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Abstract: As it is well known, the concepts of normality and extremal disconnect-
edness of a topological space are dual to each other in some sense. This is nicely
illustrated by several pairs of famous results in classical topology. A recent paper
by E. P. de Jager and H.-P. A. Künzi provides some interesting pairs of results of
the kind in the asymmetric setting of quasi-uniform spaces. The aim of this paper
is to shed a more unifying light on these results. Besides extending them to a set-
ting determined by more general fixed classes of subspaces of the underlying space,
encompassing some weak variants of normality, we determine sufficient conditions
on the fixed class of subspaces that enable us to unify each pair of results under the
same proof.
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1. Introduction

Normality is one of the most important topological separation properties.
There is a large literature devoted to it and the most recent one is fraught
with all kinds of (weak) variants of it (see, for instance, [2, 3, 4, 5, 14, 15,
21, 22, 24, 26, 25, 27]). Let us recall that a topological space X is normal
provided that any two disjoint closed sets in X can be separated by open
sets. In other words, X is normal if and only if for every open subsets A and
B of X,

A ∪B = X ⇒ ∃ open U, V : U ∩ V = ∅, A ∪ U = X = B ∪ V.

On the other hand, a topological space X is said to be extremally disconnected
if every open set in X has an open closure. Equivalently, any two disjoint
open subsets of X have disjoint closures, that is, X is extremally disconnected
if and only if for every open subsets A and B of X,

A ∩B = ∅ ⇒ ∃ open U, V : U ∪ V = X, A ∩ U = ∅ = B ∩ V.
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Hence, the property of extremal disconnectedness is, in lattice-theoretical
terms, dual to normality (cf. [16, p. 301]). This nice observation was first
pointed out by T. Kubiak in [17, 18]. This duality is revealed in some famous
pairs of theorems like Urysohn and Gillman-Jerison separation type lemmas,
Tietze and Stone extension type theorems, Katětov-Tong and Stone insertion
type theorems and Hausdorff mapping invariance type theorems (see Table
1 in [11] for more information). But most interestingly, the duality is not
completely symmetric in the sense that not every result in each pair is directly
obtainable from its dual one (simply because in some cases the conditions
required for it are not exactly the duals of the conditions required for the
dual result).

Recently, E. P. de Jager and H.-P. A. Künzi [13] proved the following result
in the realm of quasi-uniform spaces:

Theorem 1. Let P be the Pervin quasi-uniformity on a topo-
logical space X. Then:
(1) P ◦P−1 is a (quasi-)uniformity if and only if X is normal.
(2) P−1◦P is a (quasi-)uniformity if and only if X is extremally

disconnected.
(3) P and P−1 permute if and only if X is normal and ex-

tremally disconnected.

The motivation for this paper arose from a conversation of the third author
with Prof. H.-P. A. Künzi about this result, in particular, and the nature of
the normality/extremal disconnectedness duality, in general. Our primary
goal with it is to investigate whether it is possible to formulate Theorem 1
in a “two for the price of one” setting so that the proof of assertion (2) (and
hence of (3)) is a direct consequence of (1) by some kind of dualization pro-
cess. Concurrently, the extended setting should allow for the formulation and
unification of several weak variants of the notion of normality. Our approach
follows the idea introduced in [11] that by selecting different classes A of
subspaces of the underlying space of the (quasi- )uniform space (X,U), one
can deal with relative notions of normality and extremal disconnectedness,
unifying the different variants. This development enables us to obtain the
sufficient conditions on A and U that allow to extend the proofs of E. P. de
Jager and H.-P. A. Künzi [13].

We will conclude that the dualization of part of Theorem 1(1) yields pre-
cisely the desired result in the disconnectedness side (2) while the other part
does not (just because in this case, the conditions on the class A are required
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for arbitrary joins, not only the finite ones). The interesting aspect of this
work is that it reveals precisely whether it is possible to get each dual result
for free.

We point out that all definitions and results in the paper are written in a
way to be easily extendable to the point-free setting of frames and locales
with the help of the tools introduced in [7, 8]. We keep everything in the
point-set classical setting just to make the connections with the results in
[13] more apparent.

We now give an overview of the contents of the paper. The paper be-
gins with some background material on quasi-uniform spaces in Section 2.
The relations amongst the several versions of the notions of normality and
extremal disconnectedness collected from the literature together with the
relative general notions that unify them are given in Section 3. The corre-
sponding relative notions of a compatible quasi-uniformity and the Pervin
quasi-uniformity are presented in Section 4. The proofs of our two main the-
orems and their corollaries are provided in Sections 5 and 6, the core sections
of the paper.

2. Background on quasi-uniformities

Let X be a set. A filter U on X ×X such that each U ∈ U is a reflexive
relation and for each U ∈ U there is a V ∈ U such that V ◦ V ⊆ U is
called a quasi-uniformity on X and the pair (X,U) is a quasi-uniform space.
Note that for any quasi-uniformity U the filter U−1 = {U−1 | U ∈ U}, where
U−1 = {(y, x) ∈ X × X | (x, y) ∈ U}, is also a quasi-uniformity on X,
the conjugate of U. A quasi-uniformity U satisfying U = U−1 is called a
uniformity. For each A ⊆ X and each x ∈ A, let

U(x) = {y ∈ X | (x, y) ∈ U}
and

U(A) =
⋃
x∈A

U(x).

The topology τ(U) induced by U on X consists of all A ⊆ X such that for
each a ∈ A there is some U ∈ U satisfying U(a) ⊆ A. Then, obviously,

∀U ∈ U, ∀A ⊆ X, A ⊆ intτ(U)(U(A)). (QU1)

Moreover, for any base B of U and any A ⊆ X,

clτ(U)(A) =
⋂
{U−1(A) | U ∈ B} [9, Prop. 1.8]. (QU2)
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Although U(x) may not be in τ(U), there is a base B for U such that

∀B ∈ B, ∀x ∈ X, ∀S ⊆ X, B(x), B(S) ∈ τ(U).

A quasi-uniformity U onX induces the bitopological space (X, τ(U), τ(U−1)).
The pairwise completely regular bispaces are precisely the bispaces that are
induced by some quasi-uniformity.

For more information about quasi-uniform spaces we refer the reader to
[9, 19]. Here we just recall the specific notions and facts that are relevant to
our discussion.

Throughout the paper we denote the lattice of open sets (resp. closed sets)
of a topological space X by O(X) (resp. C(X)). A quasi-uniformity U on
a space X is compatible with the topology of X if τ(U) coincides with the
given topology O(X). Clearly, this is equivalent to say that the following
two conditions hold:

(C1) ∀U ∈ U, ∀A ⊆ X, ∃B ∈ O(X) : A ⊆ B ⊆ U(A).
(C2) ∀a ∈ A ∈ O(X), ∃U ∈ U : U(a) ⊆ A.

Moreover, notice from (QU2) that

(C3) ∀U ∈ U−1, ∀A ⊆ X, ∃F ∈ C(X) : A ⊆ F ⊆ U(A).

For each A ⊆ X,

SA = [(X r A)×X] ∪ [X × A]

is a transitive entourage of X. Then the set of entourages {SA | A ∈ O(X)} is
a subbase for a totally bounded transitive quasi-uniformity on X, compatible
with O(X). This is the well-known Pervin quasi-uniformity UP on X. Since
SXrA = S−1

A , it follows that the quasi-uniformity (UP )−1 is generated by
{SF | F ∈ C(X)}.

If U1 and U2 are two quasi-uniformities on a set X and U1 ⊆ U2, then U1 is
said to be coarser than U2 or that U2 is finer than U1. Let {Ui}i∈I be a family
of quasi-uniformities on X. The supremum of {Ui}i∈I is the coarsest quasi-
uniformity on X that is finer than every Ui. The supremum always exists
and it is the filter on X × X generated by the subbase

⋃
i∈I Ui. Of course,

the set q(X) of all quasi-uniformities on X equipped with the set-theoretic
inclusion ⊆ is a complete lattice (see, for instance, [12]).

The infimum of {Ui}i∈I , that is, the finest quasi-uniformity that is coarser
than every Ui, is then the supremum of the family of all quasi-uniformities
on X that are coarser than every Ui.
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The operation of conjugation of quasi-uniformities commutes with the
supremum and the infimum operations. Indeed, suppose that V (resp. W) is
the infimum of a family {Ui}i∈I of quasi-uniformities on X (resp. the family
of conjugate quasi-uniformities {U−1

i }i∈I). Then W−1 is a lower bound of
{Ui}i∈I and thus W−1 ⊆ V. Similarly V−1 ⊆ W by the analogous conju-
gate argument, and thus V = W−1 (a similar proof for the statement about
suprema can be given).

In particular, the supremum and infimum of an arbitrary family of uni-
formities in (q(X),⊆) is a uniformity and for any quasi-uniformity U, both
U ∨ U−1 and U ∧ U−1 are uniformities.

3. Relative normality and relative extremal disconnect-
edness

Throughout the present paper no separation axiom is assumed. Let X be
a topological space and let A ⊆ X. The closure of A will be denoted by A or
clA and the interior by intA. Recall that a set A ⊆ X is said to be regularly
open if A = intA. The complement of a regularly open set is called regularly
closed. Clearly, the intersection of any two regularly open sets is regularly
open. A finite (resp. arbitrary) union of regularly open sets is called a π-
open (resp. δ-open) set. The complement of a π-open (resp. δ-open) set is
called π-closed (resp. δ-closed). Of course, δ-open sets form a topology (the
semiregularization topology in X, that is, the topology generated by regularly
open sets). Hence:

clopen ⇒ regularly open ⇒ π-open ⇒ δ-open ⇒ open. (3.1.1)

A set A ⊆ X is called a regular Fσ-set if it is a countable union of open
sets whose closures are contained in A, i.e., if A =

⋃
n∈NAn =

⋃
n∈NAn,

where each An is an open subset of X. The complement of a regular Fσ-set
is called a regular Gδ-set. Recall also that a set A ⊆ X is a zero-set if there
exists a continuous real-valued function f on X such that A = f−1({0}).
The complement of a zero-set is a cozero-set. It is clear that in any space X,

clopen ⇒ cozero-set ⇒ regular Fσ-set ⇒ open. (3.1.2)

Definitions 3.1. A topological space X is said to be

(i) almost normal if any two disjoint closed sets, one of which is regularly
closed, can be separated by open sets [26];
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(ii) mildly normal if any two disjoint regularly closed sets can be separated
by open sets [27];

(iii) π-normal if any two disjoint closed sets, one of which is π-closed, can
be separated by open sets [14];

(iv) quasi-normal if any two disjoint π-closed sets can be separated by open
sets [14];

(v) ∆-normal if any two disjoint closed sets, one of which is δ-closed, can
be separated by open sets [3];

(vi) weakly ∆-normal if any two disjoint δ-closed sets can be separated by
open sets [3];

(vii) δ-normal if any two disjoint closed sets, one of which is a regular Gδ-set,
can be separated by open sets [22];

(viii) weakly δ-normal if any two disjoint regular Gδ-sets can be separated by
open sets [15];

(ix) lightly normal if any two disjoint closed sets, one of which is a zero-set,
can be separated by open sets [25];

(x) weakly lightly normal if any two disjoint closed sets, one of which is
regularly closed and the other a zero-set, can be separated by open sets
[15].

The diagram in Table 1 depicts the relations between these classes of spaces
(none of these implications is reversible, see [3, 4, 15]).

In view of the definitions above it appears natural to introduce the following
generalization of the topological notion of normality.

Given a space X, let A ,B ⊆ P(X) be two fixed classes of open subspaces
of X. We call them open subspace selections on X and denote by A c the
class {X r A | A ∈ A } of all complements of elements of A .

Definitions 3.2. We say that X is (A ,B)-normal if for every A ∈ A and
B ∈ B,

A ∪B = X ⇒ ∃U ∈ A ,∃V ∈ B : U ∩ V = ∅, A ∪ U = X = B ∪ V.

Dually, we say that X is (A ,B)-disconnected if for every A ∈ A and B ∈ B,

A ∩B = ∅ ⇒ ∃U ∈ A ,∃V ∈ B : U ∪ V = X, A ∩ U = ∅ = B ∩ V.

In the case where B = A we simply say that X is A -normal or A -
disconnected.
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Table 1. Variants of normality.

Of course, the particular case where A = B = O(X) yields the usual
notions of normality and extremal disconnectedness, and for any space X,

X is (A ,B)-disconnected iff it is (A c,Bc)-normal. (3.2.1)

This explicitly shows that these two notions are dual to each other. The
following lemma shows that this duality is not symmetric: the duals of many
of the variants of normality presented above collapse into extremally discon-
nected spaces.

Lemma 3.3. Let A ,B be two open subspace selections on a space X con-
taining all regularly open sets. Then:

(a) X is (A ,B)-normal if and only if for every A ∈ A and B ∈ B,

A ∪B = X ⇒ ∃U, V ∈ O(X) : U ∩ V = ∅, A ∪ U = X = B ∪ V. (3.3.1)

(b) X is (A ,B)-disconnected if and only if it is extremally disconnected.

Proof : (a) Clearly, (A ,B)-normality implies that any pair (A,B) in A ×B
satisfies (3.3.1). Conversely, given an open set U , let U ∗ denote the regularly
open set int (X r U) = X r cl (U). It is easy to check that U ∗∗ ⊇ U and
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that U ∩ V = ∅ implies U ∗∗ ∩ V ∗∗ = ∅. Hence, given the open sets U and
V provided by (3.3.1), it suffices to consider the regularly open sets U ∗∗ and
V ∗∗ which are in A and B by assumption.
(b) The implication “⇐” follows easily, in a way similar to the preceding
proof, from the properties U ⊆ U ∗∗ and

A ∩ U = ∅ ⇒ A ∩ U ∗∗ = ∅.

Conversely, consider A,B ∈ O(X) such that A∩B = ∅. Then A∗∗∩B∗∗ = ∅.
Once A∗∗ ∈ A and B∗∗ ∈ B, there exist U ∈ A ⊆ O(X) and V ∈ B ⊆
O(X) such that U ∪V = X and A∩U ⊆ A∗∗∩U = ∅ = B∗∗∩V ⊇ B∩V .

Examples 3.4. Consider the following selections of open sets for A and B:

(1) open sets, (2) regularly open sets, (3) π-open sets,

(4) δ-open sets, (5) cozero-sets, (6) regular Fσ-sets.

Note that selections (1), (3), (4), (5), (6) are clearly sublattices of O(X)
while (2) is only closed under finite meets. They yield the classes of spaces
listed in Table 2 below. Let us explain each one in detail.

A B (A ,B)-normal spaces (A ,B)-disconnected spaces

1: (1) (1) normal extremally disconnected
2: (2) (2) mildly normal extremally disconnected
3: (1) (2) almost normal extremally disconnected
4: (3) (3) quasi-normal extremally disconnected
5: (1) (3) π-normal extremally disconnected
6: (4) (4) w∆-normal extremally disconnected
7: (1) (4) ∆-normal extremally disconnected
8: (5) (5) all spaces F -spaces
9: (1) (5) lightly normal∗ basically disconnected

10: (2) (5) weakly lightly normal∗ basically disconnected
11: (6) (6) δ-normal∗ extremally δ-disconnected
12: (1) (6) weakly δ-normal∗ extremally δ-disconnected

Table 2. Examples of (A ,B)-normal and (A ,B)-disconnected spaces.
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(a) (A ,B)-normality. In each example, the condition of (A ,B)-normality
implies the corresponding property listed in the table since A ,B ⊆ O(X).
Regarding the converses, we have:

Example 1 is obvious. Examples 2-7 follow from Lemma 3.3(a) and re-
lations in Definitions 3.1.1. Example 8 is a consequence of the result of
Mandelker in [23] that the lattice of all cozero-sets of any space is a normal
lattice. Regarding Examples 9-12, they are in general subclasses (that we
distinguish by adding an asterisk to the name) of the classes of normal-like
spaces in Definitions 3.1 (vii), (viii), (ix) and (x) respectively. But according
to e.g. the terminology schema for F -spaces and F ′-spaces (see [6]), they
should be denoted the other way round: the stronger variants should get the
name, not the weaker ones.

Anyway, in each case, both classes coincide whenever the space is an Oz
space (Blair [1] calls a Tychonoff space X an Oz space if every open set of X
is z-embedded). Indeed, a useful characterisation is that X is an Oz space if
and only if every regularly open subset of X is a cozero-set (i.e. Oz spaces
are the perfectly mildly normal spaces [20, Theorem 1.1]) and thus Lemma
3.3 applies.

(b) (A ,B)-disconnectedness. Example 1 is obvious while Examples 2-7
follow from Lemma 3.3(b) and relations in Definitions 3.1.1. Example 8 is
also easy: recall that a topological space is an F -space if disjoint cozero-
sets are contained in disjoint zero-sets [6] and notice that being contained in
disjoint zero-sets, that is being completely separated, is the same as saying
that they are contained in disjoint cozero-sets [10, p. 17]. In Examples 11
and 12 we cannot find those classes of spaces in the literature. They are
clearly the same class and we name them extremally δ-disconnected spaces.
Finally, for Examples 9 and 10 we need the following result:

Proposition 3.5. Let A ⊆ O(X) contain all regularly open sets and let B
be the class of all cozero-sets of X. Then X is (A ,B)-disconnected if and
only if X is basically disconnected.

Proof : Recall that a space is basically disconnected if every cozero-set has an
open closure. This can be interpreted as saying that A ∩ B = ∅, with A an
arbitrary open set and B a cozero-set, implies A∗ ∪B∗ = X. So consider an
open set A and a cozero-set B such that A∩B = ∅. Then A∗∗ is a regularly
open set disjoint from B. Therefore by the hypothesis there exists a U ∈ A
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and a cozero-set V such that U ∪ V = X and A∗∗ ∩ U = ∅ = B ∩ V , from
which it follows that A∗ ∪B∗ ⊇ U ∪ V = X.

Conversely, let A ∩ B = ∅ with A ∈ A and B a cozero-set. By basic
disconnectedness, A∗ ∪ B∗ = X. Of course, U = A∗ is regularly open thus
belongs to A . Further, B is clopen and therefore a zero-set. Hence V =
B∗ = X rB is a cozero-set.

4. Relative compatibility of a quasi-uniform structure

Let U be a quasi-uniformity on a space X and A ⊆ O(X). We say that U
is compatible with A (or simply A -compatible) whenever A is a subbase for
the induced topology τ(U). Note that the particular case where A = O(X)
is precisely the usual notion of a compatible quasi-uniformity on X.

Lemma 4.1. Let U be a quasi-uniformity on a space X, A ⊆ O(X) and let
τA be the topology on X generated by A . Then U is A -compatible iff the
following conditions hold:

(C1) ∀U ∈ U, ∀S ⊆ X, ∃A ∈ τA : S ⊆ A ⊆ U(S).
(C2) ∀a ∈ A ∈ τA , ∃U ∈ U : U(a) ⊆ A.

Proof : ⇒: Suppose that A is a subbase for τ(U). Then τ(U) = τA and
therefore condition (C1) follows from (QU1) while (C2) follows from the
definition of τ(U).
⇐: The inclusion τA ⊆ τ(U) follows from (C2). On the other hand, for each
A ∈ τ(U) and any a ∈ A there is some Ua ∈ U such that a ∈ U(a) ⊆ A.
Consequently, by (C1), there is some Ba ∈ τA satisfying {a} ⊆ Ba ⊆ U(a) ⊆
A. Hence A =

⋃
a∈ABa ∈ τA .

Lemma 4.2. Let U be a quasi-uniformity on a space X, A ⊆ O(X) and let
τA be the topology on X generated by A . If U is A -compatible, then

(C3) ∀U ∈ U−1, ∀S ⊆ X, ∃F ∈ τ cA : S ⊆ F ⊆ U(S).

Proof : The result follows from (QU2) and the fact that clτ(U)(S) = clτA (S) ∈
τ cA .

Let X be a topological space and A ⊆ O(X). The sets of the form

SA = [(X r A)×X] ∪ [X × A] (A ∈ A )

are entourages of X that generate an A -compatible quasi-uniformity UP (A )

on X:
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Lemma 4.3. The set of entourages {SA | A ∈ A } is a subbase for a transi-
tive totally bounded A -compatible quasi-uniformity on X.

Proof : Since each SA is a reflexive and transitive relation and {A,XrA} is a
finite cover ofX with A×A,XrA×XrA ⊆ SA, it follows that {SA | A ∈ A }
is always a subbase for a transitive totally bounded quasi-uniformity on X.

Regarding compatibility, we need to show that τA = τ(UP (A )).
⊆: Let A ∈ A and a ∈ A. Since SA ∈ UP (A ) and SA(a) = A, it follows that
A ∈ τ(UP (A )) and τA ⊆ τ(UP (A )).
⊇: Since each U(x) such that U ∈ UP (A ) is a nhood of x in τ(UP (A )) for
every x ∈ X, it suffices to check that each U(x) is a nhood of x in τA . To
this end, take U ∈ UP (A ). Then

⋂n
i=1 SAi

⊆ U for some A1, . . . , An ∈ A . If
x /∈

⋃n
i=1Ai (that is, x ∈ XrAi for every i), then (x, y) ∈

⋂n
i=1 SAi

for every
y ∈ X, that is, [

n⋂
i=1

SAi

]
(x) = X ∈ τA

is contained in U(x). Otherwise, if x ∈
⋃n
i=1Ai, then[

n⋂
i=1

SAi

]
(x) =

⋂
{Ai | x ∈ Ai} ∈ τA .

We call UP (A ) the Pervin quasi-uniformity induced by A in X.

Remarks 4.4. (1) Note that S−1
A = SXrA and thus UP (A c) = U−1

P (A ). This

implies that U is a quasi-uniformity finer than UP (A ) if and only if U−1 is a
quasi-uniformity finer than UP (A c).

(2) Of course, the case where A = O(X) yields precisely the standard Pervin
quasi-uniformity of X.

5. Quasi-uniformities that permute with their conjugate

Following the notation in [13], given two quasi-uniformities U and V on a
set X, U ◦ V denotes the filter on X ×X generated by the base

{U ◦ V | U ∈ U, V ∈ V}.

As it is shown in [13, Lemma 1],

U ◦ V is a quasi-uniformity iff U ◦ V = U ∧ V iff U ◦ V ⊆ V ◦ U. (5.1.1)

In particular, U ◦ U−1 is a quasi-uniformity if and only if it is a uniformity.
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The quasi-uniformities U and V are said to permute (and called permutable)
if U ◦V = V ◦U. Hence U and V permute if and only if both U ◦V and V ◦U
are quasi-uniformities.

Theorem 5.1. Let U be a quasi-uniformity on a space X that is finer than
the Pervin quasi-uniformity UP (A ). If U satisfies the condition

∀U ∈ U,∀A ∈ A c,∃B ∈ A : A ⊆ B ⊆ U(A) (A -int)

and U ◦ U−1 is a quasi-uniformity, then X is A -normal.

Proof : Suppose that U ◦ U−1 is a quasi-uniformity. By (5.1.1), U ◦ U−1 is
equal to the uniformity U ∧ U−1. Let A,B ∈ A with A ∪ B = X. Set
U = SA ∩ SB ∈ UP (A ). Then U ∈ U. Note that U−1 = SXrA ∩ SXrB by
Remark 4.4. Moreover

U ◦ U−1 =
⋃

x∈ X

(U(x)× U(x)) = (A× A) ∪ (B ×B).

Since U ◦U−1 ∈ U ◦U−1 = U∧U−1 and U∧U−1 is a uniformity, there exists
V ∈ U ∧ U−1 such that V 2 ⊆ U ◦ U−1. In particular, there is some W ∈ U

such that W ∪W−1 ⊆ V . Hence⋃
x∈X

(W−1(x)×W−1(x)) ⊆ W−1 ◦W ⊆ V 2 ⊆ U ◦ U−1.

Furthermore, let us check that W (X r A) ∩ W (X r B) = ∅. Indeed, if
x ∈ W (X r A) ∩ W (X r B) we would have (α, x), (β, x) ∈ W for some
α ∈ X r A and β ∈ X rB and thus

(α, β) ∈ W−1(x)×W−1(x) ⊆ U ◦ U−1 = (A× A) ∪ (B ×B),

a contradiction.
Now, using (A -int), we obtain A′, B′ ∈ A satisfying X r A ⊆ A′ ⊆

W (X r A) and X r B ⊆ B′ ⊆ W (X r B). Therefore A′ ∩ B′ = ∅ and
A ∪ A′ = X = B ∪B′, which shows that X is A -normal.

Corollary 5.2. Let U be an A -compatible quasi-uniformity on a space X
that is finer than the Pervin quasi-uniformity UP (A ). In the case where A is
a topology on X, if U ◦ U−1 is a quasi-uniformity then X is A -normal.

Proof : The result follows from the fact that Condition (C1) of Lemma 4.1
combined with the fact that A is a topology yields condition (A -int).
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Remarks 5.3. (1) The case where A = O(X) in the preceding corollary is
precisely Lemma 2(a) of [13].

(2) By (QU1), any quasi-uniformity U such that τ(U) ⊆ A satisfies condition
(A -int): just take B = intτ(U)(U(A)).

(3) Let A be closed under arbitrary unions and set

intA (S) =
⋃
{A ∈ A | A ⊆ S}

for any S ⊆ X. If A ⊆ intA (U(A)) for any U ∈ U and A ∈ A c, then U

satisfies (A -int).

By taking U−1 for U and A c for A , Theorem 5.1 yields immediately the
following dual result:

Let U−1 be a quasi-uniformity on a space X that is finer than the Pervin
quasi-uniformity UP (A c). If U−1 satisfies the condition

∀U ∈ U−1,∀A ∈ A ,∃B ∈ A c : A ⊆ B ⊆ U(A)

and U−1 ◦ U is a quasi-uniformity, then X is A c-normal.

Using Remark 4.4(1) and (3.2.1) we then get the following:

Corollary 5.4. Let U be a quasi-uniformity on a space X that is finer than
the Pervin quasi-uniformity UP (A ). If U satisfies the condition

∀U ∈ U−1,∀A ∈ A ,∃B ∈ A c : A ⊆ B ⊆ U(A) (A -cl)

and U−1 ◦ U is a quasi-uniformity, then X is A -disconnected.

Corollary 5.5. Let U be an A -compatible quasi-uniformity on a space X
that is finer than the Pervin quasi-uniformity UP (A ). In the case where A is
a topology on X, if U−1 ◦U is a quasi-uniformity then X is A -disconnected.

Proof : The result follows from the fact that Condition (C3) of Lemma 4.2
combined with the fact that A is a topology yields condition (A -cl).

Remarks 5.6. (1) The case where A = O(X) in the preceding corollary is
precisely Lemma 2(b) of [13].

(2) By (QU2), any quasi-uniformity U such that τ(U) ⊆ A satisfies condition
(A -cl): just take B = clτ(U)(U(A)).

(3) Let A be closed under arbitrary unions and set

clA (S) = X r intA (X r S) =
⋂
{X r A | A ∈ A , X r A ⊇ S} ∈ A c
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for any S ⊆ X. If clA (A) ⊆ U(A) for every U ∈ U−1 and A ∈ A , then U

satisfies (A -cl).

6. On the converse results

Let X be a topological space and A ⊆ O(X). From now on we assume
that X ∈ A . We say that a cover C of X is an A -cover if C ∈ A for all
C ∈ C .

Consider now the Pervin quasi-uniformity UP (A ) induced by A in X. We
have:

Lemma 6.1. For each U ∈ UP (A ) there is a finite A -cover C of X such
that

⋂
C∈C SC ⊆ U .

Proof : Let U ∈ UP (A ). Then
⋂n
i=1 SAi

⊆ U for some A1, . . . , An ∈ A . Since
SX = X ×X, it suffices to take C = {A1, . . . , An, X}.

Moreover:

Lemma 6.2. Let X be a A -normal space and let C = {A1, A2, . . . , An} be
a finite A -cover of X.

(1) If A is closed under finite unions, then for each i ∈ n = {1, 2, . . . , n}
there is some Vi ∈ A such that Vi ⊆ Ai and {Vi | i ∈ n} is a finite
A -cover of X.

(2) If A is closed under arbitrary unions, then for each i ∈ n there is some
Vi ∈ A such that clA (Vi) ⊆ Ai and {Vi | i ∈ n} is a finite A -cover of X.

Proof : (1) Since A is closed under finite unions we may apply A -normality
to A1 and A2∪· · ·∪An and conclude that there is some U1, V1 ∈ A such that
U1 ∩ V1 = ∅ and U1 ∪ A1 = X = V1 ∪ A2 ∪ · · · ∪ An. Clearly, V1 ⊆ V1 ⊆ A1.
Now we may apply A -normality to A2 and V1 ∪A3 ∪ · · · ∪An and conclude
that there is some U2, V2 ∈ A such that U2 ∩ V2 = ∅ and U2 ∪ A2 = X =
V2∪V1∪A3∪· · ·∪An. Clearly, V2 ⊆ V2 ⊆ A2. Proceeding inductively we get, at
step n, Un, Vn ∈ A such that Un∩Vn = ∅ and Un∪An = X = Vn∪· · ·∪V2∪V1

from which it follows that Vn ⊆ Vn ⊆ An.
In conclusion, {V1, V2, . . . , Vn} is the required A -cover.

(2) In each step of the preceding proof we have Vi ⊆ X r Ui ⊆ Ai with
Ui ∈ A . If A is closed under arbitrary unions (precisely the condition
on A that ensures the existence of clA (−)), then that implies immediately
Vi ⊆ clA (Vi) ⊆ Ai.
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In the next lemma, st(x,D) denotes, as usual, the union⋃
{D ∈ D | x ∈ D}.

Lemma 6.3. Let C be a finite A -cover of X. If X is A -normal and A is
a topology, then there exists a finite A -cover D of X such that

{st(x,D) | x ∈ X} ≤
{[ ⋂

C∈C

SC

]
(x) | x ∈ X

}
.

Proof : Let C = {A1, A2, . . . , An} be a finite A -cover of X and let

C ′ =

{[ ⋂
C∈C

SC

]
(x) | x ∈ X

}
.

As observed in the proof of Lemma 4.3,[ ⋂
C∈C

SC

]
(x) =

⋂
{C ∈ C | x ∈ C} ∈ A

(since A is closed under finite intersections). Hence C ′ is a finite A -cover of
X and by Lemma 6.2(2) there is a finite A -cover {VC | C ∈ C ′} satisfying
clA (VC) ⊆ C for all C ∈ C ′.

Now, for each C ′′ ⊆ C ′ set

DC ′′ = (
⋂

C∈C ′′
C)r

⋃
{clA (VC) | C ∈ C ′rC ′′} and D = {DC ′′ | C ′′ ⊆ C ′}.

Note that DC ′′ =
⋂
C ′∈C ′rC ′′

⋂
C∈C ′′(C ∩ intA (XrVC ′)) and thus each DC ′′ is

in A . Furthermore, for each x ∈ X let C ′′x = {C ∈ C ′ | x ∈ clA (VC)}. Since

DC ′′
x

=
⋂

C ′∈C ′rC ′′
x

⋂
C∈C ′′

x

(C ∩ intA (X r VC ′)),

it is clear that x ∈ DC ′′
x

and therefore D is a finite A -cover of X. It suffices
now to show that {st(x,D) | x ∈ X} ≤ C ′. So we need to check that for
any C ′′ ⊆ C ′ with x ∈ DC ′′ there is some C ∈ C ′ such that DC ′′ ⊆ C. Any
C ∈ C ′′x (so that x ∈ clA (VC) ⊆ C) will do the job. Indeed:

(1) From x ∈ DC ′′ = (
⋂
C∈C ′′ C) r

⋃
{clA (VC) | C ∈ C ′rC ′′} it follows that

x /∈ clA (V ′C) for every C ′ ∈ C ′rC ′′; but since x ∈ clA (VC), then C ∈ C ′′.
(2) Finally, it is true that DC ′′ ⊆ C whenever C ∈ C ′′ and x ∈ C:

DC ′′ =
⋂

C∈C ′rC ′′

⋂
C ′∈C ′′

(C ′ ∩ (X r clA (VC)))

⊆
⋂

F∈C ′rC ′′
(C ∩ (X r clA (VF ))) ⊆ C.
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Theorem 6.4. Let X be a topological space and let A ⊆ O(X) be a topology.
If X is A -normal, then UP (A ) ◦ U−1

P (A ) is a uniformity.

Proof : Let U ∈ UP (A ). By Lemma 6.1 there is a finite A -cover C of X such
that ⋂

C∈C

SC ⊆ U. (6.4.1)

Then, by Lemma 6.3, there exists a finite A -cover D of X such that

{st(x,D) | x ∈ X} ≤
{[ ⋂

C∈C

SC

]
(x) | x ∈ X

}
. (6.4.2)

Let V =
⋂
D∈D SD which clearly belongs to UP (A ). We have

(V ◦ V −1)2 = (V ◦ V −1) ◦ (V ◦ V −1)−1 =
⋃
x∈X

(
(V ◦ V −1)(x)× (V ◦ V −1)(x)

)
.

Thus, by (6.4.2),

(V ◦ V −1)2 ⊆
⋃
x∈X

[[ ⋂
C∈C

SC

]
(x)×

[ ⋂
C∈C

SC

]
(x)

]
⊆ (

⋂
C∈C

SC) ◦ (
⋂
C∈C

SC)−1

and, finally, by (6.4.1), (V ◦ V −1)2 ⊆ U ◦ U−1.

Since the conditions for A are not self-dual, we only get the following
corollary:

Corollary 6.5. Let X be a topological space and let A ⊆ O(X) be a co-
topology. If X is A -disconnected, then U−1

P (A ) ◦ UP (A ) is a uniformity.

Nevertheless, a careful analysis of the proof of the direct result in [13,
Lemma 3(b)] reveals that it is possible to conform it to our relative setting
and to obtain directly the next result.

Theorem 6.6. Let X be a topological space and let A ⊆ O(X) be a topology.
If X is A -disconnected, then U−1

P (A ) ◦ UP (A ) is a uniformity.

Indeed, for that we just need the following properties of A -disconnected
spaces:

Proposition 6.7. (1) Let A ⊆ O(X) be closed under arbitrary joins. The
following are equivalent:

(i) X is A -disconnected.
(ii) clA (A) ∈ A for every A ∈ A .
(iii) For any A,B ∈ A , A ∩B = ∅ ⇒ clA (A) ∩ clA (B) = ∅.
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(2) Moreover, if A is also closed under finite intersections, then X is A -
disconnected if and only if clA (A∩B) = clA (A)∩clA (B) for every A,B ∈ A .

Proof : (1) (i)⇒(ii): Let A ∈ A . Since A∩intA (XrA) = A∩XrclA (A) = ∅,
A -disconnectedness provides some U, V ∈ A satisfying U ∪ V = X and A∩
U = ∅ = V ∩Xr clA (A). Clearly, U ⊆ intA (XrA) and V ⊆ intA (clA (A)).
Therefore intA (XrA)∪ intA (clA (A)) = X, that is, clA (A) ⊆ intA (clA (A)).

(ii)⇒(iii): Since B ⊆ X r A ∈ A c, it follows that clA (B) ⊆ X r A, that is,
A ∩ clA (B) = ∅. It then follows similarly that clA (A) ∩ clA (B) = ∅, since
clA (B) ∈ A by hypothesis.

(iii)⇒(i): Let A,B ∈ A such that A ∩ B = ∅. It suffices to take U =
X r clA (A) and V = X r clA (B).

(2) Let U ∈ A such that U ∩ A ∩ B = ∅. Then, by the property proved in
the implication (ii)⇒(iii) above, we have U ∩A ∩ clA (B) = ∅ (note that the
assumption that A is closed under finite intersections is needed here so that
U ∩ A ∈ A ). Hence U ∩ A ∩ intA (clA (B)) = ∅. This shows that

A ∩ intA (clA (B)) ⊆ clA (A ∩B)

and thus that A ∩ intA (clA (B)) ⊆ intA (clA (A ∩B)). Similarly,

intA (clA (A)) ∩ intA (clA (B)) ⊆ intA (clA (A ∩B)).

The conclusion follows now by application of characterization (ii).
The converse is obvious since the hypothesis implies assertion (iii) above.

Corollary 6.8. Let X be a topological space and let A ⊆ O(X) be a topology.
Then:

(1) UP (A ) ◦ U−1
P (A ) is a uniformity if and only if X is A -normal.

(2) U−1
P (A ) ◦ UP (A ) is a uniformity if and only if X is A -disconnected.

(3) UP (A ) and U−1
P (A ) permute if and only if X is A -normal and A -dis-

connected.

Proof : Assertion (1) follows from Corollary 5.2 and Theorem 6.4, while as-
sertion (2) follows from Corollary 5.5 and Theorem 6.6.
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(3) If UP (A ) and U−1
P (A ) permute, then by (5.1.1) both UP (A ) ◦ U−1

P (A ) and

U−1
P (A ) ◦ UP (A ) are uniformities and so by Corollaries 5.2 and 5.5 X is A -

normal and A -disconnected. Conversely, if X is A -normal and A -dis-
connected, then by (5.1.1) and Theorems 6.4 and 6.6 we have

UP (A ) ◦ U−1
P (A ) = UP (A ) ∧ U−1

P (A ) = U−1
P (A ) ◦ UP (A )

and thus UP (A ) and U−1
P (A ) permute.

This result yields, in particular, the part of Corollary 9 of [13] about the
Pervin quasi-uniformity.

Acknowledgements
The authors are grateful for financial assistance from the Centre for Math-

ematics of the University of Coimbra (funded by the European Regional
Development Fund through the program COMPETE and by the Portuguese
Government through the Fundação para a Ciência e a Tecnologia, under
the project PEst-C/MAT/UI0324/2013). Mack Matlabyana also acknowl-
edges the Sabbatical leave and financial support granted by the University
of Limpopo and the hospitality of the Mathematics Department of the Uni-
versity of Coimbra.

References
[1] R L. Blair, Spaces in which special sets are z-embedded, Can. J. Math. 28 (1976) 673–690.
[2] J. Blatter and G. L. Seever, Interposition of semicontinuous functions by continuous functions,

Analyse Fonctionelle et Applications (Comptes Rendus du Colloque d’Analyse, Rio de Janeiro,
1972), pp. 27–51, Hermann, Paris, 1975.

[3] A. K. Das, ∆-normal spaces and decompositions of normality, Applied Gen. Topology 10 (2009)
197–206.

[4] A. K. Das, A note on spaces between normal and κ-normal spaces, Filomat 27 (2013) 85–88.
[5] R. P. Dilworth, The normal completion of the lattice of continuous functions, Trans. Amer.

Math. Soc. 68 (1950) 427–438.
[6] A. Dow, On F -spaces and F ′-spaces, Pacific J. Math. 108 (1983) 275–284.
[7] M. J. Ferreira, Sobre a construção de estruturas quase-uniformes em topologia sem pontos,

Doctoral dissertation, University of Coimbra, 2004.
[8] M. J. Ferreira and J. Picado, Functorial quasi-uniformities on frames, Appl. Categ. Structures

13 (2005) 281–303.
[9] P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Dekker, New York, 1982.

[10] L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand Co., Inc., Prince-
ton, 1960.



ON PERMUTABLE PAIRS OF QUASI-UNIFORMITIES 19
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[18] T. Kubiak, On extremally disconnected subspaces, Fasc. Math. 19 (1990) 143–145.
[19] H.-P. A. Künzi, An introduction to quasi-uniform spaces, in: Contemp. Math., vol. 486, Amer.

Math. Soc., 2009, pp. 239–304.
[20] E. P. Lane, Pm-normality and the insertion of a continuous function, Pacific J. Math. 82

(1979) 155–162.
[21] E. P. Lane, Lebesgue sets and insertion of a continuous function, Proc. Amer. Math. Soc. 87

(1983) 539–542.
[22] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math.

Soc. 148 (1970) 265–272.
[23] M. Mandelker, Relative annihilators in lattices, Duke Math. J. 37 (1970) 377–386.
[24] G. L. Seever, Measures on F -spaces, Trans. Amer. Math. Soc. 133 (1968) 267–280.
[25] A. R. Singal and S. B. Nimse, Lightly normal spaces, J. Indian Math. Soc. (N.S.) 63 (1997)

163–170.
[26] M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces, Glasnik

Mat. Ser. III 5 (25) (1970) 141–152.
[27] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J. 13 (1973) 27–31.

Maria João Ferreira
CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal
E-mail address: mjrf@mat.uc.pt

Mack Matlabyana
Department of Mathematics and Applied Mathematics, University of Limpopo, Private
Bag X1106, 0727 Sovenga, South Africa
E-mail address: marck.matlabyana@ul.ac.za

Jorge Picado
CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal
E-mail address: picado@mat.uc.pt


