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Universidade de Coimbra
Preprint Number 15–16

A MODIFIED LYZENGA’S MODEL FOR MULTISPECTRAL
BATHYMETRY USING TIKHONOV REGULARIZATION
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Abstract: The derivation of shallow-water bathymetry from multispectral satel-
lite images has become a highly active field of research in recent years. Nowadays,
as satellite images become more and more freely available worldwide and easily
accessible, this type of technique is a cost-effective surrogate for the derivation of
bathymetric information, about even the most remote areas. In fact, traditional
bathymetric methods, such as acoustic and LIDAR (LIght Detection And Ranging)
systems, are still very expensive and difficult to operate. Among all the models that
have been presented in the literature for multispectral bathymetry, the log-linear
inversion model proposed by Lyzenga is still the most popular one, due to its sim-
plicity and physically intuitive nature. But it is well known that it has a relatively
low accuracy and the optical uniformity assumption is unrealistic. We propose a
modified Lyzenga’s model that can account for spatial heterogeneity. This is partic-
ularly important when the imaged area corresponds to heterogeneous bottom types
and varying water quality. The estimation of the bathymetric parameters is per-
formed by solving an inverse problem with a Tikhonov-like regularization term. We
test the proposed model with satellite Landsat 8 multispectral images and in-situ

depth measurements of a shallow water site. The results obtained indicate that the
new model is more accurate, with negligible extra complexity.
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Reliable and constantly updated shallow waters bathymetric information is
extremely important for a wide range of applications including maritime and
river transport, management of the traditionally densely populated coastal
areas, and protection of vulnerable ecosystems like coral reefs and lagoons [1,
2, 4]. Classical methods for shallow waters bathymetric mapping include ship
mounted acoustic-based sensors, e.g. multibeam echo sounders [5], and the
LIDAR airborne remote sensing technique, which is based on laser light sen-
sors [8]. With the recent advances in these technologies, it is now possible to
perform bathymetric surveys with high level of accuracy. For instance, under
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optimal clear water and weather conditions, depth measurements of up to
50 m and 15 cm accuracy are commonly reported for LIDAR systems [6].
The main limitations associated with LIDAR are the expensive operational
cost, the time consuming and complex procedures, and limitation to rela-
tively small areas, due to the airborne nature. Furthermore, another issue
occurs with extremely shallow waters of less than 2 m. In fact, because of
the physical processes governing LIDAR, measurements for this depth range
are problematic and often not possible [15]. In this scenario, ship-acoustic
techniques, are not a viable alternative, because of the obvious navigation
problems. More generally, acoustic-based systems have essential the same
strengths and weaknesses of LIDAR systems, namely, they are accurate, but
costly and complex to deploy [3].
Since the early development of satellite technology in the 60’s, the produc-

tion of shallow water bathymetric charts from multispectral satellite data
has been presented as a possible alternative to the conventional methods.
Nowadays, the increasing availability of inexpensive satellite imagery, in par-
allel with the development of high resolution multispectral and hyperspec-
tral sensors, has led to a renewed interest in this topic. The potential of
this technique is now well established and documented in the research liter-
ature. Namely, satellite bathymetry is highly attractive as a fast and cost-
effective alternative when compared with LIDAR or acoustic sensors. The
non-intrusive nature and worldwide availability of satellite imagery make it
suitable for sensitive and remote ecosystems, and coastal areas with intensive
maritime activities.
Among the methods proposed, the one that has received the most atten-

tion was the one popularized by Lyzenga [12, 13]. Basically, this physically
based method, relies in a number of ”true depth” measurements, obtained for
instance by LIDAR, to calibrate the model parameters, and afterwards, esti-
mate the water depth for pixels with unknown depths using satellite radiance
data. This method has been applied by many authors for different types of
environments and using data from several different satellites including Land-

sat [12], QuickBird [9], IKONOS [7, 16], and WorldView [10]. Although all
the research, some problems still remain, such as lower accuracy compared
to traditional bathymetric methods, dependence on ”true depth” data, and
the impact of water and atmospheric conditions.
During the years, some modifications and improvements have been made to

the original method. We refer for instance to the non-linear model proposed
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by Stumpf et al. [16] for multispectral data, and the 3 extensions developed
by Kanno et al. in [9]. Usually, these modifications try to address unrealistic
assumptions of the original model with regard to the uniformity of the optical
properties of the area of interest. With respect to the non-linear model of
Stumpf et al., although some improvements were reported in accuracy, the
results are not consistent. For example, in [7], the authors found virtually no
difference between the models and conclude that is still uncertain whether or
not this model is superior to the conventional one. Moreover, the calibration
of the non-linear model is somehow more involved. On the other hand, the
models of Kanno et al. [9] have yet to be properly tested, the number of
results is still very limited. Possibly, this lack of experimental studies, is
related to the difficulties in implementation of these methods, as mentioned
by the authors.
We propose a new method for bathymetry estimation from multispectral

satellite images. It is based on a simple and straightforward modification
of the original method of Lyzenga, and it arises with the introduction of
spatial dependent coefficients. We expect this modification to make the sug-
gested model less vulnerable to optical heterogeneities (of bottom material
and water) and even atmospheric and sunglint perturbations. After this in-
troduction, in Section 1, we start by briefly describing the method of Lyzenga,
then we present our model as well as the rationale behind it. In Section 2,
using Landsat 8 data collected over the coastal region of Lisbon, Portugal,
and ”true depth” measurements, we report and discuss the performance of
the proposed model. A comparison between the results of both models is
also given. Finally, in Section 3, we draw some conclusions and outline some
future research directions.

1. Proposed Model

The bathymetric inversion model derived by Lyzenga [13, 12] for two or
multiple spectral bands is given by:

z = a0 +

N
∑

i=1

ai ln[L(λi)− L∞(λi)], (1)

where z is the depth, a0 and ai are constant coefficients, N is the number
of spectral bands, λi is the ith spectral band, L(λi) is the top-of-atmosphere
spectral radiance (after atmospheric and sunglint corrections) for band λi,
and L∞(λi) is the deep water radiance for band λi. Model (1), to which
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we refer as the Lyzenga’s model, is a physically based method that can be
derived from a basic radiative transfer model for shallow waters. Essentially,
it is based on Beer’s law for the absorption of light in an optical medium.
This law states that the intensity of light passing through a medium decreases
exponentially with the thickness of the medium. In this context, assuming
that the intensity of light reflected by a water column of thickness z, as
measured by the satellite, is given by L(λi)−L∞(λi), we can write the Beer’s
law as:

ln[L(λi)− L∞(λi)] = −g(λi)z + c(λi). (2)

Here, g(λi) is the effective absorption coefficient of the ith band and c(λi)
is a constant that takes into account several transmittance, reflectance, and
irradiance effects, associated for instance with the state of the atmosphere,
and the surface and bottom water type [13, 10, 11, 7]. Following [12, 13], the
Lyzenga’s model (1) can be obtained from (2) assuming that

N
∑

i=0

aig(λi) = −1 and a0 +
N
∑

i=1

aic(λi) = 0. (3)

However, in practice, it is not feasible to obtain from (3) the model parame-
ters ai, i = 0, . . . , N . Therefore, in general a least-squares method is applied
to estimate the values of the unknown coefficients ai using pixels with known
depth. This is an inverse problem, that is formulated as follows:

min
a0,a1,a2

M
∑

m=1

[

a0 +
N
∑

i=1

ai ln[L(λi)m − L∞(λi)]− zm

]2

. (4)

Here L(λi)m is the spectral value at pixel m, zm is the measured depth at
pixel m and M is the total number of pixels with measured depth. After
estimating the values of a0, a1, and a2, by solving (4), the unknown depths
in the area under study can be predicted from (1).
It has been proved in [13] that Lyzenga’s model can account, to some ex-

tent, for variations on optical properties of water and bottom surface, but in
fact, the assumption that optical properties do not vary spatially in the area
under analysis, is still essential for deriving this model. Since this strong
assumption is not valid in many cases, we can expect significant errors in
the model predictions. Water turbidity, suspended or dissolved materials
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in water, and complex and heterogeneous water bottom, are common fac-
tors which cause the discrepancy between model predictions and real depth
measurements.
Being aware of this severe limitation, we propose herein a novel method

for the remote sensing bathymetry problem based on Lyzenga’s model and
Tikhonov-regularization theory.
Firstly, in order to overcome the homogeneity assumption, we consider

spatially dependent coefficients in (1). The modified model is then defined
by

z = A0 +
N
∑

i=1

Ai ln[L(λi)− L∞(λi)], (5)

where Ai, i = 0, . . . , N are matrices (whose components are constants) and
with the same size of the image bands. We expect these new matrix coeffi-
cients Ai to be able to capture the spatial variation of the optical properties.
Secondly, we estimated the unknown parametersAi by solving the following

inverse problem with Tikhonov-regularization [17] (compare with (4))

min
AM

0
,...,AM

N

[

F (AM
0 , . . . , AM

N ) +
1

2

N
∑

i=0

αiJ(A
M
i )2

]

, (6)

where the fitting term F (AM
0 , . . . , AM

N ) is defined by

M
∑

m=1

[

AM
0,m +

N
∑

i=1

AM
i,m ln[L(λi)m − L∞(λi)]− zm

]2

,

and J(·) is the l2-regularization term, defined by

J(AM
i ) :=

[

N
∑

i=1

M
∑

m=1

(AM
i,m)

2

]1/2

. (7)

Moreover, αi is a positive constant, that balances the influence of the sim-
ilarity and regularity terms in the cost functional of the optimization prob-
lem (6).
We remark that notation AM

i,m represents the value of the component of

matrixAi at pixelm, while the superscriptM is used to emphasize that AM
i is

a submatrix ofAi withM components. In generalM is much smaller than the
size of Ai, thus after solving (6) there are still unknown coefficients; that is,
from (6), we can only estimate the M components of Ai, corresponding to the
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location were the depth is known and measured. The remaining coefficients
of Ai have to be obtained by interpolation. In this paper, we have used linear
interpolation, whenever required.
The regularization term (7) has been commonly used in least squares model

fitting. The motivation for this term is to avoid over-fitting and improve
the model’s prediction accuracy at the cost of introducing some bias [17].
The l2-regularization term penalizes large coefficients and shrinks the fitted
coefficients AM

i towards zero as the regularize parameter αi increases.
We note that in order to reduce the complexity of model (5), we can con-

sider there only one matrix coefficient and assume that the remaining ones
are scalars. In fact, in the experiments we have done, this modification did
not seem to affect the overall quality and performance of the model. This
simplification can be justified by the hypothesis that only one spatially vary-
ing coefficient is sufficient to capture the optical heterogeneities. Moreover,
in the experiments described in Section 2, only bands λ1 (Coastal Aerosol
band) and λ2 (Blue band) were used. The remaining bands were not consid-
ered because their contribution was found to be not significant. This is an
expected behavior, since these bands have wavelengths longer than 500 nm
which attenuate rapidly in water. This same explanation, can be applied to
account for the slightly worse results when A2 is consider to be a matrix,
while A1 is considered a scalar. In fact, the short-wavelength of band λ1 (430
to 450 nm), allows a deeper penetration depth into water, making it the
optimal spectral band for bathymetric measurement.
Taking into account all these simplifications, the modified model (5) we

consider hereafter is:

z = a0 + A1 ln[L(λ1)− L∞(λ1)] + a2 ln[L(λ2)− L∞(λ2)], (8)

with a0, a2 scalars and A1 a matrix. This simplified model leads to the
following version of (6):

min
a0,AM

1
,a2

F (a0, A
M
1 , a2) +

α

2
J(AM

1 )2, (9)

with the fitting term

F (a0, A
M
1 , a2) =

M
∑

m=1

[

a0 + AM
1,m ln[L(λ1)m − L∞(λ1)]

+ a2 ln[L(λ2)m − L∞(λ2)]− zm
]2
.
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2. Application

2.1. Study Area and Data. The bathymetric models described in the
previous section were applied to the coastal area of Lisbon, Portugal. The
depth information was obtained from the Portuguese Hydrographic Insti-
tute (IH-Instituto Hidrográfico de Portugal). It was compiled in 2010 from
several IH soundings and interpolated to a one minute grid using a TIN in-
terpolator. For the experimental study, a standard multispectral and cloud
free Landsat 8 image, acquired in 2013-09-08, was also downloaded (scene
id = LC2040332013251LGN00). The RGB true color composition image of
the test site is shown in Figure 1. The current Landsat 8 ground spatial
resolution is of about 30 m. The spectral range, of the bands of interest, is
430-450 nm for band 1 (Coastal Aerosol), and 450-510 nm for band 2 (Blue).

Figure 1. Left - location of the study area near Lisbon, Portu-
gal. Right - Landsat 8 true color RGB composite of the area and
spatial distribution of known depth points.

In order to apply the proposed and the original Lyzenga’s model, we need
to estimate the values of deep water radiance L∞(λi), i = 1, 2. For that,
we consider the deep water pixels, i.e., the pixels with known depth bigger
than 20 m, and take L∞(λi) as the minimum value of remote sensing radi-
ance L(λi) among them. We note that in this paper we ignore the possible
effects of sunglint or sun and satellite elevations. While it is recommend to
apply corrections to the data to compensate these effects, it should also be
recognized that this is not a mandatory procedure. For instance, when the
atmosphere is homogeneous, this step can be skipped without compromising
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the results [14]. Furthermore, we also expect that the spatial coefficient of
our model will totally or partially eliminate the need for such corrections.

Table 1. Depth statistics of the study area.

Depth [m] Min [m] Mean [m] Max [m] Number of pixels

≤ 20 0.1 6.873 19.9 1748

> 20 20.1 47.072 84.6 1474

Overall 0.1 25.263 84.6 3222

It is well known that the applicability of Lyzenga’s type models, and more
generally of multispectral bathymetry, is limited to shallow waters. There-
fore, as displayed in Figure 1, the measured depths were separated into two
groups using a depth of 20 m as the dividing line. In Table 1, we also present
some statistical properties of the depth data.

2.2. Results and Discussion. We start the discussion of our model with
a synthetic example. With this example, we intend to show the denoising
effect of the regularization term in (9) as well as a comparison with Lyzenga’s
model (1) with two spectral bands. For that, we generate a synthetic depth
function z using equation (8), by assigning prescribed values to all the pa-
rameters in the right hand side of (8). To simulate the errors in remote
sensing images, that can occur, e.g., as a result of atmospheric variations, we
add Gaussian noise to both L(λ1) and L(λ2). The results, obtained by using
10% of the noise-free depth points to solve the corresponding minimization
problem (9), are shown in Figure 2. Not only the visual appearance of the
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Figure 2. From left to right: synthetic noise-free depth z, re-
covered depth z Lyzenga’s model (1), and recovered depth z with
proposed model (α = 1).
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recovered depth z but also the Euclidian norm error are 125.943 and 39.981
for (1) and (9), respectively, confirm the advantage of the new model.
In order to further test the efficiency of the proposed model, we performed

a cross-validation experiment using as data set the 1748 points of shallow
water of the area exhibited in Figure 1. In each round, we randomly selected
10% of depth measured points, as training data, and used the remaining 90%
as testing data. This cross-validation procedure was repeated 500 times. For
each run, we evaluated the model prediction accuracy using the root mean
square error (RMSE), defined as

RMSE =





1

Np

Np
∑

n=1

(z̄n − zn)
2





1/2

, (10)

where Np is the number of points in the testing set, zn the measured depth at
point n, and z̄n the depth predicted by the model. One example of training
and testing data used in the cross-validation is depicted in Figure 3. All the
minimization problems, were solved using the Optimization Toolbox of the
software MATLABr R2013b (The Mathworks, Inc.)

Figure 3. Typical distribution of the testing data (red circles)
and the training data (blue circles) used in the cross-validation
procedure.

We start our discussion of the results by examining the behavior of the
regularization parameter α. In order to do so, we carried out experiments
varying α from 0 (no regularization) to 20. The results are given in Figure 4,
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where each point is the average of 500 repetitions. We also present, for com-
parison, in the same figure, the RMSE obtained with the original Lyzenga’s
model. The small fluctuations observed in the RMSE of this model are only
the consequence of the random nature of the cross-validation.
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Figure 4. In red, impact of the regularization parameter α on
the accuracy of the proposed model. In blue, results obtained
with Lyzenga’s model.

The analysis of Figure 4 reveals that without regularization the RMSE is
much larger, which is a typical consequence of using an overparameterized
model. An overparameterized model tends to overfit the training data, fit-
ting noise and outliers, and thus is more likely to give poor prediction. It
is also observed that as the value of the regularization parameter increases,
the accuracy of the proposed model decreases. This is caused by the fact
that when α is too large (over-regularization) the parameter A1 tends to 0,
preventing the model from predicting the data satisfactorily. According to
Figure 4, we can say that the optimal value for the regularization parameter
is between 1 and 7. For this range of values the RMSE fluctuates smoothly
between 2.373 m and 2.390 m. In particular, the minimum value of RMSE
is achieved when α = 3 and corresponds to 2.351m. From the results pre-
sented, it is also clear the better performance of the proposed model. In fact,
we observe that we smallest RMSE for Lyzenga’s model is 3.151 m. This
means that the proposed model gives a reduction in RMSE of 0.8 m. Note
that we also implemented an l1 regularized version of our model, by defining
J(AM

1 ) = |AM
1 |1/2 in (9), but no improvement was obtained.
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To gain more insight about the performance of both models, we present
in Table 2, the RMSE obtained from four different water depth levels. As
before, the values reported are averages over 500 runs of the cross-validation
procedure. For this experiment, the parameter α was fixed at 3. From
Table 2, we can conclude that the proposed model outperforms Lyzenga’s
model at all the levels, as the RMSE is always considerably lower. However,
this is particularly true in the range 15-20 m, where the new model improves
the accuracy by almost 2 m. As expected, we can also see that prediction
RMSE of both methods increases with depth.

Table 2. RMSE of Lyzenga’s and proposed model for different
water depth ranges.

Model 0-5m 5-10m 10-15m 15-20m Overall

Lyzenga’s 2.604 2.670 3.773 5.240 3.164

Proposed 2.005 2.377 2.503 3.373 2.356

Finally, to further test the robustness of the new method, we repeated the
cross-validation procedure, but reducing the size of the training set to only
5% of the total data. In this experiment, the minimum RMSE was 3.211 m
for Lyzenga’s model, and 2.718 m for the new model (obtained for α = 7).
Not surprisingly, the RMSE increased for both methods, particularly for the
proposed model. Nevertheless, the relative improvement of our model is still
substantial, around 0.5 m. Let us remark that, as illustrated by Figure 3,
such percentage of points can already be considered a very sparse sample. We
also observe that the results were again similar to the ones given in Figure 4,
and therefore, they confirm the importance of the regularization term and
the robustness of the method in relation to the regularization parameter,
since different values of α lead to almost the same RMSE.

3. Conclusion

Our results demonstrate that the modified model, with spatial variable
coefficients, is clearly more effective than the original Lyzenga’s model, given
that the observed RMSE is significantly lower. The new model is simple
and easy to apply, since the calibration of the bathymetric parameters can
be done using standard least-squares fitting with a Tikhonov regularization
term, and it requires exactly the same information as Lyzenga’s model. That
is, no additional information about optical properties are needed. Also, the
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proposed model is not highly sensitive to the choice of the regularization
parameter, and is quite robust with respect to the training set used. Despite
the promising results, these findings need to be confirmed with other data
sets. In future work, we intend to address this issue, as well as to study other
regularization schemes, which could improve even further the efficiency of the
proposed model.
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