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1. Introduction
In this paper we are interested in describing the invariant factors of the

product of two matrices over the most general class of integral domains for
which the question makes sense. The problem has been completely solved for
matrices over principal ideal domains (PIDs) and we begin in that setting.
There is no loss of generality in restricting our study to square nonsingular
matrices [14].

Let R be a PID and A an n×n nonsingular matrix over R. It is well known
that A is equivalent to its Smith normal form, that is, there exist U and V
unimodular (i.e. invertible over R) such that

UAV =


an 0 · · · 0
0 an−1 · · · 0
...

... . . . ...
0 0 · · · a1

 ,
where an | an−1 | · · · | a1 are the invariant factors of A.
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The invariant factors are uniquely determined by A, as follows from the
characterization

an−k+1 =
dk(A)

dk−1(A)
, k = 1, . . . , n,

where, for each k, dk(A), the so-called kth determinantal divisor of A, is
the gcd of all k × k minors of A, d0 ≡ 1. (This definition can of course be
presented also for non-square matrices.) By the Cauchy-Binet theorem for
determinants, the dk are invariant under equivalence. That dk−1(A) divides
dk(A) follows from Laplace’s theorem.

The problem we are interested in is the following: What are the possible
invariant factors cn | · · · | c1 of a product AB, if A and B are n × n non-
singular matrices over R with invariant factors an | · · · | a1 and bn | · · · | b1,
respectively?

For matrices over a PID, this problem has been solved with a variety of
approaches, starting with its p-module version in [10], where p is a prime
in R. Indeed, all approaches start by localizing the problem at an arbitrary
prime p, working in that context, and then recovering the global solution.

To describe the solution in [10] we need some notation. For each fixed
prime p ∈ R, we restrict our attention to matrices over the local ring Rp,
that is, we just work with powers of p: ai → pαi, bi → pβi, ci → pγi, where
α1 ≥ · · · ≥ αn, β1 ≥ · · · ≥ βn, γ1 ≥ · · · ≥ γn are nonnegative integers.

Denote by IF (α, β) the set of possible γ in the invariant factor product
problem. Introduce the notation Λn = {α = (α1, . . . , αn) ∈ Zn : α1 ≥
· · · ≥ αn ≥ 0}. What was proved in [10] was that IF (α, β) = LR(α, β),
where the latter is the set of γ ∈ Λn which can be obtained from α and β
using the combinatorial Littlewood-Richardson rule (for the description of
the rule see e.g. [5]). Thus the invariant factor product problem, in its local
“primary” version, has a complete and interesting solution, although not a
clearly explicit one, via the Littlewood-Richardson rule. In particular, this
solution is not given as a family of divisibility relations.

For each natural number r between 1 and n, denote by Qr,n the set of
strictly increasing sequences with r elements taken from {1, 2, . . . , n}. For
many years, R. C. Thompson, who was aware of Klein’s work, believed there
should be a solution to the invariant factor product problem given by a family
of divisibility relations of the type

ck1ck2 · · · ckr | ai1ai2 · · · airbj1bj2 · · · bjr (1)
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where I = (i1, . . . , ir), J = (j1, . . . , jr), K = (k1, . . . , kr) ∈ Qr,n. His main
work on the subject, going a long way in that purpose, is the paper [16].

At the end of the 1990s, as a by-product to the solution of another well-
known matrix problem – the description of the relations between the eigen-
values of two Hermitian matrices and those of their sum – a complete solution
to the invariant factor problem in terms of divisibility relations of the type
(1) was found. The reader interested in the details and in the connection
between the two problems may consult the excellent survey [6], and also
[11], [15]. Using the notation in [6], for I = (i1, . . . , ir) ∈ Qr,n we define a
decreasing r-sequence λ(I) by

λ(I) = (ir − r, ir−1 − (r − 1), . . . , i2 − 2, i1 − 1).

Then elements cn | · · · | c1 occur as the invariant factors of a product AB
where A and B have invariant factors an | · · · | a1 and bn | · · · | b1, respec-
tively, if and only if c1 · · · cn = a1 · · · anb1 · · · bn and the relations (1) hold
whenever λ(K) ∈ LR(λ(I), λ(J)) for all r < n. The proof is dependent on
the localization argument mentioned above. The result also means that the
valid divisibility relations are exactly those whose indices appear in the in-
equalities solving the Hermitian sum problem, the so-called Horn inequalities
[6].

2. Elementary divisor domains
Invariant factors may be defined for matrices over more general rings. The

more natural rings in this context are the elementary divisor domains (EDDs)
introduced by Kaplansky in [9]. These are precisely the integral domains R
where every matrix over R is equivalent to a Smith normal form exactly
as above (Kaplansky allows zero divisors). One example of an elementary
divisor domain which is not a principal ideal domain is the non Noetherian
ring H(Ω) of all complex functions holomorphic in an open connected set
Ω ⊆ C [8]. Another example, relevant to Control Theory, can be found in
[7]. So EDDs are a strictly larger class of rings than PIDs. Arguments using
reduction to the primary case do not work here, as EDDs are not in general
unique factorization domains.

As before, the determinantal divisors (and hence also the invariant factors)
are invariant under equivalence, so two matrices over an EDD are equivalent
if and only if they have the same invariant factors.
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Kaplansky makes the interesting observation that for R to be an EDD it is
enough to require that 2×2 matrices are equivalent to a diagonal. This allows
him to give a characterization of EDDs with a simple algebraic condition:
they are the domains where all finitely generated ideals are principal and
whenever gcd(a, b, c) = 1 there exist p and q such that gcd(pa, pb+ qc) = 1.

The question naturally arises: what can we say about properties of invari-
ant factors of matrices over EDDs? Of course, results established using only
the Smith normal form, without reduction to the primary case, immediately
carry over to EDDs. Some examples can be found in [12]. But what about
the huge family of divisibility relations, mentioned in the previous section,
valid for invariant factors of products of matrices over PIDs? Extending those
results to EDDs presents an interesting challenge, necessitating a change in
the proofs.

We shall prove in Section 5 that all divisibility relations valid for invariant
factors of products of matrices over PIDs (which give the complete answer to
the product problem in that setting) remain valid for matrices over an EDD
R. Our strategy — inspired by the Hermitian sum spectral problem [6] and
the corresponding one for singular values of products [17]— is to establish
extremal characterizations (for the divisibility order) for scattered products
ai1ai2 · · · air of invariant factors. The extremes will be taken over analogues
of Schubert varieties of submodules of Rn. We do this in Section 4. For it to
work over EDDs, we must restrict ourselves to the class of pure submodules.
We dedicate the next section to the properties of these submodules that we
shall need.

3. Pure submodules
Let R be an elementary divisor domain.

Definition. Let M be an R-module and W a submodule of M . We say that
W is a pure submodule of M if, for all a ∈ R, we have W ∩ aM = aW .

Remarks.
1. For modules over an integral domain the definition of pure submodule
is usually presented in another form. For modules over an EDD the two
definitions are equivalent [4, 13].
2. Every direct summand of a module M is a pure submodule of M .
3. Over an EDD, if both the module and the submodule are free with finite
rank then W is pure in M if and only if W is a direct summand of M .
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We begin this section with the generalization of the last remark to sub-
modules, not necessarily free, of Rn.

Denote by K the quotient field of R. If F is a submodule of Rn then KF
is a subspace of Kn. Write rank(F ) := dimK(KF ). (If F is a free submodule
of Rn then rank(F ) = dimR(F ), the usual rank of F ).

The intersection of any non-empty family of pure submodules of Rn is a
pure submodule of Rn. If F is a submodule of Rn, we denote by F the pure
closure of F , that is, the intersection of all pure submodules of Rn containing
F .

In the next Lemma we collect some straightforward results on these notions.
For modules over a PID, results 2 to 5 can be found in [3].

Lemma 3.1. Let F and G be submodules of Rn. We have
1. K(F ∩G) = (KF ) ∩ (KG);
2. If F ⊆ G, F is pure in Rn and rank(F ) = rank(G), then F = G;
3. F = {v ∈ Rn : ∃a ∈ R \ {0} s.t. av ∈ F};
4. F ∩G = F ∩G;
5. rank(F ) = rank(F ).

Next we prove that every pure submodule of Rn is the pure closure of a
free submodule with finite basis and we use that result to generalize, for pure
submodules of Rn, the basis extension theorem for finite dimension vector
spaces.

Theorem 3.2. Let L be a pure submodule of Rn with rank(L)=r. Then there

exist x1, . . . , xr ∈ L, linearly independent, such that L = spanR{x1, . . . , xr}.

Proof. Let {v1, v2, . . . , vr} be a basis of KL. For j = 1, . . . , r, vj = αjxj
with αj ∈ K \ {0} and xj ∈ L. Clearly x1, . . . , xr are linearly independent.
Put F = spanR{x1, . . . , xr}. Since L is pure and F ⊆ L we have F ⊆ L. On
the other hand, rank(F ) = rank(F ) = r = rank(L), whence F =L.

Theorem 3.3. Let W ⊆ M be pure submodules of Rn with rank(W ) =

r, rank(M) = k and W = spanR{x1, . . . , xr}, where x1, . . . , xr are linearly
independent. Then there exist xr+1, . . . , xk ∈ M such that x1, . . . , xk are
linearly independent and M = spanR{x1, . . . , xk}.
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Proof. Let y1, . . . , yk ∈ M be linearly independent and such that M =
spanR{y1, . . . , yk}. Since x1, . . . , xr ∈M are linearly independent, there exist
b1, . . . , br ∈ R \ {0}, such that b1x1, . . . , brxr are linearly independent in
spanR{y1, . . . , yk}. Then there exist unimodular matrices U and V of orders
k and r, respectively, and nonzero a1 | a2 | · · · | ar such that

[b1x1 · · · brxr] = [y1 · · · yk]U


a1 0

. . .
0 ar

0

V ,
where we use the notation [y1 · · · yk] for the matrix with columns y1, . . . , yk.

Let Z = [z1 · · · zk] = [y1 · · · yk]U . Since U is unimodular, z1, . . . , zk are
linearly independent and spanR{z1, . . . , zk} = spanR{y1, . . . , yk}. Therefore

M = spanR{y1, . . . , yk} = spanR{z1, . . . , zk}.
On the other hand, from [a1z1 · · · arzr] = [b1x1 · · · brxr]V −1 we get that

ajzj ∈ W ∩ ajM = ajW , for j = 1, . . . , r. So z1, . . . , zr ∈ W and are linearly

independent. Therefore, as W is pure, spanR{z1, . . . , zr} ⊆ W . Equality
holds as the two submodules are pure and have the same rank.

We claim that M = spanR{x1, . . . , xr, zr+1, . . . , zk}.
Let v ∈ M = spanR{z1, . . . , zk}. There exist a, c1, . . . , ck ∈ R, with a 6= 0,

such that av =
∑k

i=1 cizi. Since y =
∑r

i=1 cizi ∈ W = spanR{x1, . . . , xr},
there exist b, d1, . . . , dr ∈ R, with b 6= 0, such that by =

∑r
i=1 dixi and

abv =
r∑
i=1

dixi +
k∑

i=r+1

bcizi .

As ab ∈ R \ {0}, we get that v ∈ spanR{x1, . . . , xr, zr+1, . . . , zk}. Therefore,

M ⊆ spanR{x1, . . . , xr, zr+1, . . . , zk}. The other inclusion follows from the
fact that M is pure and contains x1, . . . , xr, zr+1, . . . , zk.

That x1, . . . , xr, zr+1, . . . , zk are linearly independent follows promptly from
W = spanR{z1, . . . , zr}, and the fact that both z1, . . . , zk and x1, . . . , xr are
linearly independent.

We now define the analogue of the usual Schubert varieties.

Definition. Let P = (P1, P2, . . . , Pn), with P1 ⊂ P2 ⊂ · · · ⊂ Pn, be a
chain of pure submodules of Rn such that rank(Pi) = i, i = 1, 2, . . . , n. For
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I = (i1, . . . , ir) ∈ Qr,n, we denote by ΩI(P ) the set of pure submodules L of
Rn with rank r and such that, for j = 1, . . . , r, rank(L ∩ Pij) ≥ j.

Theorem 3.4. Let P = (P1, P2, . . . , Pn) with P1 ⊂ P2 ⊂ · · · ⊂ Pn be a chain
of pure submodules of Rn such that rank(Pi) = i, i = 1, 2, . . . , n, and let I =
(i1, . . . , ir) ∈ Qr,n. A submodule L of Rn belongs to ΩI(P ) if and only if there

exist linearly independent x1, . . . , xr ∈ L such that L = spanR{x1, . . . , xr}
and xj ∈ Pij for j = 1, . . . , r.

Proof. Let L ∈ ΩI(P ). Since rank(L ∩ Pi1) ≥ 1 there exists x1 ∈ L ∩ Pi1
with x1 6= 0. W = spanR{x1} is a pure submodule of Rn and is con-
tained in the pure submodule L ∩ Pi2. There exist u2, . . . , ut ∈ L ∩ Pi2 (with
t = rank(L ∩ Pi2) ≥ 2) such that x1, u2, . . . , ut are linearly independent and

L∩Pi2 = spanR{x1, u2, . . . , ut}. Take x2 = u2. Repeating the process we get
that there exist linearly independent x1, . . . , xr ∈ L such that xj ∈ Pij for

j = 1, . . . , r and spanR{x1, . . . , xr} = L∩Pir ⊆ L. As spanR{x1, . . . , xr} and

L are both pure and have the same rank, we get that spanR{x1, . . . , xr} = L.

Theorem 3.5. Let r ∈ N0. The mapping that to each pure submodule L of
Rn with rank r assigns KL is a bijection between the set of pure submodules
of Rn with rank r and the set of r-dimensional subspaces of Kn.

Proof. Given a subspace E of Kn with dimension r, the set L =
{x ∈ Rn : ∃α∈K\{0} s.t. αx ∈ E} is a pure submodule of Rn with KL = E.

Let now W1, W2 be pure submodules of Rn such that KW1 = KW2 =: E.
Consider L = {x ∈ Rn : ∃α ∈ K \ {0} s.t. αx ∈ E}. Clearly W1 ⊆ L.
Let x ∈ L. There exist a, b ∈ R \ {0} such that a

bx ∈ E = KW1. Then
a
bx = c

dy, with c, d ∈ R \ {0} and y ∈ W1. We get adx = bcy ∈ W1, whence

x ∈ W1 = W1. Therefore L ⊆ W1. Similarly, L = W2.

Theorem 3.6. Let L be a pure submodule of Rn. Then, for every I ∈ Qr,n,

L ∈ ΩI(P ) ⇐⇒ KL ∈ ΩI(KP ) ,

where KP = (KP1,KP2, . . . ,KPn).

Proof. This follows immediately from the fact that, for a submodule L of Rn,
one has dimK(KL∩KPij) = dimKK(L∩Pij) = rank(L∩Pij) , j = 1, . . . , r .
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4. Extremal characterizations
Our main inspiration in this section is [17].
Recall that dr(A) is the gcd of all r×r minors of A. If M is an m×n matrix

and ω and η are strictly increasing sequences of elements of {1, . . . ,m} and
{1, . . . , n}, respectively, M [ω|η] denotes the submatrix of M built with the
rows and columns indexed by ω and η, respectively.

Theorem 4.1. Let A ∈ Rn×n, L a pure submodule of Rn and x1, . . . , xr ∈ L
linearly independent such that L = spanR{x1, . . . , xr}. Put X = [x1 · · · xr].
Then
1. dr(X) | dr(AX);

2. If y1, . . . , yr ∈ L are linearly independent such that L = spanR{y1, . . . , yr},
and Y = [y1 · · · yr], then

dr(AX)

dr(X)
=
dr(AY )

dr(Y )
.

Proof. 1.

dr(AX) = gcd
ω∈Qr,n

det (AX[ω|1, . . . , r])

= gcd
ω∈Qr,n

∑
γ∈Qr,n

det(A[ω|γ]) det(X[γ|1, . . . , r]) .

2. Since x1, . . . , xr belong to L = spanR{y1, . . . , yr} and are linearly indepen-
dent, there exist a1, . . . , ar ∈ R \ {0} and S ∈ Rr×r nonsingular such that
Xdiag(a1, . . . , ar) = Y S. We then have

dr(AX)

dr(X)
=

dr(AXdiag(a1, . . . , ar))

dr(Xdiag(a1, . . . , ar))
=

dr(AY S)

dr(Y S)

=
dr(AY ) det(S)

dr(Y ) det(S)
=

dr(AY )

dr(Y )
.

It follows from item 2 in the theorem that dr(AX)
dr(X) does not depend on the

choice of X, but only on the submodule L. We use this to present the
definition of a kind of “Rayleigh functional” for A and L.
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Definition. Let L be a pure submodule of Rn, with rank(L) = r. For A
n× n, we write

ψ(A|L) =
dr(AX)

dr(X)
,

where x1, . . . , xr ∈ L are linearly independent such that L = spanR{x1, . . . , xr}
and X is the n× r matrix [x1 · · ·xr].

Let A be an n× n matrix over R. There exist unimodular U, V such that
UAV = diag(a1, . . . , an), with an | an−1 | · · · | a1. Denote by v1, . . . , vn the
columns of V , which form a basis of Rn. Consider the pure submodules of Rn

defined by Vi = spanR{v1, . . . , vi}, i = 1, . . . , n, and write V = (V1, . . . , Vn).
For I = (i1, . . . , ir) ∈ Qr,n, we have that ΩI(V ) is nonempty, since

spanR{vi1, vi2, . . . , vir} ∈ ΩI(V ).

Our first extremal characterization is the following.

Theorem 4.2. For every I = (i1, . . . , ir) ∈ Qr,n we have

ai1ai2 · · · air = gcd
L∈ΩI(V )

ψ
(
A|L
)
.

Proof. Let L ∈ ΩI(V ), and let x1, ..., xr ∈ L be linearly independent such

that L=spanR{x1, . . . , xr} and xj ∈ Vij for all j.
Let B be the n × r matrix such that X = [x1 · · ·xr] = V B and D =

diag(a1, . . . , an). Then

dr(AX) = dr(UAV B) = dr(DB) = gcd
ω∈Qr,n

det(DB[ω|1, . . . , r]) .

Since xj ∈ Vij = spanR{v1, . . . , vij}, in column j of DB the entries below
row ij are zero, for j = 1, . . . , r. Therefore, if ω(j) > ij for some j, then
det(DB[ω|1, . . . , r]) = 0. Hence

dr(AX) = gcd
ω∈Qr,n

ω(j)≤ij ,∀j

det(B[ω|1, . . . , r])
r∏
j=1

aω(j) .

Similarly,

dr(X) = dr(V B) = dr(B) = gcd
ω∈Qr,n

ω(j)≤ij ,∀j

det(B[ω|1, . . . , r]) .



10 CRISTINA CALDEIRA AND JOÃO FILIPE QUEIRÓ

For ω ∈ Qr,n such that ω(j) ≤ ij for all j, let cω ∈ R be such that
det(B[ω|1, . . . , r]) = cωdr(X).

Then we have

ψ(A|L) =
dr(AX)

dr(X)
= gcd

ω∈Qr,n

ω(j)≤ij ,∀j

cω

r∏
j=1

aω(j)

and, since ω(j) ≤ ij ⇒ aij | aω(j), we get that ai1ai2 · · · air | ψ(A|L).
Therefore, ai1ai2 · · · air is a common divisor of the elements of the set
{ψ(A|L) : L ∈ ΩI(V )}.

On the other hand, ai1ai2 · · · air belongs to that set because F =
spanR{vi1, vi2, . . . , vir} ∈ ΩI(V ), vij ∈ Vij for all j, and

ψ(A|F ) =
dr(A[vi1 · · · vir ])
dr([vi1 · · · vir ])

=
dr(D[ei1 · · · eir ])

1
= ai1ai2 · · · air ,

where {e1, . . . , en} is the canonical basis of Rn.

The argument for the second extremal characterization is similar. We intro-
duce a new notation. For i = 1, . . . , n write V ′i = spanR{vn−i+1, . . . , vn}, and
V ′ = (V ′1 , . . . , V

′
n). If I ′ = (n−ir+1, . . . , n−i1+1), then spanR{vi1, . . . , vir} ∈

ΩI ′(V
′).

Theorem 4.3. For every I = (i1, . . . , ir) ∈ Qr,n we have

ai1ai2 · · · air = lcm
L∈ΩI′(V

′)
ψ
(
A|L
)
.

Proof. Let L ∈ ΩI ′(V
′), and let x1, ..., xr ∈L be linearly independent such

that L=spanR{x1, . . . , xr} and xj ∈ V ′n−ir−j+1+1 for all j.

Let B be the n × r matrix such that X = [x1 · · ·xr] = V B and D =
diag(a1, . . . , an). We have

dr(AX) = gcd
ω∈Qr,n

ω(j)≥ij ,∀j

det(B[ω|1, . . . , r])
r∏
j=1

aω(j)

and similarly
dr(X) = gcd

ω∈Qr,n

ω(j)≥ij ,∀j

det(B[ω|1, . . . , r]) .

For ω ∈ Qr,n such that ω(j) ≥ ij for all j, let cω ∈ R be such that
det(B[ω|1, . . . , r]) = cωdr(X).



INVARIANT FACTORS OF PRODUCTS OVER EDDs 11

Then we have

ψ(A|L) =
dr(AX)

dr(X)
= gcd

ω∈Qr,n

ω(j)≥ij ,∀j

cω

r∏
j=1

aω(j)

and, since ω(j) ≥ ij ⇒ aω(j) | aij , we get that ψ(A|L) divides

gcd
ω∈Qr,n

ω(j)≥ij ,∀j

cωai1ai2 · · · air = (ai1ai2 · · · air) gcd
ω∈Qr,n

ω(j)≥ij ,∀j

cω = ai1ai2 · · · air .

Therefore, ai1ai2 · · · air is a common multiple of the elements of the set
{ψ(A|L) : L ∈ ΩI ′(V

′)}.
On the other hand, ai1ai2 · · · air belongs to that set because F =

spanR{vi1, vi2, . . . , vir} ∈ ΩI ′(V
′), vir−j+1

∈ V ′n−ir−j+1+1 for all j, and

ψ(A|F ) =
dr(A[vi1 · · · vir ])
dr([vi1 · · · vir ])

=
dr(D[ei1 · · · eir ])

1
= ai1ai2 · · · air .

5. Schubert intersections and divisibility relations
The basic result which allows us to prove our divisibility relations is the

following.

Theorem 5.1. Let A,B ∈ Rn×n and L,M be pure submodules of Rn such
that rank(M) = rank(L) and M contains BL := {Bv : v ∈ L}. Then

ψ
(
AB|L

)
= ψ

(
A|M

)
ψ
(
B|L
)
.

Proof. Let r = rank(L) = rank(M) and consider X = [x1 · · ·xr], with

x1, . . . , xr ∈ L linearly independent and such that L = spanR{x1, . . . , xr}.
Put Y = [y1 · · · yr], with y1, . . . , yr ∈M linearly independent such that M =

spanR{y1, . . . , yr}. Since BL ⊆ M , there exist c1, . . . , cr ∈ R \ {0} and
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Z ∈ Rr×r such that BXdiag(c1, . . . , cr) = Y Z. Therefore

ψ(AB|L) =
dr(ABX)

dr(X)
=
dr(ABXdiag(c1, . . . , cr))

dr(X)c1 · · · cr

=
dr(AY Z)

dr(X)c1 · · · cr
=
dr(AY ) det(Z)

dr(X)c1 · · · cr

=
dr(AY )dr(Y ) det(Z)

dr(Y )dr(X)c1 · · · cr
=
dr(AY )

dr(Y )

dr(Y Z)

dr(X)c1 · · · cr

= ψ(A|M)
dr(BXdiag(c1, . . . , cr))

dr(X)c1 · · · cr

= ψ(A|M)
dr(BX)

dr(X)
= ψ(A|M)ψ(B|L) .

Lemma 5.2. Let B ∈ Rn×n be nonsingular and L and S submodules of Rn,

with S pure. Then BL ∩ S = B(L ∩ adj(B)S).

Proof. Let x ∈ BL ∩ S. Then x = By with y ∈ L. Hence det(B)y =

adj(B)x and so y ∈ adj(B)S. Therefore y ∈ L ∩ adj(B)S and x = By ∈
B(L ∩ adj(B)S). So we have proved that BL ∩ S ⊆ B(L ∩ adj(B)S). Thus

BL ∩ S = BL ∩ S ⊆ B(L ∩ adj(B)S).

Let now x ∈ B(L ∩ adj(B)S). There exist a ∈ R\{0} and y ∈ L∩adj(B)S
such that ax = By. Also, there exist b ∈ R \ {0} and z ∈ S such that
by = adj(B) z. So abx = Bby = det(B)z and, therefore, x ∈ S = S. On the
other hand, ax = By ∈ BL, so x ∈ BL.

Theorem 5.3. Let S = (S1, . . . , Sn) where S1 ⊂ · · · ⊂ Sn are pure sub-
modules of Rn such that rank(Sk) = k, for k = 1, . . . , n. Let B ∈ Rn×n be

nonsingular and, for k = 1, . . . , n, put Tk = adj(B)Sk. Then T1 ⊂ · · · ⊂ Tn
are pure submodules of Rn such that rank(Tk) = k, k = 1, . . . , n. Addi-
tionally, if T = (T1, . . . , Tn) and I = (i1, . . . , ir) ∈ Qr,n, and L is a pure
submodule of Rn, we have

L ∈ ΩI(T ) ⇐⇒ BL ∈ ΩI(S) .



INVARIANT FACTORS OF PRODUCTS OVER EDDs 13

Proof. For k = 1, . . . , n− 1, we have

Sk ⊂ Sk+1 ⇒ adj(B)Sk ⊆ adj(B)Sk+1 ⇒ Tk ⊆ Tk+1 .

On the other hand, for all k,

rank(Tk)=rank(adj(B)Sk)=dimKK(adj(B)Sk)=dimK(KSk)=rank(Sk) = k .

Let L be a pure submodule of Rn. Since B is nonsingular, we have that
rank(BL) = rank(BL) = dimKK(BL) = dimKKL = rank(L). On the the
other hand, for j = 1, . . . , r,

rank(BL ∩ Sij) = rank(B(L ∩ adj(B)Sij))

= rank(B(L ∩ Tij)) = rank(B(L ∩ Tij)) = rank(L ∩ Tij) ,
and we get the result.

Let A, V , V ′ and an | an−1 | · · · | a1 as before.
Let B ∈ Rn×n, C = AB, with invariant factors bn | bn−1 | · · · | b1 and cn |

cn−1 | · · · | c1, respectively. Let W,W ′ and P, P ′ be chains of pure submodules
of Rn defined from the columns of unimodular matrices V1, V2 such that
U1BV1 = diag(b1, . . . , bn) and U2CV2 = diag(c1, . . . , cn), respectively (with
U1, U2 unimodular). Let I = (i1, . . . , ir), J = (j1, . . . , jr), K = (k1, . . . , kr) ∈
Qr,n.

When is a intersection of the type ΩK(KP )∩ΩI ′(KV ′)∩ΩJ ′(KW ′) nonempty?
In a recent paper [1] it is proved that this happens when λ(K) can be obtained
from λ(I) and λ(J) in only one way using the Littlewood-Richardson rule, or,

in the language of Littlewood-Richardson coefficients [6], when c
λ(K)
λ(I)λ(J) = 1.

We then have:

Theorem 5.4. If λ(K) can be obtained from λ(I) and λ(J) in only one way
using the Littlewood-Richardson rule then

ck1ck2 · · · ckr | ai1ai2 · · · airbj1bj2 · · · bjr .

Proof. For i = 1, . . . , n write Ti = adj(B)V ′i and consider T = (T1, . . . , Tn).
Under the hypothesis we have

ΩK(KP ) ∩ ΩI ′(KT ) ∩ ΩJ ′(KW ′) 6= ∅
whence

ΩK(P ) ∩ ΩI ′(T ) ∩ ΩJ ′(W
′) 6= ∅ .
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Let L ∈ ΩK(P ) ∩ ΩI ′(T ) ∩ ΩJ ′(W
′). Then BL ∈ ΩI ′(V

′) and

ck1ck2 · · · ckr = gcd
S∈ΩK(P )

ψ(AB|S) | ψ(AB|L) = ψ(A|BL)ψ(B|L)

| lcm
S∈ΩI′(V

′)
ψ(A|S) lcm

S∈ΩJ′(W
′)
ψ(B|S) = ai1ai2 · · · airbj1bj2 · · · bjr .

In the general case when λ(K) can be obtained from λ(I) and λ(J) in one

or more ways, or c
λ(K)
λ(I)λ(J) ≥ 1, the intersection of the Schubert varieties may

be empty but the corresponding divisibility relation follows from those in
the theorem (see [6] and its references). So we get that all “Horn relations”,
i.e. those whose indices appear in the inequalities solving the Hermitian sum
problem, remain valid in our setting.

6. Extension to GCD domains
The above proof of divisibility relations for matrices over EDDs allows a

further extension to a even larger class of rings. We briefly describe this
technique, already used by Kaplansky in [9].

An integral domain is a valuation domain if, up to products by units,
divisibility is a total order.

If R is an integral domain, we say R is integrally closed if it contains the
roots of monic polynomials over R. A result by Krull states that such an R is
equal to the intersection of all valuation domains that contain it. Therefore, a
divisibility relation holds in R if and only if it holds in every valuation domain
containing R. Trivially valuation domains are EDDs. Hence divisibility
relations proved for arbitrary EDDs may be used to obtain statements valid
for integrally closed domains.

We are interested in the class of GCD domains, defined by the condition
that every finite set of elements has a gcd in the ring. This class contains
EDDs (or, more generally, Bézout domains, i.e. domains in which every
finitely generated ideal is principal) and also unique factorization domains.
GCD domains are easily seen to be integrally closed.

For a matrix over a GCD domain we can define invariant factors as quo-
tients of determinantal divisors as in the Introduction. The very fact that
the invariant factors form a divisibility chain is an example of a divisibility
relation that extends from EDDs to GCD domains using the argument above
(we don’t know a direct proof of that).
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We can now present the desired extension.

Theorem 6.1. Let A,B be nonsingular n× n matrices over a GCD domain
and let an | · · · | a1, bn | · · · | b1 and cn | · · · | c1 be the invariant factors of
A,B and AB. For any r < n and I, J,K ∈ Qr,n, if λ(K) ∈ LR(λ(I), λ(J))
then

ck1ck2 · · · ckr | ai1ai2 · · · airbj1bj2 · · · bjr .

7. Final remarks
A literature search shows that ideas similar to those in this paper appear

in two papers separated by 30 years. In [3], which deals with many other
subjects, different extremal characterizations for products of invariant factors
of matrices over a PID are presented but not used to obtain divisibility
relations. In the very recent paper [2], the Horn relations for invariant factors
are proved for modules over a PID using the intersection of Schubert varieties,
a different technique from that presented in [6], where the main connection
was via representation theory.

It is natural to ask if the relations presented in Theorem 5.4, together with
the equality for r = n, constitute the complete answer for the invariant factor
problem for EDDs (as they are for PIDs), i.e. if they are sufficient for the
existence of matrices A and B such that the given elements are the invariant
factors of A, B and AB.
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