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This letter brings into discussion an article by C. Fonseca, published in
2005 [2], where an attempt is made to prove a particular case of a conjec-
ture of R. Bapat [1] on the µ-permanent of Hermitian positive definite ma-
trices. Unfortunately, we show with counterexamples that all C. Fonseca’s
µ-permanental formulas are wrong, as well as all statements leading to the
attempted proof.

We shall use the notations, page numbers and result numbers of [2]. The
µ-permanent of a square matrix A is defined by

Pµ(A) =
∑

σ∈Sn
µ`(σ)

∏n
i=1 aiσ(i) ,

where `(σ) denotes the number of inversions of the permutation σ. So Pµ(A)
is a polynomial in n2 + 1 variables, the entries of A and the new variable µ.
The determinant and the permanent are specializations of the µ-permanent,
and the latter is a much trickier function than the two former notorious pro-
totypes. For example, while Laplace expansions along any row [column] are
valid for the determinant and the permanent, the corresponding expansions
for the µ-permanent only stand for the first and the last row [column] of
A. The first µ-permanental formula of C. Fonseca (namely, the second dis-
played in p. 227) is in fact a set of n expansion formulas, one for each value
of i ∈ {1, . . . , n}; each such formula will be referred to as F (n, i). Formula
F (n, i), which involves the set of cycles of the digraph of A through vertex i,
is well-known for the determinant and holds as well for the permanent, but
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it fails in general for the µ-permanent. The following matrices are counterex-
amples to the formulas F (3, 2) and F (5, 1), respectively:

K =

[
0 0 1
0 1 0
1 0 0

]
and L =


0 0 1 1 0
0 0 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 0 0 0

 .
It can be proven that Pµ(A8) = Pµ(A), where A8 is the skew-transpose of A,
i.e., the matrix of entries a8ij = an−j+1,n−i+1; moreover, if X is a counterex-
ample to F (n, i), then X 8 is a counterexample to F (n, n− i+ 1), and X⊕ Im
is a counterexample to F (n+m, i). Applying this and (A⊕B)8 = B8⊕A8 to
the counterexamples K,L we get counterexamples to all F (n, i) except for
(n, i) ∈ {(3, 1), (3, 3), (4, 1), (4, 4)}. As all these counterexamples are sym-
metric {0, 1}-matrices, theorem 3.2 is false for the indicated (n, i).

For a permutation σ ∈ Sn, let Πσ denote the permutation matrix corre-
sponding to σ (Πσ has ij-entry δi,σ(j)); then Pµ(Πσ) = µ`(σ). Moreover, Πσ

is symmetric iff σ is a product of pairwise disjoint transpositions. For i = 1
(and hence, by skew-transposition, for i = n), corollary 3.3 holds as a par-
ticular case of a result of A. Lal [3, lemma 3.3.1]. But corollary 3.3 fails for
all other i, and all trees having an edge {p, q} such that p < i < q, as the
counterexample Πτ shows, for τ = (p q).

Auspiciously the decisive argument of page 228 does not use the damaging
previous formulas; it uses the correct formula of A. Lal (the case i = 1 of
corollary 3.3). But further errors are committed which we do not analyze
here. Instead, we exhibit counterexamples to the resulting lemma 4.1. Con-
sider the n × n matrix Πχ, where χ is the product of two disjoint trans-
positions, say χ = τ1τ2, where τ1 = (w1 v1) and τ2 = (w2 v2) satisfy
[w1, v1] ∩ [w2, v2] 6= ∅. The calculations to follow depend on the relative
positions of w1, w2, v1, v2; we may assume, without loss of generality, that
w1 < w2 < v1 and w2 < v2. So we essentially have two cases: when
w1 < w2 < v1 < v2, and when w1 < w2 < v2 < v1. In both cases, the
reader may easily prove that the derivative formula of lemma 4.1 fails for the
matrix Πχ. So we may say that lemma 4.1 is false for every tree T having
at least two disjoint edges, {w1, v1}, {w2, v2}, such that [w1, v1] ∩ [w2, v2] is
nonempty.

It is a well-known elementary fact from algebraic geometry that a coun-
terexample to an algebraic condition never comes alone if the base field is
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infinite, Moreover, the set of all such counterexamples is Zariski open in an
appropriate affine space, and when we are working with the real or complex
fields, the nonempty Zariski open sets are open and dense in the Euclidean
topology. We illustrate this point with a tree T for which Fonseca’s lemma 4.1
fails. Denote by HT the real space of complex Hermitian matrices whose
graphs are subgraphs of T . Then the set of those A ∈ HT that do not satisfy
lemma 4.1 is an open dense subset of HT , so almost every matrix in HT is a
counterexample. A similar statement holds for real symmetric matrices, and
we may get similar statements for all other counterexamples found in this
letter.
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