. Induced localic group structures

In this section, we analyze when an equalizer like the one of Proposition 5.10
lifts the localic group structure from the codomain into the domain. This
will be the crucial step in the description next section of the localic group
structure of £(T).

We begin by recalling that for any frame homomorphisms f;: L; — M; and
fa: Ly — My, the homomorphism f; @ f5 is the unique frame homomorphism
L1 & Ly — My & M> making the following diagram commute:

LLl LL2
Ly L& Ly Lo
flk f1@f2l lfQ
Ly LMy
M, My, & Mo My

It is clear that
(fre f2)(V(ai ® b)) = \/(fala:) @ fa(b))
el iel
and therefore compositions of morphisms of this type satisfy

(i@ f2) (1D g2)=(f1-91) & (f2-92)

Our first lemma may well be known but since we have no reference for it
we include its proof. In it L and M are frames, F is a complete sublattice
of L and e denotes the inclusion frame homomorphism EF — L. For each
(a,b) € Ex M, a@®band a®b denote the corresponding basic generator of
respectively £ & M and L & M.
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Lemma 6.1. The frame homomorphism
e®ly: EM—->LPM

is given by (e ® 1) (U) =Lrxm U for each U € Ex M. In particular, e ® 1y,
1S one-to-one.

Proof: Let U € E® M. We first show that |« U is actually an element of
L& M:

(1) Let A C L and b € M such that A x {b} Clrxy U. Then for each
a € A there exists @’ € F such that a < @’ and (a’,b) € U. It follows that
(\V{d' | a € A},b) € U and thus (\/ A,b) €lr«mU.

(2) Let a € L and B C M such that {a} x B Clp«aU. Then for each b € B
there exists a; € F such that a < a; and (ap,b) € U. Let @’ = /\bLGB ap € F.
Clearly, (a’,b) € U and (a,b) < (a’,b) for every b € B. Hence (a,\/ B) <
(a',\V B) € U.

Note, moreover, that for each (a,b) € U

(e®ly)(a®b) =a®b=lrxm(a®b) TlrxmU.

Since
EoM
U=\ (@adbd)= U (adDd),
(a,b)eU (a,b)eU
then
LeM
(e 1y)(U)= V (a®b) ClrxmU.
(a,b)eU

On the other hand it is clear that

o LeM
U S U (a®b) SV (a®b).
(a,b)eU (a,b)eU

Hence (e ® 15)(U) =drxm U. _

Remarks 6.2. (1) We can say a little more: E & M is isomorphic to the
subframe of L& M generated by alla® b, a € E,b € M, since {a®b}(qp)cExm
generates £ @ M and (e ® 1y7)(a @ b) = a®b for each (a,b) € F x M. In
the following, we will make an abuse of notation and will regard £ & M as
that subframe of L & M.

(2) We note in addition that, of course, applying Lemma 6.1 twice leads to
the fact that e ® e is a monomorphism.
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For the next two results, note that if f,¢g: L — N are complete lattice
homomorphism then so is their equalizer e: £ — L, meaning that F is a
complete sublattice of L.

Lemma 6.3. Let f,g: L — N be frame isomorphisms with equalizer e: E —
L. For any frame M,

fely

e®1 s

Eeo M Lo M

NoeM

9D1m
18 an equalizer diagram in Frm.

Proof: We know by the previous lemma that £’ M may be regarded as the
subframe of L @& M generated by all a® b, a € E,b € M. It now suffices to
show that this is precisely the subframe consisting of all U € L& M such that
(fe1m)(U) = (g 1x)(U). Of course, (fB1y)(U) = (g 1x)(U) for every
Ue EdM. Conversely, let U € L& M such that (f&1y)(U) = (9B 1) (U)
and consider a € L and b € M such that (a,b) € U. Furthermore, let

a’ =\ h'(a),

nez

where h = g~ f, h% = 17, h" (n > 0) denotes the composite h-h---h (n
times) and h" (n < 0) denotes the composite A1 - h71... A7l (—n times).
Evidently, a < a’. Moreover, a’ € E. Indeed,

g(d) =V f(h"Ha)) = V f(h"(a)) = f(d).

nez nez

Notice also that (h(a),b) € U since
fla)@b < (felp)(U)=(g@1p)(U) < (¢ ' flla)@d < U.

Then, by symmetry, (h™1(a),b) € U. Proceeding inductively we eventually
conclude that (h"(a),b) € U for every n € Z and thus (da’,b) € U. In
summary, we have proved that for any (a,b) € U there is some (a’,b) > (a,b)
still in U with ¢’ € E. This guarantees that U € E & M. |

Proposition 6.4. Let

€1

E1 L1 M1 and E2 L2 M2

g1 g2
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be equalizers in Frm with fi, g1, fo and go frame isomorphisms. Then the
homomorphism

€1 @62

E, @ Ey

Ly ® Lo

15 the limit of the diagram

M, @ Lo

Ly ® Lo

1\%

b Bo2 Ly ® M,
Proof: Let h: N — L1 & Ls be a frame homomorphism such that
(I, @ f2) h= (11, ®g2)-h and (fi®1L,) h=(1®1L,)" h
By Lemma 6.3,

1
1p, Deo ok

Ly ® FE, L1 & Ly Ly & M,

1L, ®g2

is an equalizer so there exists h': N — L; @ Es such that (1, @ ey) - b =
h. We have then the following commutative diagram, where 1, @ ey is a
monomorphism (by Lemma 6.1).

hetlg, - M @ Ep

/ %
91D1g,

Ly ® By

[,
7 91911,

W Ly ® Lo o
Then, immediately, (f1 ® 1g,) - h' = (g1 © 1g,) - h'. Finally, since e; ® 1, is
the equalizer of f; @ 1, and g1 ® 1g, (again by Lemma 6.3), there is some

M, @ Lo

Ly ® M
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h"” making the leftmost triangle in the following diagram

E\ @ Ey [1©1E, M, & Es
A 6\@1‘?24\ Lar, @ez
: L1 & Es fi®lL, M, & Ly
R %1[127
h Ll P L2
N k Ly ® M,
to commute. [ |

Now let (L, i, y,€) be an arbitrary localic group and

~

e

E

L M

@

an equalizer where f and g are frame isomorphisms such that

(foly) p-e=(g@ly)-pe, (A@f)-p-e=1r@g) p-e (73.1)
and
f-y-e=g-v-e. (7.3.2)
Under these conditions, it is possible to lift the localic group structure of
L into E, in the following manner:
(LG1) (7.3.1) and Proposition 6.4 lead to an i: E — E & E satistying (e &
e) L= p-e.
(LG2) (7.3.2) and the fact that e is the equalizer of f and ¢ yield an 7: F —
FE satistying e -7 = -e.
(LG3) €: E — 2 is the composite ¢ - e.

Remark 6.5. Note that € may be defined alternatively using the equalizer.
Indeed, since f-o-c-e = g-o-c-e, then the equalizer e yields some ¢’: £ — E
such that e- &’ = o - ¢ - e but, as any frame homomorphism, it factors as




28 J. GUTIERREZ GARCIA, I. MOZO CAROLLO AND J. PICADO
Theorem 6.6. (F,[1,7,2) is a localic group. If L is abelian so is E.

Proof: 1t is just a matter of checking that conditions (LG1)-(LG3) allow to
lift the commutativity of the diagrams in the definition of the localic group
(L, i, v, €) to the commutativity of the corresponding diagrams in (E, 1, 7, ).
For instance, regarding associativity of 1z, that is, the commutativity of square
(A) in the next diagram

pely
Lo L L
(2) ePePe f
e@e ﬁ@lE / |
L L~—FEF®FE——FEF®FE®DE
uT (4) TlE@u 3)
(1)

H E — EQFE
. M 1p0p

/ (1) J{e@e

L m Lo L

it follows immediately from the commutativity of the outing quadrilateral
(which corresponds to the associativity of p in L), the commutativity of
subdiagrams (1), (2) and (3) (from (LG1)), and the fact that e @ e @ e is a
monomorphism (from Remark 6.2 (2)).

The remaining properties may be checked in a similar way. u

We shall refer to (71,7, ) as the localic group structure on E induced by
(L, p,7v,e) and e: E — L.

7. The localic group structure of £(T)

Now we are in the position to establish the localic group structure of £(T).
For this, we need to recall from [2, p. 39] some of the familiar lattice-ordered
ring operations of £(R) (see [9] for a detailed presentation):

(1) For each r € Q, the nullary operation r: £(R) — 2 = {0, 1} given by
r(p,q) = 1 if and only if r € (p, q).

(2) For each k > 0 in Q, the unary operation w,: £(R) — £(R), representing
the scalar multiplication by k, defined by

we(p,q) = (£.4).
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Similarly, for each x < 0 in Q, w, is given by wy(p,q) = (£,2).
(3) The binary operation +: £(R) — £(R) & £(R) is defined by

+(p,q) = \/Q((Tﬂ“+%)@ (p =752 —7)).
re
We denote the operations

0: £R) -2, w_1: £R) — £(R) and +: £(R)— £(R) D £(R)

by €, v and pu, respectively. We also need the following well known result.
Its proof is a straightforward checking of the commutativity of the diagrams
given by group laws.

Proposition 7.1. The frame £(R) with frame homomorphisms e,, j is an
abelian localic group.

The general procedure of the preceding section applies to the case of £(R)
and £(T) and the equalizer of Proposition 5.10 as we now check. Recall that
the equalizer e: £(T) — £(R) is given by

(p,q) = V (p+n,q+n)

ne

for each p, ¢ € Q and that we may identify the frame of the unit circle £(T)
with the complete sublattice e(£(T)) of £(R).

Now, by the results in the previous section, in order to have a localic group
structure (@,7,€) in £(T) induced by (£(R),u,v,¢) and e: £(T) — £(R),
we just have to confirm that e satisfies identities (7.3.1) and (7.3.2), that is,
(1) (f @ Llew))  p-e=(ler @ lew) - p1-e= (ler) @ f) - p-e, and
(2) f-y-e=7-e
(1) First notice that if p > ¢ then (p q) = 0 and therefore

(f @ lem) - p-e)(pa) = (e @1): ®) 1 e)(p,q)
((lew @ f) - p-e)(p,q) = 0.

If g—p > 1 then (p,q) =1 and so
(f@lem) - p-e)(p,q) = ((lemw) D lew)) - 11~ €)(p, q)
=((lem @ f) - p-e)(p,qg) =1@ 1.
Finally, it 0 < ¢ — p < 1 then

(u-e)(p,q) = \E/Q((T,T-I—%)@( \E/Z(p-l—n—r P+q_|_n—7“)))
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and therefore

(folew) p-e)pa)=V (firnr+ )@ (Vip+n—r5+n—r))

reQ nez
:reQ(rJrlr+qp+1)@(n\e/z(p+n—rp+q+n )))
=V (s;s+)e(Vp+n—s+1,504+n—-s+1)))
s€Q neL
=V (s,s+ )@ (Vp+m—s5+m—ys)))

s€Q meZ
= ((lem) @ Lew) - - €)(p, q)-
) -

Hence (f @ 1gr e = (lgm) @ lgw)) - ¢t - €. Analogously, one can check
that (1er @f) poe=(lgr) ® lew)) - p- e
(2) We have, for each p,q € Q,

(f-v-e)pa)= V(- nNp+nqg+n)=V f(—¢g—n,—p—n)

nez nes

= V(-¢—-n+l,-p—n+1)=V(-¢—n,—p—n)
nez nez
nez

By applying Theorem 6.6 we conclude that (£(T), &, 7, €) is a localic group.
In particular,

((e®e) -m)(p,q) = (n-e)p,q) =V plp+n,q+n)

nez
=V \G/Q((r,w%)@(p+n—r,f%+n—r))
=V V ((m+sm+s+S)o(p+n—m—s5l+n—m-—s))

n,meZ s€l0,1)

=V (Vm+sm+s+L)a V(p+k—s5L+k—ys))

s€l0,1) mEZ keZ
= (e ®e)( }({1)((8,8+%) & (p—s.5" =),
se|U,

hence 7i(p, q) = Ve (5,5 + 52) @ (p — 5,552 — s)), and
(e M) =0-e)p,q)=Vp+ng+tn)=\(-¢g—n,—p—n)

= e(—q,—p),
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hence ¥(p, q) = (—q, —p), for every p,q € Q. One also has that £(p,q) = 1
iff €(e(p,q)) = 5(\/n€Z(p —n,q — n)) = 1. Equivalently, g(p,q) = 1 iff
0 € UnGZ <p+n7Q+n>

In conclusion, we have proved the following about the localic group of
reals (£(R), i, 7, €), the frame of the unit circle £(T) and the inclusion frame
homomorphism e: £(T) — £(R) given by (p,q) — V,cz(p +n,q¢ +n):

Theorem 7.2. Iffi: £(T) — £(T) & £(T) is the map such that (e @B e) - =
e, 7: L(T) — £(T) is the map such that e-5 = y-e, and € is the composite
e-e: £(T) — 2, then (£(T),,7,2) is an abelian localic group. n

Remarks 7.3. (1) Obviously the equalizer map e: £(T) — £(R) is an LG-
homomorphism (£(T),,7,2) — (£(R), i, 7, €).

(2) Consider the neighbourhood filter of the unit of £(T), N = {s € £(T)} |
g(s) = 1}, and denote J(a) by a™! for every a € £(T). Similarly as for £(R),
it follows from the results in [6] that we have a canonical uniformity on £(T),
the left uniformity, generated by covers

Ci={ac &T)|a'a<s} (se€N).
Analogously, the covers
D,={ac &(T)|aa ! <s} (s€N)

and

T,={ac &(T)|(aa)V(aa') < s} (s€N)
form bases of uniformities, called the right and the two-sided uniformities of
£(T), respectively. Since £(T) is abelian, the three uniformities coincide. It
also follows from [6] that £(T) is complete in this uniformity.
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