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Abstract: We study the almost sure convergence and rates of weighted sums of
associated random variables under the classical assumption of existence of Laplace
transforms. This assumption implies the existence of every moment, so we address
the same problem assuming a suitable decrease rate on tail joint probabilities which
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1. Introduction
Many linear statistics are written as weighted sums of random variables,

raising thus the interest in the characterization of the asymptotics of such
sums conveniently normalized. Since Baum and Katz [2] proved an almost
sure result for constant weights with a normalization sequence n−1/p, where p
describes the moment condition on the variables, many authors studied this
problem. Chow [5] and Cuzick [6] obtained conditions for the convergence
for weighted sums with independent variables, later extended by Cheng [4],
Bai and Cheng [1], or Sung [13] relaxing the moment assumption. This
convergence has also been considered for dependent variables. Louhichi [9]
obtained sufficient conditions for the convergence with constant weights but
requiring only the existence of low order, less than 2, moments. These results
were, more recently, extended for weighted sums in Oliveira [11] and Çaǧın
and Oliveira [3], using an approach similar to Louhichi’s [9]. Here we follow
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(CMUC), funded by the European Regional Development Fund through the program COMPETE
and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia
under the project PEst-C/MAT/UI0324/2013.

1
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the method used in Ioannides and Roussas [8] and Oliveira [10] for the proof of
exponential inequalities, to prove conditions for the almost sure convergence
and of its rate. These conditions depend on the covariances, thus require
the existence of moments of order at least 2, and link p with the behaviour
of the weighting coefficients. We try to avoid the classical assumption of
existence of Laplace transforms, as this implies the finiteness of moments of
every order, replacing this by a polynomial decrease rate on the tail joint
probabilities, which implies only the existence of finitely many moments.

Finally, for variables without means, we prove a Marcinkiewicz-Zygmund
strong law that complements earlier results by Louhichi [9], Oliveira [11] and
Çaǧın and Oliveira [3]. Again, assuming a suitable decrease rate on the tail
joint probabilities, we find a simple version of this strong law.

The paper is organized as follows. Section 2 describes the framework and
useful preliminary results, Section 3 describes the conditions for the almost
sure convergence of weighted sums and its rates for bounded variables. This
is a tool for the results considered in Section 4 and 5 that study the cases
of variables with infinitely or only finitely many moments, extending the
characterizations of almost sure convergence and its rates. Finally, Section 6
proves a Marcinkiewicz-Zygmund law for associated variables without means.

2. Definitions and preliminary results
Let us assume that the Xn, n ≥ 1, are centered and associated random

variables and denote Sn = X1 + · · · + Xn. Let an,i, i = 1, . . . , n, n ≥ 1, be
nonnegative real numbers and define, for some α > 1, Aα

n,α = n−1
∑n

i=1 |an,i|
α.

Except in Section 6, where a simpler weighting will be considered, we will be
interested in the convergence of Tn =

∑n
i= an,iXi assuming that

Aα = sup
n
An,α <∞. (1)

This relaxes the assumption on the weights when compared to Oliveira [11]
or Çaǧın and Oliveira [3]. However, in Section 5 we will need to strengthen
this assumption on the weights, as done in [11, 3]. Remark that, due to the
nonnegativity of the weights, the variables Tn, n ≥ 1, are associated. Define
the usual Cox-Grimmett coefficients

u(n) = sup
k≥1

∑
j:|k−j|≥n

Cov(Xj, Xk). (2)
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If the random variables are stationary, then u(n) = 2
∑∞

j=n+1 Cov(X1, Xj).
As moments and, especially, covariances will play a significant role through-
out the paper, let us define, for each i, j ≥ 1,

∆i,j(u, v) = P(X1 > u,Xj > v)− P(X1 > u)P(Xj > v), u, v ∈ R, (3)

and, for x y ≥ 0,

Gi,j(x, y) =

∫ x

−x

∫ y

−y
∆i,j(u, v) dudv.

It is obvious that Cov(Xi, Xj) = Gi,j(+∞,+∞). Moreover, remark that due
to the association ∆i,j is nonnegative, which means that Gi,j is nondecreasing
in each variable.

Consider pn a sequence of natural numbers such that pn <
n
2 , rn the largest

integer less or equal to n
2pn

, and define the variables

Yn,j =

jpn∑
i=(j−1)pn+1

an,iXi, j = 1, . . . , 2rn.

These random variables are associated, due to the nonnegativity of the
weights. Moreover, if the variables Xn are uniformly bounded by c > 0,
then it is obvious that |Yn,j| ≤ cAαn

1/αpn. Finally, put

Tn,od =

rn∑
j=1

Yn,2j−1 and Tn,ev =

rn∑
j=1

Yn,2j.

We prove first an easy but useful upper bound.

Lemma 2.1. Assume the variables Xn, n ≥ 1, are centered, associated,
stationary, bounded (by c > 0) and u(0) < ∞. Then ES2

n ≤ 2c∗n, where
c∗ = c2 + u(0).

Proof : As the variables are stationary, it follows easily that ES2
n = nVar(X1)+

2
∑n−1

j=1 (n− j)Cov(X1, Xj+1) ≤ 2nc2 + 2nu(0).

The next result is an extension of Lemma 3.1 in Oliveira [10].
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Lemma 2.2. Assume the variables Xn, n ≥ 1, are centered, associated,
stationary, bounded (by c > 0), u(0) < ∞ and the nonnegative weights sat-
isfy (1). If dn ≥ 1 and 0 < λ < dn−1

dn
1

cAαn1/αpn
, then

rn∏
j=1

EeλYn,2j−1 ≤ exp
(
λ2c∗A2

αn
1+2/αdn

)
and

rn∏
j=1

EeλYn,2j ≤ exp
(
λ2c∗A2

αn
1+2/αdn

)
.

Proof : As remarked above, the variables Xn being bounded, we have |Yn,j| ≤
cAαn

1/αpn. So, using a Taylor expansion it follows that

EeλYn,2j−1 ≤ 1 + λ2EY 2
n,2j−1

+∞∑
k=2

(cAαλn
1/αpn)

k−2.

Now, EY 2
n,2j−1 =

∑
`,`′ an,`an,`′Cov(X`, X`′) ≤ n2/αA2

αES2
pn

, due to the sta-
tionarity and the nonnegativity of the weights and covariances. So, applying
Lemma 2.1, it follows that

EeλYn,2j−1 ≤ 1 +
2λ2c∗A2

αn
2/αpn

1− cAαλn1/αpn
≤ exp

(
2λ2c∗A2

αn
2/αpndn

)
.

To conclude, multiply the upper bounds and remember that 2rnpn ≤ n.

A basic tool for the analysis of the convergence and its rates is the following
inequality due to Dewan and Prakasa Rao [7].

Theorem 2.3. Assume X1, . . . , Xn are centered, associated and uniformly
bounded (by c > 0). Then, for every λ > 0,∣∣∣∣∣Eeλ∑j Xj −

∏
j

EeλXj

∣∣∣∣∣ ≤ 1

2
λ2ecλn

∑
j 6=k

Cov(Xj, Xk). (4)

3. The case of uniformly bounded variables
We assume first that there exists some c > 0 such that, with probability 1,
|Xn| ≤ c, for every n ≥ 1. This allows for a direct use of the results proved
above. We start by deriving an upper bound for the tail probabilities for
Tn,od and Tn,ev.
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Lemma 3.1. Assume the variables Xn, n ≥ 1, are centered, associated,
stationary, bounded (by c > 0) and u(0) < ∞. If the nonnegative weights
satisfy (1), dn ≥ 1 and 0 < λ < dn−1

dn
1

cAαn1/αpn
, then, for every ε > 0 and n

large enough,

P(Tn,od > n1/pε) ≤ 1

4
λ2n1+2/αA2

α exp
(

1
2cn

1+1/αAαλ− λn1/pε
)
u(pn)

+ exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
.

(5)

An analogous inequality for P(Tn,ev > n1/pε) also holds.

Proof : If we apply (4) to Tn,od we find∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣ ≤ 1

2
λ2 exp

(
cAαrnpnn

1/αλ
)∑
j 6=j′

Cov(Yn,j, Yn,j′). (6)

Now, as, for n ≥ 1 and i ≤ n, it holds that 0 ≤ an,i ≤ n1/αAn,α, we have

Cov(Yn,j, Yn,j′) ≤
∑
`,`′

an,`an,`′Cov(X`, X`′) ≤ n2/αA2
α

∑
`,`′

Cov(X`, X`′).

Put Y ∗n,j =
∑jpn

`=(j−1)pn+1X`, j = 1, . . . , rn. Then, the previous inequality
rewrites as

Cov(Yn,j, Yn,j′) ≤ n2/αA2
αCov(Y ∗n,j, Y

∗
n,j′).

Using twice the stationarity of the random variables we obtain∑
j 6=j′

Cov(Y ∗n,j, Y
∗
n,j′) = 2

rn−1∑
j=1

(rn − j)Cov(Y ∗n,1, Y
∗
n,2j−1)

and

Cov(Y ∗n,1, Y
∗
n,2j−1)

≤
pn−1∑
`=0

(pn − `)Cov(X1, X2jpn+`+1) +

pn−1∑
`=1

(pn − `)Cov(X`, X2jpn+1)

≤ pn

(2j+1)pn∑
`=(2j−1)pn+2

Cov(X1, X`).
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Inserting these inequalities in (6) we find∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣
≤ 1

2
λ2n2/αA2

αrnpn exp
(

1
2cn

1+1/αAαλ
) 2rn−1∑
`=pn+2

Cov(X1, X`)

≤ 1

4
λ2n1+2/αA2

α exp
(

1
2cn

1+1/αAαλ
)
u(pn + 2).

We can now use this together with Markov’s inequality to find that, for every
ε > 0,

P(Tn,od > n1/pε) ≤ e−λn
1/pε

∣∣∣∣∣EeλTn,od −∏
j

EeλYn,2j−1

∣∣∣∣∣+ e−λn
1/pε
∏
j

EeλYn,2j−1

≤ 1

4
λ2n1+2/αA2

α exp
(

1
2cn

1+1/αAαλ− λn1/pε
)
u(pn + 2)

+ exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
,

and remember that u(pn + 2) ≤ u(pn), due to the nonnegativity of the co-
variances.

We may now prove the almost sure convergence of n−1/pTn, assuming a
convenient decrease rate on the Cox-Grimmett coefficients.

Theorem 3.2. Assume the random variables Xn, n ≥ 1, are centered, asso-
ciated, strictly stationary and bounded (by c > 0). Assume that p < 2 and
α > 1 are such that 1

p −
1
α = 1

2 + ξ, for some ξ > 0, and u(n) ∼ ρn, for some

ρ ∈ (0, 1). If the nonnegative weights satisfy (1), then, with probability 1,
n−1/pTn −→ 0.

Proof : Consider the decomposition of Tn into the blocks Yn,j defined previ-
ously, taking pn ∼ nθ, for some max(0, 1

2 − ξ) < θ < min(1, 1
2 + ξ). It is

obviously enough to prove that both n−1/pTn,od and n−1/pTn,ev converge al-
most surely to 0. As these terms are analogous we will concentrate on the
former, starting from (5). A minimization of the exponent on the second
term of the upper bound in (5) leads to the choice

λ =
ε

2c∗A2
α

n1/p−1−2/α

dn
, (7)
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meaning that

exp
(
λ2c∗A2

αn
1+2/αdn − λn1/pε

)
= exp

(
− ε2n2ξ

4c∗A2
αdn

)
.

Assume that, for some β > 1,

ε2n2ξ

4c∗A2
αdn

= β log n ⇔ dn =
ε2

4c∗A2
αβ

n2ξ

log n
. (8)

As ξ > 0, it follows that, for n large enough, we have dn > 1 as required
by Lemma 2.2. In order to use this lemma we also need to verify that the
condition on λ is satisfied: λ < dn−1

dn
1

cAαn1/αpn
. Replacing (7) and remembering

dn is larger than 1, the assumption on Lemma 2.2 translates into

ε

2c∗A2
α

n1/p−1−2/α

dn
<
dn − 1

dn

1

cAαn1/αpn
<

1

cAαn1/αpn
.

Using now (8) to replace dn, the previous inequality is equivalent to

εn1/p−1−2/α

2c∗A2
α

<
1

cAαn1/α+θ

ε2

4c∗A2
αβ

n2ξ

log n
⇔ ε−1 ≤ 1

2cAαβ

n1/2+ξ

nθ log n
. (9)

As θ < 1
2 +ξ this upper bound grows to infinity, so this inequality is satisfied,

at least for n large enough.
We consider now the first term, involving the Cox-Grimmett coefficients,

in (5). The exponent in this term is

1

2
cn1+1/αAαλ− λn1/pε =

cε

4c∗Aα

n1/2+ξ

dn
− ε2

2c∗A2
α

n2ξ

dn
.

The second term above is, up to multiplication by 2, the exponent that was
found after the optimization with respect to λ of the exponent on the second
term of (5). So, to control the upper bound in (5) we can factor this part
of the exponential, leaving to control, after substitution the expressions for
ε and dn,

1

4
λ2n1+2/αA2

α exp

(
cβ

ε
n1/2−ξ log n

)
u(pn). (10)

As the term that we factored defines a convergent series, it is enough to
verify that (10) is bounded. Further, the polynomial part in (10) is clearly
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dominated by the exponential, thus we may drop it, verifying only that there
exists some c0 > 0,

exp

(
cβ

ε
n1/2−ξ log n

)
u(pn) ≤ c0 ⇔ cβ

ε
n1/2−ξ log n+ nθ log ρ ≤ log c0.

(11)
But this a consequence of θ > 1

2 − ξ and ρ ∈ (0, 1). Thus, given the

above choices we have that P
(
|Tn,od|n1/pε

)
≤ (c0 + 1)n−β, where β > 1,

so n−1/pTn,od −→ 0 with probability 1. Reasoning analogously we obtain the
same result on what respects n−1/pTn,ev, so the proof is completed.

A small modification of the previous arguments allows for the identification
of a convergence rate for the almost sure convergence just proved.

Theorem 3.3. Assume the random variables Xn, n ≥ 1, are centered, asso-
ciated, strictly stationary and bounded (by c > 0). Assume that p < 2 and
α > 1 are such that 1

p −
1
α = 1

2 + ξ, for some ξ > 0, and u(n) ∼ ρn, for some

ρ ∈ (0, 1). If the nonnegative weights satisfy (1), then, with probability 1,
n−1/pTn −→ 0 with convergence rate log n

nξ−δ
, for arbitrarily small δ > 0.

Proof : We start again as in the proof of Theorem 3.2 choosing θ = 1
2 + δ,

with 0 < δ < min(1
2 , ξ) and pn ∼ nθ. Now, on (8), allow ε to depend on n:

ε2
n =

4βc∗A2
αdn log n

n2ξ
.

The verification of the assumptions of Lemma 2.2, given above by (9), be-
comes now:

nξ

2(βc∗)1/2Aαd
1/2
n (log n)1/2

≤ 1

2cβAα

n
1
2+ξ

n
1
2+δ log n

,

which is equivalent to dn ≥ c2β
c∗ n

2δ log n. Thus, as we are interested in a

slow growing sequence, we choose dn ∼ n2δ log n. As a consequence, ε2
n ∼

n2(δ−ξ)(log n)2 −→ 0, given the choice for δ. To complete the proof, it is
enough to bound exp(1

2cn
1+1/αλ)u(pn). It is easily verified that n1+1/αλ =

1
cn

1/2−δ, so,

1

2
cn1+1/αλ+ log u(pn) ∼ n1/2−δ + nθ log ρ = n1/2−δ + n1/2+δ log ρ.

But, the boundedness of this term is an immediate consequence of ρ ∈ (0, 1)
and δ > 0, so the proof is concluded.



WEIGHTED SUMS AND A MARCINKIEWICZ-ZYGMUND LAW 9

4. General random variables with infinitely many mo-
ments

We begin by treating the case of general random variables assuming the
existence of Laplace transforms in some neighbourhood of the origin. This is
a strong assumption, as it implies the existence of moments of every order.
But it is in this case that we can prove results that fully extend the ones
we found in the previous section. Let us assume the random variables Xn,
n ≥ 1, are centered, strictly stationary and

∃M > 0, η > 0, sup
|t|≤η

EetX1 ≤M < +∞. (12)

For the present framework we can not use directly Lemma 3.1, as this re-
sult depends on the boundedness of the variables. To circumvent this diffi-
culty we introduce a truncation on the random variables, allowing to treat
these truncated variables using the results in Section 3, and then control
the remaining tails. Define, for each c > 0, the nondecreasing functions
gc(u) = max(min(u, c),−c), u ∈ R, which perform a truncation at level
c. Let cn, n ≥ 1, be a sequence of nonnegative real numbers such that
cn −→ +∞ and define, for each i, n ≥ 1,

X1,i,n = gcn(Xi) = −cnI(−∞,−cn)(Xi) +XiI[−cn,cn](Xi) + cnI(cn,+∞)(Xi),

X2,i,n = (Xi − cn)I(cn,+∞)(Xi), X3,i,n = (Xi + cn)I(−∞,−cn)(Xi),
(13)

where IA represents the characteristic function of the set A. Notice that the
above transformations are monotonous, so these new families of variables
are still associated. Morevoer, it is obvious that, for each n ≥ 1 fixed, the
variables X1,1,n, . . . , X1,n,n are uniformly bounded. Consider, as before, a
sequence of natural numbers pn such that, for each n ≥ 1, pn <

n
2 and define

rn as the largest integer less or equal to n
2pn

. For q = 1, 2, 3, and j = 1, . . . , 2rn,
define

Yq,j,n =

jpn∑
i=(j−1)pn+1

an,i (Xq,i,n − EXq,i,n) , (14)

and

Tq,n,od =

rn∑
j=1

Yq,2j−1,n, Tq,n,ev =

rn∑
j=1

Yq,2j,n, (15)
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For q = 2, 3, as we have assumed that the variables are strictly stationary,
we find

P

(∣∣∣∣∣
n∑
i=1

an,i (Xq,i,n − EXq,i,n)

∣∣∣∣∣ > n1/pε

)

≤ nP

(
|Xq,1,n − EXq,1,n| >

n1/p−1ε

Aα

)
≤ n3−2/pA2

α

ε2
Var(Xq,1,n) ≤

n3−2/pA2
α

ε2
EX2

q,1,n.

The following result is an easy extension of Lemma 4.1 in [10].

Lemma 4.1. Let Xn, n ≥ 1, be strictly stationary random variables satisfy-
ing (12). Then, for t ∈ (0, η],

P

(∣∣∣∣∣
n∑
i=1

an,i (Xq,i,n − EXq,i,n)

∣∣∣∣∣ > n1/pε

)
≤ 2MA2

αn
3−2/pe−tcn

t2ε2
, q = 2, 3. (16)

We may now prove the extensions of the results proved for uniformly
bounded sequences of random variables. The main argument in the proofs in
Section 3 was the control of the exponent in the exponential upper bounds
found. The bound obtained in (16) is, essentially, of the same form, depend-
ing on the choice of the truncating sequence. So, we will obtain the same
characterizations for the almost sure convergence and for its rate, as in the
case of uniformly bounded sequences of random variables. Remark that, due
to the association of the variables,

Cov(X1,1,n, X1,j,n) = G1,j(cn, cn) ≤ G1,j(+∞,+∞) = Cov(X1, Xj).

Obviously, this inequality holds even if Cov(X1, Xj) is not finite.

Theorem 4.2. Assume the random variables Xn, n ≥ 1, are centered, associ-
ated, strictly stationary and satisfy (12) with η > 5. Assume that 2

η−4 ≤ p < 2

and α > 1 are such that 1
p −

1
α = 1

2 + ξ, for some ξ > 0, and u(n) ∼ ρn, for

some ρ ∈ (0, 1). If the nonnegative weights satisfy (1), then, with probability
1, n−1/pTn −→ 0.

Proof : To control the tail terms, that is, Tq,n,od and Tq,n,ev, for q = 2, 3,
choose the truncating sequence cn = log n and t = β > 4 + 2

p . Thus ac-
cording to Lemma 4.1, the probabilities depending on these tail terms are
bounded above by n−β−3+2/p, which defines a convergent series. Concerning
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the remaining term, we follow the proof of Theorem 3.2 keeping in mind
that c and c∗ now depend on n. Taking into account Lemma 2.1, we have
c∗n = c2

n + u(0) ∼ (log n)2. Thus, instead of (7), we find the choice

λ =
n1/p−1−2/αε

2c∗nA
2
αdn

∼ n1/p−1−2/αε

dn(log n)2
,

and

n2ξε2

4A2
αdn(log n)2

= β log n ⇔ dn =
ε2

4βA2
α

n2ξ

(log n)3
.

As ξ > 0, this means that dn will, for n large enough, be larger that 1, as
required by Lemma 2.2. To define the size if the blocks used to decompose
the summations, choose pn ∼ nθ, for some max(0, 1

2 − ξ) < θ < min(1, 1
2 + ξ).

The condition on λ required by Lemma 2.2 translates now into

ε−1 ≤ n1/2+ξ

2cnβAαnθ log n
∼ n1/2+ξ−θ

(log n)2
,

thus, is verified, at least for n large enough. We still have to control the
behaviour of the term corresponding to (11). The exponent in this expression
takes now the form cnn

1+1/αλ ∼ n1−1/p+1/α(log n)2, that is, the same we found
in course of proof of Theorem 3.2 multiplied by a logarithmic factor that, as
is easily verified, does not affect the remaining argument of that proof.

We state next the description of the convergence rate. The proof follows
easily along the arguments used to prove Theorem 3.3 with adaptations sim-
ilar to the ones used in the previous proof.

Theorem 4.3. Assume the random variables Xn, n ≥ 1, are centered, associ-
ated, strictly stationary and satisfy (12) with η > 5. Assume that 2

η−4 ≤ p < 2

and α > 1 are such that 1
p −

1
α = 1

2 + ξ, for some ξ > 0, and u(n) ∼ ρ−n, for

some ρ ∈ (0, 1). If the nonnegative weights satisfy (1), then, with probability

1, n−1/pTn −→ 0 with convergence rate (log n)2

nξ−δ
, for arbitrarily small δ > 0.

The above statements includes an assumption on the Cox-Grimmett coef-
ficients of the original untruncated variables. In fact, this assumption may
be relaxed, as we only need the coefficients corresponding to the truncated
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variables defined as, assuming already the stationarity of the variables,

u∗(n) = 2
+∞∑

j=n+1

Cov(X1,1,n, X1,j,n)

= 2
+∞∑

j=n+1

G1,j(cn, cn) ≤ 2
+∞∑

j=n+1

G1,j(+∞,+∞) = u(n).

5. General random variables with finitely many moments
Assumption (12) used in the previous section is a rather strong one, as it

implies the existence of every moment. Moreover, Lemma 4.1 does not use
the dependence structure of the random variables to control the tail terms.
In this section we will relax the assumptions on moments, thus requiring a
different control on the tail terms. Instead of (12), we will assume a decrease
rate on the tail joint probabilities:

sup
i,j≥1

∆i,j(x, y) = O
(
max(|x| , |y|)−a

)
, as max(|x| , |y|) −→ +∞. (17)

It is easily seen that this tail behaviour only implies the existence of moments
of order k < a. Besides, under (17), for q = 2, 3, and i, j ≥ 1,

Cov(Xq,i,n, Xq,j,n) ≤ c1

∫ +∞

cn

∫ +∞

cn

max(|x| , |y|)−a dxdy =
8c1

a− 2
c2−a
n , (18)

if a > 2, where c1 > 0 is a generic constant independent from i, j and n.
The control of the tail terms will be achieved through a maximal inequality

on weighted partial sums. Corresponding to the variables defined in (13),
introduce the partial sums Tq,n =

∑n
i=1 an,i(Xq,i,n−EXq,i,n), n ≥ 1, q = 1, 2, 3.

The following is an adapted version of Lemma 2.1 in Oliveira [11].

Lemma 5.1. Let Xn, n ≥ 1, be centered and associated random variables.
Assume the weights are such that

an,i ≥ 0, and an,i ≥ an−1,i, i < n, n ≥ 1. (19)

Then, for q = 1, 2, 3, E
(
maxk≤n T

2
q,k

)
≤ ET 2

q,n.

An immediate consequence is the following upper bound for the tail terms
considered previously.

Lemma 5.2. Let Xn, n ≥ 1, be centered and associated random variables
satisfying (17) with a > 2. Assume p < 2 and α > 1 are such that 1

p −
1
α =
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1
2 +ξ, for some ξ > 0, and the weights satisfy (1) and (19). Then there exists
a generic constant c1 > 0 such that, for q = 2, 3,

P
(
|Tq,n| > n1/pε

)
≤ 8c1

(a− 2)ε2

1

n2ξ−1ca−2
n

. (20)

Proof : This is a straightforward consequence of Lemma 5.1, an,i ≤ n1/αAα

and (18).

We may now state sufficient conditions for the almost sure convergence of
n−1/pTn.

Theorem 5.3. Assume the random variables Xn, n ≥ 1, are centered, asso-
ciated, strictly stationary satisfying (17) with a > 2. Assume that p < 2 and
α > 1 are such that 1

p −
1
α = 1

2 + ξ, for some ξ ∈
(

2
a , 1
)
, and u(n) ∼ ρn, for

some ρ ∈ (0, 1). If the nonnegative weights satisfy (1) and (19), then, with
probability 1, n−1/pTn −→ 0.

Proof : Choose ca−2
n = n2−2ξ(log n)b, for some b > 1. As ξ < 1, the truncating

sequence cn does converge to +∞. Replacing this expression in (18), it follows
that, for q = 2, 3,

+∞∑
n=1

P
(
|Tq,n| > n1/pε

)
≤ 8c1

(a− 2)ε2

+∞∑
n=1

1

n(log n)b
<∞.

Thus, it remains to prove that
∑

n P
(
|T1,n| > n1/pε

)
<∞. For this purpose,

we will go along the arguments for the proof of Theorem 3.2. Choose pn ∼ nθ

with 1
2 − ξ + 2−2ξ

a−2 < θ < 1
2 + ξ − 2−2ξ

a−2 (it is easily verified that, as 2 < aξ < 1,
this interval is nonempty). The minimization of the exponent in (5) leads to

λ = ε
2A2

α

n1/p−1−2/α

c2ndn
, which gives raise to the term exp

(
− ε2n2ξ

4A2
αc

2
ndn

)
on the upper

bound. Thus, we will be interested in choosing the sequences such that, for
some β > 1, ε2n2ξ

4c2nA
2
αdn

= β log n, that is

dn =
ε2

4A2
αβ

n2ξ

c2
n log n

=
ε2

4A2
αβ
n2ξ− 4(1−ξ)

a−2 (log n)−(1+2b/(a−2)). (21)

As aξ > 2 it follows that ξ − 21−ξ
a−2 > 0, so dn chosen as above converges to

+∞, becoming, for n large enough, larger than 1, as required by Lemma 2.2.
This lemma also requires the verification of a condition on λ. Reasoning as



14 T. ÇAǦIN AND P. E. OLIVEIRA

in the proof of Theorem 3.2, this means that instead of (9) we need to verify
that

ε−1 ≤ 1

2Aαβ

n1/2+ξ

nθcn log n
=

1

2Aαβ
n

1
2+ξ−θ− 2−2ξ

a−2 (log n)−(1+b/(a−2)).

As θ < 1
2+ξ−2−2ξ

a−2 the exponent of n in the previous expression is nonnegative,
so this condition will be met, at least for n large enough. To conclude the
proof, we still have to bound the term

1

4
λ2n1+2/αA2

α exp

(
β

ε
cnn

1/2−ξ log n

)
u(pn),

where, as before, we may drop the polynomial term outside the exponential.
After taking logarithms, the boundedness of this term is equivalent to finding
an upper bound for

cnn
1/2−ξ log n+ nθ log ρ = n

1
2−ξ+

2−2ξ
a−2 (log n)1+ b

a−2 + nθ log ρ.

But, taking into account that ρ ∈ (0, 1) and the choice for θ, the expression
above is indeed bounded.

We may now adapt the arguments to characterize a convergence rate.

Theorem 5.4. Assume the random variables Xn, n ≥ 1, are centered, as-
sociated, strictly stationary satisfying (17) with a > 2. Assume that p < 2
and α > 1 are such that 1

p −
1
α = 1

2 + ξ, for some ξ > 2
a, and u(n) ∼ ρn, for

some ρ ∈ (0, 1). If the nonnegative weights satisfy (1) and (19), then, with

probability 1, n−1/pTn −→ 0, with convergence rate (log n)1+η1

nξ−2/a−η2
, for arbitrarily

small η1, η2 > 0.

Proof : For the block decomposition choose pn ∼ nθ, where θ = 1
2 + δ, with

0 < δ < min
(

1
2 ,

aξ−2
a−2

)
. We will control the probabilities of Tq,n using the

arguments of Theorem 3.2 for q = 1 and the previous theorem for q = 2, 3.
From the case q = 1, it follows that we want to choose

ε2
n =

4A2
αβc

2
ndn log n

n2ξ
,

for some β > 1, where dn > 1 and cn −→ +∞. As in the proof of The-
orem 3.3, we need to choose dn = βn2δ log n to fulfill the assumptions of
Lemma 2.2. Now, to define the truncating sequence cn we use inequality (20),
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the representation for εn above and, as done in the proof of Theorem 3.3,
dn = βn2δ log n, to find

+∞∑
n=1

P
(
|T1,n| > n1/pε

)
≤ 8c1

(a− 2)

+∞∑
n=1

1

ε2
nn

2ξ−1ca−2
n

=
8c1

a− 2

+∞∑
n=1

n

dncan log n

=
8c1

a− 2

+∞∑
n=1

1

n2δ−1can(log n)2
.

Choose can = n2(1−δ)(log n)b, for some b > 0, so the series above is convergent.
With this choice we have

ε2
n = 4A2

αβ
2 (log n)2+2b/a

n2(ξ−δ)−4(1−δ)/a ,

which identifies the convergence rate stated by taking η1 = b
a and η2 = δ(1 +

2
a). To conclude we still need to control the term exp

(
Aα
2 cnn

1+1/αλ
)
u(pn).

Now, Aα
2 cnn

1+1/αλ = β1/2

2 n1/2−ξ, so

Aα

2
cnn

1+1/αλ+ n1/2+δ log ρ =
β1/2

2
n1/2−ξ + n1/2+δ log ρ,

is bounded as ρ ∈ (0, 1).

Corollary 3.5 in Çaǧın and Oliveira [3] is similar to our Theorems 4.2 and
5.3. The result in [3], besides always assuming the weights satisfy (1), (19)
and p ∈ (1, 2) assumed

+∞∑
n=1

∫ +∞

(n+1)(α−2p)/(αp)
v

(α−2)p
α−2p −3G1,n(v, v) dv <∞.

It is easily verified that if Cov(X1, Xn) = ρn, for some ρ ∈ (0, 1), the above
assumption is satisfied whenever α > 2p

2−p , but this is equivalent to 1
p −

1
α >

1
2 . So, our Theorems 4.2 and 5.3 complement Corollary 3.5 in Çaǧın and
Oliveira [3], strengthening the moment assumptions and enlarging the choice
for the weights and the variability of p.
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6. A Marcinkiewicz-Zygmund law for random variables
without means

In the previous sections we considered random variables with at least a
finite moment of order 2. We now lower this requirement to prove some
Marcinkiewicz-Zygmund strong laws of large numbers. The method of ap-
proach is different, based on Shen, Wang, Yang, Hu [12] where these authors
were interested in negatively associated random variables. The dependence
structure studied in [12] meant that the control of variances of sums is easier
than in the present framework, as these variances are smaller than the ones
we find for sums of independent random variables. Thus some extra care is
required to control the moments below. This methodology does not allow for
doubly indexed weights as in the previous sections, so we will obtain results
with a somewhat more limited scope with respect to Oliveira [11] or Çaǧın,
Oliveira [3]. However, we will complement a Marcinkiewicz-Zygmund strong
law proved in Louhichi [9] by allowing normalizations of the form n1/p with
p < 1 for random variables that do not have means. We start by some simple
general results on almost sure convergence.

Lemma 6.1. Let Xn, n ≥ 1, be square integrable and associated random
variables. If

∑∞
i,j=1 Cov(Xi, Xj) < ∞ then

∑∞
i,j=n+1 Cov(Xi, Xj) −→ 0 as

n −→∞.

Proof : Indeed, given the association, it follows that, when n −→ +∞,

+∞∑
i,j=n+1

Cov(Xi, Xj) ≤
+∞∑
i,j=1

Cov(Xi, Xi)−
n∑

i,j=1

Cov(Xi, Xj) −→ 0.

We may now state a general convergence result, extending classical char-
acterizations for series of independent random variables.

Theorem 6.2. Let Xn, n ≥ 1, be centered, square integrable and associ-
ated random variables. If

∑∞
i,j=1 Cov(Xi, Xj) ≤ ∞ then Sn is almost surely

convergent (or, alternatively,
∑

nXn <∞ almost surely)
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Proof : We will prove that Sn is almost surely Cauchy, from what the conver-
gence follows. For every ε > 0 we have that

P

(
sup
k,m≥n

|Sk − Sm| > ε

)
≤ P

(
sup
k≥n
|Sk − Sn| >

ε

2

)
+ P

(
sup
m≥n
|Sm − Sn| >

ε

2

)
.

Both terms on the right hand side have the same form, so it is enough to
treat one of them. It is obvious that

P

(
sup
k≥n
|Sk − Sn| >

ε

2

)
= lim

N→∞
P

(
max
n≤k≤N

|Sk − Sn| >
ε

2

)
.

So, using Markov inequality and Lemma 5.1 (define, for this purpose, all the
weights equal to 1), and applying Lemma 6.1,

P

(
sup
k≥n
|Sk − Sn| >

ε

2

)
≤ lim

N→∞

4

ε2
E

(
max
n≤k≤N

|Sk − Sn|2
)
≤ lim

N→∞

8

ε2
E |SN − Sn|2

= lim
N→∞

8

ε2

N∑
i,j=n+1

E(XiXj) ≤
8

ε2

+∞∑
i,j=n+1

E(XiXj)

=
8

ε2

+∞∑
i,j=n+1

Cov(Xi, Xj) −→ 0.

Thus, for each ε > 0, we have P
(
supk,m≥n |Sk − Sm| > ε

)
−→ 0, that is,

the sequence Sn is Cauchy in probability. Now, as supk,m≥n |Sk − Sm| is
decreasing as n increases, it follows that Sn is indeed Cauchy with probability
one.

This result gives way to prove a version of the Three Series Theorem for
associated sequences. Recall the functions gc(u) = max(min(u, c),−c), u ∈
R, where c > 0 is fixed, and remember that if the original variables are
associated then, as gc is nondecreasing, the sequence gc(Xn) is also associated.
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Theorem 6.3. Let Xn, n ≥ 1, be centered and associated random variables.
Assume that for some c > 0 we have
+∞∑
n=1

P (|Xn| > c) <∞,
+∞∑
n=1

Egc(Xn) <∞,
+∞∑
i,j=1

Cov (gc(Xi), gc(Xj)) <∞.

(22)
Then Sn converges almost surely (or, alternatively,

∑
nXn < ∞ almost

surely).

Proof : We follow the classical arguments to extend the well known result
for independent variables. As the truncated variables gc(Xn), n ≥ 1, are
associated, it follows from Theorem 6.2 that

∑n
i=1 (gc(Xi)− Egc(Xi)) con-

verges almost surely, thus the same holds for
∑n

i=1 gc(Xi). Moreover, from
the assumptions, we have

∑
n P (Xn 6= gc(Xn)) =

∑
n P (|Xn| > c) <∞, thus

the Borel-Cantelli Lemma implies that P (Xn 6= gc(Xn) i.o.) = 0. Hence, the
series

∑
nXn converges whenever

∑
n gc(Xn) does, so the result follows.

As for independent variables, the previous result enables the control of
weighted sums of the form

∑
n
Xn

an
. We will assume the weights an > 0, for

every n ≥ 1, so that the quotients Xn

an
, n ≥ 1, are still associated. Introduce

now a new sequence of associated random variables Zn = g1(
Xn

an
), n ≥ 1.

Note that the truncation at level 1 means no less of generality as truncation
at other level may be achieved replacing an by can. In order to prepare for
the convergence result, we need some auxiliary inequalities.

Lemma 6.4. Let h(·) be an even function that is nondecreasing for x > 0

and such that x
h(x) is also nondecreasing for x > 0. Then |EZn| ≤ E

(
h(Xn)
h(an)

)
and EZ2

n ≤ E
(
h(Xn)
h(an)

)
.

Proof : Write EZn = E
(
Xn

an
I|Xn|≤an

)
+ E

(
I|Xn|>an

)
. As h is even and non-

decreasing for x > 0, an < |Xn| implies h(an) ≤ h(Xn) thus E
(
I|Xn|>an

)
≤

E
(
h(Xn)
h(an) I|Xn|>an

)
. Now, as x

h(x) is nondecreasing for x > 0,

|Xn| ≤ an ⇒ |Xn|
h(Xn)

≤ an
h(an)

⇔ h(an)

h(Xn)
≤ an
|Xn|

⇔ |Xn|
an
≤ h(Xn)

h(an)
.
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Hence
∣∣∣E(Xn

an
I|Xn|≤an

)∣∣∣ ≤ E
(
h(Xn)
h(an) I|Xn|≤an

)
, so summing the two upper bounds,

the first inequality is proved. On what concerns the second inequality, write

EZ2
n = E

(
X2
n

a2n
I|Xn|≤an

)
+E

(
I|Xn|>an

)
and repeat the arguments above noticing

that, when |Xn| ≤ an we have, as h is nondecreasing for x > 0, 0 ≤ h(Xn)
h(an) ≤ 1,

so X2
n

a2n
≤ (h(Xn))2

(h(an))2 ≤
h(Xn)
h(an) .

Lemma 6.5. Assume the same conditions as in Lemma 6.4. Then, for every

i 6= j, |E (ZiZj)| ≤ E
(
h(Xi)
h(ai)

h(Xj)
h(aj)

)
.

Proof : Decompose, analogously as before, E (ZiZj) = E
(
Xi

ai

Xj

aj
I|Xi|≤aiI|Xj |≤aj

)
+

E
(
Xi

ai
I|Xi|≤aiI|Xj |>aj

)
+ E

(
Xj

aj
I|Xi|>aiI|Xj |≤aj

)
+ E

(
I|Xi|>aiI|Xj |>aj

)
. Reasoning

as in the proof of Lemma 6.4 we can get the following inequalities:∣∣∣∣E(Xi

ai

Xj

aj
I|Xi|≤aiI|Xj |≤aj

)∣∣∣∣ ≤ E

(
h(Xi)

h(ai)

h(Xj)

h(aj)
I|Xi|≤aiI|Xj |≤aj

)
,∣∣∣∣E(Xi

ai
I|Xi|≤aiI|Xj |>aj

)∣∣∣∣ ≤ E

(
h(Xi)

h(ai)

h(Xj)

h(aj)
I|Xi|≤aiI|Xj |>aj

)
,∣∣∣∣E(Xj

aj
I|Xi|>aiI|Xj |≤aj

)∣∣∣∣ ≤ E

(
h(Xi)

h(ai)

h(Xj)

h(aj)
I|Xi|>aiI|Xj |≤aj

)
,

∣∣E (I|Xi|>aiI|Xj |>aj
)∣∣ ≤ E

(
h(Xi)

h(ai)

h(Xj)

h(aj)
I|Xi|>aiI|Xj |>aj

)
.

Summing up these inequalities the conclusion of the lemma follows.

We may now state a general convergence result.

Theorem 6.6. Let h(·) be an even function that is nondecreasing for x > 0
and such that x

h(x) is also nondecreasing for x > 0. Assume that

E

(
+∞∑
n=1

h(Xn)

h(an)

)2

<∞. (23)

Then
∑

n
Xn

an
is almost surely convergent.
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Proof : We will verify that the Zn random variables satisfy the assumptions
of Theorem 6.3. As what regards the first assumption, uisng Markov’s in-
equality,

+∞∑
n=1

P (|Zn| > 1) =
+∞∑
n=1

P (h(Xn) > h(an))

≤
+∞∑
n=1

E(h(Xn))

h(an)
= E

(
+∞∑
n=1

h(Xn)

h(an)

)
<∞,

as this summation is assumed to be square integrable. The second summation
in the assumptions of Theorem 6.3 is controlled applying twice the first upper
bound proved in Lemma 6.4:

+∞∑
n=1

|EZn| ≤ 2
+∞∑
n=1

E

(
h(Xn)

h(an)

)
<∞.

Finally,
+∞∑
i,j=1

Cov(Zi, Zj)

≤
+∞∑
i,j=1

(|E (ZiZj)|+ |EZi| |EZj|)

≤
+∞∑
i=1

Eh(Xi)

h(ai)
+
∑
i6=j

E

(
h(Xi)

h(ai)

h(Xj)

h(aj)

)
+

+∞∑
i,j=1

Eh(Xi)

h(ai)

Eh(Xj)

h(aj)

≤
+∞∑
i=1

Eh(Xi)

h(ai)
+ E

(
+∞∑
i=1

h(Xi)

h(ai)

)2

+

(
+∞∑
i=1

Eh(Xi)

h(ai)

)2

<∞ .

Applying now Theorem 6.3, the present result follows.

Corollary 6.7. Let h(·) be an even function that is nondecreasing for x > 0
and such that x

h(x) is also nondecreasing for x > 0. Assume that (23) holds

and the weights an ↗ +∞. Then, a−1
n Sn −→ 0 almost surely.

Proof : Apply Kronecker’s Lemma to the conclusion of Theorem 6.6.

We can find a condition for the convergence of
∑n

i=1
Xi

ai
that is a somewhat

weaker than (23) or, at least, may be written in a weaker form. It follows
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from the previous bounds that, for i 6= j,

Cov(Zi, Zj) ≤ |E(ZiZj)|+ |EZi| |EZj|

= Cov

(
h(Xi)

h(ai)
,
h(Xj)

h(aj)

)
+ 2

Eh(Xi)

h(ai)

Eh(Xj)

h(aj)
.

Hence

+∞∑
i,j=1

Cov(Zi, Zj) ≤
+∞∑
i=1

Eh(Xi)

h(ai)
+

+∞∑
i,j=1

Cov

(
h(Xi)

h(ai)
,
h(Xj)

h(aj)

)
+2

(
+∞∑
i=1

Eh(Xi)

h(ai)

)2

.

We thus have the following alternative result.

Corollary 6.8. Let h(·) be an even function that is nondecreasing for x > 0
and such that x

h(x) is also nondecreasing for x > 0. Assume that

+∞∑
i,j=1

Cov

(
h(Xi)

h(ai)
,
h(Xj)

h(aj)

)
<∞ and

+∞∑
i=1

Eh(Xi)

h(ai)
<∞. (24)

Then
∑

n
Xn

an
is almost surely convergent. Moreover, if additionally the weights

an ↗ +∞, then a−1
n Sn −→ 0 almost surely.

We may now prove first a result for general weights and identically dis-
tributed variables.

Theorem 6.9. Let Xn, n ≥ 1, be identically distributed and associated ran-
dom variables and 0 < q ≤ 1 be such that E |X1|q <∞. Assume the positive
weights an are such that

+∞∑
n=1

1

aqn
<∞ and

∑
i<j

1

aiaj
Gi,j(ai, aj) <∞.

Then
∑

n
Xn

an
is almost surely convergent. Moreover, if additionally the weights

an ↗ +∞, then a−1
n Sn −→ 0 almost surely.

Proof : Choose h(x) = |x|q, fulfilling the assumptions on h of the preceding
results. Then, the second assumption in (24) rewrites as

+∞∑
n=1

E |X1|q

aqn
<∞.
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As what regards the first inequality in (24), we go back to Cov(Zi, Zj). We
may write, using the ∆i,j functions defined in (3),

Cov(Zi, Zj) =

∫ 1

−1

∫ 1

−1

∆i,j(aiu, ajv) dudv

=
1

aiaj

∫ ai

ai

∫ aj

−aj
∆i,j(u, v) dudv =

1

aiaj
Gi,j(ai, aj).

Finally, using the second inequality from Lemma 6.4,

+∞∑
i,j=1

Cov(Zi, Zj) =
+∞∑
i=1

Var(Zi) + 2
∑
i<j

1

aiaj
Gi,j(ai, aj)

≤
+∞∑
i=1

EZ2
i + 2

∑
i<j

1

aiaj
Gi,j(ai, aj)

≤ E |X1|q
+∞∑
i=1

1

aqi
+ 2

∑
i<j

1

aiaj
Gi,j(ai, aj) <∞,

so the proof is concluded.

Choosing now a suitable sequence of weights we prove a Marcinkiewicz-
Zygmund strong law requiring, at most, the existence of means.

Corollary 6.10. Let Xn, n ≥ 1, be identically distributed and associated
random variables and 0 < p < q ≤ 1 be such that E |X1|q <∞. Assume that∑

i<j

1

i1/pj1/p
Gi,j(i

1/p, j1/p) <∞. (25)

Then n−1/pSn −→ 0 almost surely.

Proof : With respect to the proof of Theorem 6.9 choose an = n1/p. Then∑
n

1
aqn

=
∑

n
1

nq/p
<∞, thus the assumptions of Theorem 6.9 are satisfied.

This result complements Theorem 1 in Louhichi [9], where it was assumed
that E |X1|q <∞, for q ∈ [1, 2), and a suitable increase rate, similar to (25),
on the truncated covariances.

If we assume a convenient decrease rate on the joint tail probabilities we
may even verify that (25) holds.
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Corollary 6.11. Let Xn, n ≥ 1, be identically distributed and associated
random variables and 0 < p < q ≤ 1 be such that E |X1|q <∞. Assume that
(17) holds for some a > 2p. Then n−1/pSn −→ 0 almost surely.

Proof : We need to verify that (25) holds. From (17) it follows that there
exists some constants u0 > 0 and c1 > 0 such that for |u| , |v| ≥ u0 and every
i, j ≥ 1 we have ∆i,j(u, v) ≤ c1 max (|u| , |v|)−a. As, obviously, for every
u, v ∈ R and i, j ≥ 1, ∆i,j(u, v) ≤ 1, we have

Gi,j(i
1/p, j1/p)

= u2
0 + 2c1

∫ i1/p

u0

∫ u

−u
dv |u|−a du+ 2c1

∫ i1/p

u0

∫ v

−v
du |v|−a dv

+2c1

∫ j1/p

i1/p

∫ i1/p

−i1/p
du v−a dv

=

(
u2

0 −
8c1

2− a
u2−a

0

)
+ c1

(
8

2− a
− 4

1− a

)
i
2−a
p +

4c1

1− a
i1/pj

1−a
p .

Replacing this in (25) and dropping the constants, we need to control:

•
∑
i<j

i−1/pj−1/p ≤ 1

2

∑
i 6=j

i−1/pj−1/p +
1

2

∑
i

i−2/p =
1

2

(∑
i

1

i1/p

)2

< ∞,

as p < 1;

•
∑
i<j

i
2−a
p i−1/pj−1/p=

∞∑
i=1

i
1−a
p

∞∑
j=i

j−1/p ∼
∞∑
i=1

i
1−a
p i1−1/p=

∞∑
i=1

i1−a/p <∞,

as a > 2p implies 1− a
p < −1;

•
∑
i<j

i−1/pj−1/pi1/pj
1−a
p =

∑
i<j

j−
a
p <

∞∑
j=2

j∑
i=1

j−a/p =
∞∑
j=2

j(1−a/p) <∞, as

a > 2p,

so the proof is concluded.
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