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A PROOF OF THE Cp′-REGULARITY CONJECTURE
IN THE PLANE
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Abstract: We establish a new oscillation estimate for solutions of nonlinear par-
tial differential equations of elliptic, degenerate type. This new tool yields a precise
control on the growth rate of solutions near their set of critical points, where ellip-
ticity degenerates. As a consequence, we are able to prove the planar counterpart
of the longstanding conjecture that solutions of the degenerate p-Poisson equation
with a bounded source are locally of class Cp

′
= C

1, 1
p−1 ; this regularity is optimal.

Keywords: Nonlinear pdes, regularity theory, sharp estimates.
AMS Subject Classification (2010): Primary 35B65. Secondary 35J60, 35J70.

1. Introduction
In this paper we investigate sharp C1,α-regularity estimates for solutions of

the degenerate elliptic equation, with a bounded source,

−∆pu = f(x) ∈ L∞(B1), p > 2. (1.1)

Establishing optimal regularity estimates is quite often a delicate matter and,
in particular, f(x) ∈ L∞ is known to be a borderline condition for regularity.
In the linear, uniformly elliptic case p = 2, solutions of

−∆u = f(x) ∈ L∞(B1)

are locally in C1,α, for every α ∈ (0, 1), but may fail to be in C1,1. Obtaining
such an estimate in specific situations, like free boundary problems, often
involves a deep and fine analysis.

In the degenerate setting p > 2, the smoothing effects of the operator are
far less efficient. Nonetheless, it is well established, see for instance [3, 16],
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that a weak solution to (1.1) is locally of class C1,β, for some exponent β > 0
depending on dimension and p. If p′ denotes the conjugate of p, i.e.,

1

p
+

1

p′
= 1,

the radial symmetric example

−∆p

(
cp|x|p

′
)

= 1

sets the limits to the optimal regularity and gives rise to the following well
known open problem among experts in the field.

Conjecture (Cp′-regularity conjecture). Solutions to (1.1) are locally of

class C1, 1
p−1 = Cp′.

This problem touches very subtle issues in regularity theory. As mentioned
above, the conjecture is not true in the linear, uniformly elliptic setting,
p = 2, where merely C1,LogLip estimates are possible. Notice further that a
positive answer implies that |x|p′ – a function whose p-laplacian is constant
(real analytic) – is the least regular among all functions whose p-laplacian is
bounded. This is, at first sight, counterintuitive.

While this question still seems out of reach in the d-dimensional space,
when restricted to the plane, more is known about the underlying regularity
theory for this class of problems. By means of a hodograph transformation,
Iwaniec and Manfredi in [6] give explicit estimates for the Hölder continuity
exponent of the gradient of p-harmonic functions. In a somewhat related
issue, let us mention that, yet in the plane, Evans and Savin proved in [5]
(see also [9]) that infinity harmonic functions, i.e., viscosity solutions of

∆∞u := uxixjuxiuxj = 0,

are locally of class C1,γ for some 0 < γ � 1. Whether infinity harmonic
functions are of class C1 in higher dimensions is still a major open problem
in the field.

Concerning the Cp′-regularity conjecture, Lindgren and Lindqvist [8], see
also [7], have recently proved an asymptotic version, namely that solutions
to (1.1), in the plane, are locally of class Cp′−ε, for ε > 0. However, passing
from such an asymptotic result to the sharp, full conjecture requires new
insights and a novel approach. Our main result is the following.
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Theorem 1.1. Let B1 ⊂ R2, and let u ∈ W 1,p(B1) be a weak solution of
−∆pu = f(x), with f ∈ L∞(B1). Then u ∈ Cp′(B1/2) and

‖u‖Cp′(B1/2) ≤ Cp

(
‖f‖

1
p−1

L∞(B1) + ‖u‖Lp(B1)

)
.

The proof is based on a new oscillation estimate (Theorem 4.3), which
is interesting on its own. It gives a precise control on the oscillation of a
solution to (1.1) in terms of the magnitude of its gradient. The insight to
obtain such a refined control comes from the striking results in [12], where
improved regularity estimates are obtained for degenerate equations precisely
along the set of critical points, {∇u = 0}.

The paper is organized as follows. To render the paper reasonably self-
contained, we gather in section 2 a few tools and well known results that will
be used in the proof of Theorem 1.1. In section 3 we introduce C1- small
correctors that link the regularity theory for (1.1) to that of p-harmonic
functions. The key, new oscillation estimate is delivered in section 4, and in
section 5 we conclude the proof of the main theorem.

2. Warming up
In this section we revisit the C1,α regularity theory for p-harmonic func-

tions, i.e., solutions to the homogeneous equation

−∆pu = 0. (2.1)

That p-harmonic functions are locally of class C1,α(d,p), for some exponent
0 < α(d, p) < 1, that depends dimension d and power exponent p, is known
since the late 60’s (see [17]). Away from the set of critical points

S(u) := {x
∣∣ ∇u(x) = 0},

p-harmonic functions are C∞-smooth; however C
1,α(d,p)
loc is in fact the best pos-

sible regularity class since, along S(u), the Hessian of a p-harmonic function
may become unbounded.

Very little, if anything, is known concerning the value of the sharp Hölder
exponent α(d, p) when d ≥ 3. In the plane, d = 2, a remarkable result, due
to Iwaniec and Manfredi in [6], assures that

α(2, p) =
1

6

(
p

p− 1
+

√
1 +

14

p− 1
+

1

(p− 1)2

)
. (2.2)
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Note, for p > 2, the following strict inequality

α(2, p) >
1

p− 1
(2.3)

holds true. Let us write the above conclusions as a proposition for future
reference.

Proposition 2.1 (Iwaniec and Manfredi). For any p > 2, there exists a
0 < τ0 <

p−2
p−1 such that p-harmonic functions in B1 ⊂ R2 are locally of class

Cp′+τ0.

It is also well known that functions whose p-laplacian is bounded are locally
of class C1,β, for some β depending on d and p. A proof of this fact may be
found for instance in [3, 16].

Proposition 2.2 (C1,β-estimates). Let B1 ⊂ Rd and u ∈ W 1,p(B1) be a weak
solution to (1.1). There exists a constant β(d, p) such that u ∈ C1,β(d,p)(B1/2)
and

‖u‖C1,β(d,p)(B1/2) ≤ C(d, p, ‖u‖Lp(B1), ‖f‖L∞(B1)).

Obviously, since a p-harmonic function has a bounded p-laplacian,

β(d, p) ≤ α(d, p). (2.4)

Moreover, due to the explicit solution ∆p(cp|x|p
′
) = 1, it is clear that

β(d, p) ≤ 1

p− 1
.

Hence, in view of (2.3), strict inequality occurs in (2.4) when d = 2. Whether
the strict inequality is true in higher dimensions is a tantalizing question.

In the next three sections we will deliver a proof of the implication

α(d, p) >
1

p− 1
=⇒ β(d, p) =

1

p− 1
. (2.5)

The proof holds for any dimension and, from the above discussion, yields the
Cp′-conjecture in the plane. What prevents us from proving the conjecture
in higher dimensions is simply not knowing if the hypothesis in (2.5) holds
for d ≥ 3.
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3. Existence of C1-small correctors
In this section, we show that if u is a normalized solution of

−∆pu = f(x),

and ‖f‖∞ � 1, then we can find a C1 corrector ξ, with ‖ξ‖C1 � 1, such that
u + ξ is p-harmonic. This will allow us to frame the Cp′ conjecture into the
formalism of the so called geometric tangential analysis, e.g. [4], [1, 2] and
[10, 11, 12, 13, 14, 15]. Here is the precise statement.

Lemma 3.1. Let u ∈ W 1,p(B1) be a weak solution of −∆pu = f in B1, with
‖u‖∞ ≤ 1. Given ε > 0, there exists δ = δ(p, d, ε) > 0 such that if ‖f‖∞ ≤ δ
then we can find a corrector ξ ∈ C1(B1/2), with

|ξ(x)| ≤ ε and |∇ξ(x)| ≤ ε, in B1/2 (3.1)

such that
−∆p(u+ ξ) = 0 in B1/2. (3.2)

Proof : Suppose the result does not hold. We can then find ε0 > 0 and
sequences of functions (uj) and (fj) in W 1,p(B1) and L∞(B1), respectively,
such that

−∆puj = fj in B1; ‖uj‖∞ ≤ 1; ‖fj‖∞ ≤ 1/j

but, nonetheless, for every ξ ∈ C1(B1/2) such that

−∆p(uj + ξ) = 0 in B1/2,

we have either |ξ(x0)| > ε0 or |∇ξ(x0)| > ε0, for a certain x0 ∈ B1/2.
From classical estimates for the p-Poisson equation (Proposition 2.2), we

can extract a subsequence, such that, upon relabelling,

uj −→ u∞

in C1(B1/2) as j →∞. Passing to the limit in the pde, we obtain

−∆pu∞ = 0 in B1/2, with ‖u∞‖∞ ≤ 1.

Now, let ξj := u∞ − uj. For j∗ � 1, we have

−∆p(uj∗ + ξj∗) = −∆pu∞ = 0 in B1/2

and
|ξj∗(x)| ≤ ε0 and |∇ξj∗(x)| ≤ ε0, ∀x ∈ B1/2,

thus reaching a contradiction.
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We conclude this section by commenting that in order to prove Theorem
1.1 it is enough to establish it for normalized solutions with small RHS, i.e.,
with ‖f‖∞ ≤ δ0. Indeed, if u verifies −∆pu = f(x), with f ∈ L∞, then the
function

v(x) :=
u(θx)

‖u‖∞
is obviously normalized and

−∆pv =
θp

‖u‖p−1
∞

f(θx).

Thus, choosing

θ :=
p

√
δ0‖u‖p−1

∞

‖f‖∞
,

v satisfies (1.1), with small RHS. Once Theorem 1.1 is proven for v, it im-
mediately gives the corresponding estimate for u.

4. Analysis on the critical set
In this section, based on an iterative reasoning, we establish the main tool

that allows us to prove the Cp′ conjecture in the plane. The following result
is the first step in the iteration.

Lemma 4.1. There exists 0 < λ0 < 1/2 and δ0 > 0 such that if ‖f‖∞ ≤ δ0
and u ∈ W 1,p(B1) is a weak solution of −∆pu = f in B1, with ‖u‖∞ ≤ 1,
then

sup
x∈Bλ0

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ λ0

p′.

Proof : Take ε > 0 to be fixed later, apply the previous lemma to find δ0 and,
under the smallness assumption on f , a respective corrector ξ satisfying (3.1)
and (3.2). As (u+ξ) is p-harmonic in Bλ0

⊂ B1/2 and, in view of Proposition

2.1, (u+ ξ) ∈ Cp′+τ0.Bλ0
, we can estimate in Bλ0

,

|u(x)− [u(0) +∇u(0) · x]| ≤ |(u+ ξ)(x)− [(u+ ξ)(0) +∇(u+ ξ)(0) · x]|
+|ξ(x)|+ |ξ(0)|+ |∇ξ(0) · x|

≤ Cλ0
p′+τ0 + 3ε.

We are also using the smallness of the corrector, assured by Lemma 3.1. In
order to complete the proof, we now make universal choices. Initially we
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choose λ0 � 1/2 such that

Cλ0
p′+τ0 <

1

2
λ0

p′.

In the sequel, we take

ε =
1

6
λ0

p′,

which determines the smallness assumption on ‖f‖∞ – constant δ0 > 0 in
the statement of this current lemma – through the conclusion of Lemma 3.1.
Lemma 4.1 is proven.

The conclusion of Lemma 4.1 does not, per se, allow an iteration since no
obvious pde is satisfied by u + `, when ` is an affine function. Nonetheless,
it provides the following information on the oscillation of u in Bλ0

.

Corollary 4.2. Under the assumptions of the previous lemma,

sup
x∈Bλ0

|u(x)− u(0)| ≤ λ0
p′ + |∇u(0)|λ0.

Proof : This is a immediate application of triangular inequality.

The idea is now to iterate Corollary 4.2 in dyadic balls, keeping a precise
track on the magnitude of the influence of |∇u(0)|.

Theorem 4.3. Under the same assumptions of Lemma 4.1, there exists a
constant C > 1 depending only on p, such that

sup
x∈Br
|u(x)− u(0)| ≤ Crp

′
(

1 + |∇u(0)| r
1

1−p

)
,

holds for all r > 0.

Proof : We proceed by geometric iteration. Consider the universal constants
λ0 and δ0 obtained in the previous Lemma 4.1 and let

v(x) =
u(λ0x)− u(0)

λ0
p′ + |∇u(0)|λ0

, x ∈ B1.

We have ‖v‖∞ ≤ 1, v(0) = 0, and

∇v(0) =
λ0

λ0
p′ + |∇u(0)|λ0

∇u(0),
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and

−∆pv =
λp0(

λ0
p′ + |∇u(0)|λ0

)p−1 f(λ0x) ≤ λp0

λ0
p′(p−1) |f(λ0x)| ≤ δ0,

which entitles v to Lemma 4.1. Thus

sup
x∈Bλ0

|v(x)− v(0)| ≤ λ0
p′ + |∇v(0)|λ0,

which reads

sup
x∈Bλ0

∣∣∣∣ u(λ0x)− u(0)

λ0
p′ + |∇u(0)|λ0

∣∣∣∣ ≤ λ0
p′ +

∣∣∣∣ λ0

λ0
p′ + |∇u(0)|λ0

∇u(0)

∣∣∣∣λ0,

and hence

sup
x∈B2

λ0

|u(x)− u(0)| ≤ λ0
p′
[
λ0

p′ + |∇u(0)|λ0

]
+ |∇u(0)|λ2

0.

In the sequel, we define

ak := sup
x∈B

λk0

|u(x)− u(0)|,

and set

bk :=
ak

λkp
′

0

.

Iterating the previous reasoning we obtain the recurrence law

ak+1 ≤ λ0
p′ak + |∇u(0)|λk+1

0 .

Consequently, we estimate

bk+1 =
ak+1

λ
(k+1)p′
0

≤ λ0
p′ak + |∇u(0)|λk+1

0

λ
(k+1)p′
0

= bk + |∇u(0)|λ−(k+1)(p′−1)
0 .
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Now, given 0 < r � λ0, let k ∈ N be such that λk+1
0 < r ≤ λk0. Then

sup
x∈Br

|u(x)− u(0)|
rp′

≤ sup
x∈B

λk0

|u(x)− u(0)|
(λk+1

0 )p′
=

bk

λp
′

0

≤
b0 + |∇u(0)|

k∑
i=1

[
λ
−(p′−1)
0

]i
λp
′

0

=
a0 + |∇u(0)|λ−(p′−1)

0
λ
−(p′−1)k
0 −1

λ
−(p′−1)
0 −1

λp
′

0

≤ 2 + C(λ0, p
′) |∇u(0)| r−(p′−1)

≤ C
(

1 + |∇u(0)| r
1

1−p

)
,

as desired. Observe that λ0 is a universal constant.

In accordance to [12], Theorem 4.3 provides the aimed regularity along
the set of critical points of u, |∇u|−1(0). In the next section we show how
Theorem 4.3 can be used in its full strength to yield Cp′ regularity at any
point, regardless of the value of |∇u|; it will be a softer analysis.

5. Analysis on the set of non-degenerate points
We now analyze the oscillation decay around points where the gradient is

large. Recall our ultimate goal is to show that

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ C rp

′
, ∀ 0 < r � 1.

The idea is that Theorem 4.3 gives the conclusion in the hard case, namely
where the gradient is small. For large values of |∇u|, the operator is uni-
formly elliptic and hence stronger estimates are available. The formal way of

performing this analysis is by splitting it in two cases. When |∇u(0)| ≤ r
1
p−1 ,

then Theorem 4.3 gives

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ sup

x∈Br
|u(x)− u(0)|+ |∇u(0)| r

≤ (C + 1)rp
′
.
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For the complementary case, i.e., when |∇u(0)| > r
1
p−1 , we argue as follows.

Define µ := |∇u(0)|p−1 and take

w(x) :=
u(µx)− u(0)

µp′
.

Clearly

w(0) = 0, |∇w(0)| = 1 and ∆pw = f(µx) ∈ L∞.

Moreover, from Theorem 4.3, it follows that

sup
x∈B1

|w(x)| = sup
x∈Bµ

|u(x)− u(0)|
µp′

≤ C,

since µ
1
p−1 = |∇u(0)|. From classical C1,α regularity estimates, Proposition

2.2, there exists a radius ρ0, depending only on the data, such that

|∇w(x)| ≥ 1

2
, ∀x ∈ Bρ0

.

This implies that, in Bρ0
, w solves a uniformly elliptic equation. In particular,

we have

w ∈ C1,β(Bρ0
), for some

1

p− 1
≤ β < 1.

As an immediate consequence,

sup
x∈Br

∣∣∣w(x)−∇w(0) · x
∣∣∣ ≤ C r1+β, ∀ 0 < r <

ρ0

2

which, in terms of u, reads

sup
x∈Br

∣∣∣u(µx)− u(0)

µp′
− µ1−p′∇u(0) · x

∣∣∣ ≤ C r1+β.

Since p′ ≤ 1 + β, we conclude

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ C rp

′
, ∀ 0 < r < µ

ρ0

2
.
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Finally, for µρ0

2 ≤ r < µ, we have

sup
x∈Br

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣ ≤ sup

x∈Bµ

∣∣∣u(x)− [u(0) +∇u(0) · x]
∣∣∣

≤ sup
x∈Bµ
|u(x)− u(0)|+ |∇u(0)|µ

≤ (C + 1)µp
′

≤ C

(
2r

ρ0

)p′
= Crp

′
.

In view of the reduction discussed at the end of Section 3, the proof of
Theorem 1.1 is complete.
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