
Pré-Publicações do Departamento de Matemática
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1. Introduction

This work may be seen as the continuation of the project initiated in 1982
by T. Porter [17] in order to generalize the so-called Brown-Spencer result
[5] from groups to other structures. The Brown-Spencer result establishes a
categorical equivalence between crossed modules of groups and internal grou-
poids in the category of groups, an important result connecting two types of
objects, apparently with a very different nature. As a consequence, this re-
sult has significant applications in homotopy theory, homology, cohomology,
K-theory and higher dimensional categorical algebra, among others.
Over the last three decades many authors studied this specific problem.

The original result, although already known, was first published in 1976 [5].
In 1982 J.-L. Loday generalizes it to higher-dimensions [8] by introducing
the notion of Cat-n-group. During the 80’s much work was done, either as
applications of the original result or as generalizations of it, especially in
categories of groups with operations, as it can be seen for example in [18]. In
the 90’s R. Brown and his School were still active in this area as one can see
in [4] and its references, as well as several other authors. For example internal
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categories and internal groupoids started to be exhaustively studied, first in
the context of Mal’tsev categories and later in the context of semiabelian
categories. This work culminated with the notion of internal crossed module
by G. Janelidze, see [7] which also contains some historical notes.
The main motivation for the present work was the possibility of moving

from the category of internal actions, defined in the context of a semiabelian
category, to a more general context of categories and functors such as the
one we introduce in Section 2, in which B is any pointed category while A

can be interpreted as a category of abstract actions on B.
After a close analysis of some of the results obtained during the last th-

ree or four decades we concluded that many of the generalizations of the
notion of crossed module were obtained by calculating simpler descriptions
of internal groupoids. The perspective that we have adopted in this work is
somehow different. We consider a general system in which a certain sequence
of two morphisms without any further assumptions is considered. We call it
a Whitehead sequence. Accordingly, we define a crossed module as a Whi-
tehead sequence to which an internal groupoid structure can be associated
in a canonical manner, an idea that we will make precise later.
Consider a system of functors and categories displayed as

A

I //

J
// BGoo (1)

and such that IG = 1B = JG. A sequence of morphisms in A of the form

GJA
v // A

u // GIA

is called a Whitehead sequence whenever

I(u) = 1IA, J(v) = 1JA, I(v) = J(u).

Our main goal here is to find reasonable conditions under which we have
an equivalence of categories

W(A) ∼ Gpd(B) (2)

between the category of Whitehead sequences in A and the category of in-
ternal groupoids in B, the guiding example being the case where B is the
category of groups and A is the category of group actions on groups. The
functors I and J are the obvious projections (see Section 3) while G gives the
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action by conjugation [17]. The functor G has a left adjoint, F , which cor-
responds to the well known construction of the semidirect product in groups
(see also [3] and [7]). In this case a Whitehead sequence is precisely a crossed
module.
A crossed module, as introduced by J.H.C. Whitehead [19], in the category

of groups consists of a pair (A, h) in which A ∈ A is an action (the group IA
acts on the group JA) and h : JA −→ IA is a group homomorphism such
that there is a Whitehead sequence

GJA
v // A

u // GIA

with J(u) = h = I(v).
This notion of crossed module was already presented in [17]. Here we

illustrate the general system of categories and functors (1) and motivate the
definition of Whitehead sequence which, in the particular case where B is the
category of groups and A the category of group actions, gives the classical
notion of a crossed module.
First we give additional conditions on the general system of categories and

functors (1) in which B is a pointed category whileA (under some reasonable
conditions) is to be understood as a category of actions. More specifically,
an object A in A is considered as an action of the object IA on the object
JA in B and if B is an object in B then G(B) is considered as an action (by
conjugation) of B onto itself.
One of the important aspects of this construction is that we can always

define the notion of Whitehead sequence as a triple (A, u, v), in A, of the
form

GJA
v // A

u // GIA

such that

I(u) = 1IA, J(v) = 1JA, I(v) = J(u),

and the question is: when does it make sense to call such a sequence a crossed
module? One possible answer is: whenever it has an associated groupoid
structure.
Next we describe the main ideas that lead us to the notion of category of

actions we introduce here.
Concerning the one dimensional case, we assume that I and J are jointly

faithful. This restriction means that an action, in general, can be understood
as a triple A = (X, ξ, B) where ξ is some kind of structure defined on B
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and X, while a morphism f : A −→ A′ is always a pair of morphisms
f1 : JA −→ JA′ and f2 : IA −→ IA′ in B satisfying some compatibility
conditions with respect to the structures involved. With this restriction we
have that a Whitehead sequence is determined by a pair (A, h) where A is
an action, i.e. an object in A, h : JA −→ IA is a morphism in B, and
the existence of u and v as in the definition of Whitehead sequence becomes
a property of A and h, giving, in the case of groups [17], the celebrated
conditions for a crossed module (equations (13) and (14) of Section 3). Note
that equation (13) is equivalent to the existence of u, while the equation (14)
is equivalent to the existence of v.
In higher dimensions, to assume the above restriction is too much. We will

often be interested in considering that the 2-cells are also involved and in
that case a morphism between actions can be a triple f = (f1, f2, f3) where
f1 and f2 are still morphisms as above but f3 may be a 2-cell linking the
two structures. This is what happens in the case of categorical groups [16].
However, also in this case, the 2-cells involved are determined up to equi-
valence. In the following we are going to consider only the one-dimensional
level. Nevertheless, the theory of action-systems presented here is delineated
having in mind its application in a two-dimensional setting.
This work is organized as follows. In Section 2 we introduce the setting

and give the basic definitions. A (right) patch is a jointly epimorphic cospan
with the property that there exists a retraction of the right inclusion. If
this retraction is the cokernel of the left inclusion then we speak of an exact
(right) patch (Definitions 2.1 and 2.2). A patch is stable if the pullback of
its retraction along any morphism exists and is a (right) patch (Definition
2.3). We briefly recall the well-known concepts of cartesian morphism and
fibration. With respect to an ordered pair, (I, J), of functors we define
the notion of organic morphism (Definition 2.4): a morphism f : A −→ E is
organic (or (I, J)-organic) if IE ∼= JE and the two components I(f) and
J(f) give rise to an exact patch.
The notion of a system such as (1) that models a system of actions over the

base category B is given in Definition 2.7 and it is called an action-system
of A over B. One of the key ingredients of the definition is what we call
the L-condition (in honour of Jean Louis Loday [8]). We point out that
this condition (see Definition 2.6) in the context of a semiabelian category is
precisely the so-called Smith is Huq condition [14].
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In Section 3 we present the main examples that have been the guiding
lines for this work. If B is a pointed category with pullbacks along split
epimorphisms and binary coproducts then we can always consider the two
extreme cases. The first case is displayed as

A = B×B

π2 //

π1

// B∆oo , (3)

while the second one is obtained by taking a system such as the one displayed
in (1) with IG = 1B = JG, in which A is a subcategory of Pt(B) consisting
of those split epimorphisms in B

X
k // Y

p
//
B

s
oo

such that the kernel k and the section s are jointly epimorphic. In order to
have the functor G well defined with G(B) the canonical split epimorphism

B
〈0,1〉

// B ×B
π2 // B,

〈1,1〉
oo

for every object B in B, the pair of morphisms (〈0, 1〉 , 〈1, 1〉) must be join-
tly epimorphic. Concrete examples can be constructed by taking B equipped
with a forgetful (faithful and preserving binary products) functor into the ca-
tegory of algebras with one constant and one binary operation, say (X, 0, /),
satisfying the conditions

x/y = x′/y =⇒ x = x′ (4)

x/x = y/y (5)

where the homomorphisms are the mappings f : X −→ X ′ such that

f(x/y) = f(x)/f(y) (6)

f(0) = 0. (7)

In this case, the left adjoint to G, which is comparable to the semidirect
product construction in the monadic approach of internal actions, is simply
the projection of the middle object of a split extension. Some attempts
were done in order to find a categorical notion of semidirect product (see for
example [1]). We believe that, in the setting of an action-system (1) as we
proposed in this paper, the notion of semidirect product for an object A in
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A is the object F (A) in B, with F the left adjoint of the functor G, when it
exists.
Our main result is presented in Section 6. It gives sufficient conditions to

have the desired categorical equivalence between Whitehead sequences and
internal groupoids. This result relies on several other more technical results,
such as a simplicial construction (Proposition 4.1), or an induced functor from
certain kind of Whitehead sequences into the category of internal categories
(Theorem 5.1) which are developed on Sections 4 and 5.
Finally, in Section 7, we present the case when the category B is pointed

and protomodular.

2. Basic definitions and properties

Let B be a pointed category.

Definition 2.1. A (right) patch in B is a cospan

X
k // Y B

soo

in which the pair (k, s) is jointly epimorphic and there exists a (necessarily
unique) morphism p : Y −→ B with ps = 1B and pk = 0.

Similarly we can define a left patch (by requiring the existence of a morphism
q : Y −→ X with qk = 1X and qs = 0) but, since here we are going to deal
only with right patches we will call them just patches.
Two examples that illustrate the notion can be obtained as follows. Let B

be a pointed category with kernels and pushouts.

(1) Every coproduct diagram in B is a patch

X
ιX // X + B

[0,1]
//___
B.

ιB
oo

(2) If we denote by k0 : B♭X −→ X +B the kernel of [0, 1] : X + B −→ B
and let ηX : X −→ B♭X be such that k0ηX = ιX , then every morphism
ξ : B♭X −→ X satisfying the condition ξηX = 1X induces, by taking
the pushout of ξ and k0, a patch in B as illustrated by

X♭B
k0 //

ξ
��

X +B

ι2
��

[0,1]
//
B

ιB
oo

X

ηX

OO

ι1 // Q
p

//____
B

ι2ιB
oo
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The needed morphism p is uniquely determined by pι2 = [0, 1] and
pι1 = 0. Moreover, since (Q, ι1, ι2) is a pushout diagram, we have that
(ι1, ι2) is a jointly epimorphic pair. In order to prove that the pair
(ι1, ι2ιB) is jointly epimorphic we observe that ι1 = ι2ιX , indeed

ι1 = ι1ξηX = ι2k0ηX = ι2ιX ,

and from here it follows that (X,Q,B, ι1, ι2ιB, p) is a patch.

It will be relevant for us to differentiate the patches that are exact and the
patches that are stable under pullback, according to the following definitions:

Definition 2.2. A patch (X, Y,B, k, s, p) in B is said to be an exact patch

if the morphism k : X −→ Y is the kernel of the morphism p : Y −→ B.

The morphisms ξ : B♭X −→ X, in the second example above, that induce
an exact patch are precisely the strict actions in the sense of [13], see also
[6]. Moreover, in the category of pointed sets and in the category of abelian
groups every coproduct diagram is an exact patch. Indeed, in both cases, we
have that ιX is the kernel of [0, 1].

Definition 2.3. A patch (X, Y,B, k, s, p) in B is said to be a stable patch if
for every h : Z −→ B, the pullback of p along h exists in B, and the induced
cospan

X
〈k,0〉

// Y ×B Z Y
〈sh,1Y 〉
oo

is a patch in B.

In the category of abelian groups every coproduct diagram is a stable patch.
This is not true in the category of pointed sets. Indeed any cospan

X
〈ιX ,0〉

// (X + B)×B Y Y
〈ιBh,1Y 〉

oo

which is obtained by taking the pullback of the morphism

[0, 1] : X +B −→ B

along a given morphism h : Y −→ B is a patch if and only if the kernel of h
is trivial.
Let I : A −→ B be a functor. We recall that:

A morphism α : E −→ A inA is cartesian (or I-cartesian) if for every
g : W −→ A in A and every h : I(W ) −→ I(E) in B, with I(α)h =
I(g), there exists a unique u : W −→ E in A such that αu = g and
I(u) = h.
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When every morphism in B can be lifted to an I-cartesian morphism
in A we say that the functor I is a fibration. More specifically, the
functor I is a fibration if for every A in A and p : Y −→ IA in B there
exists a cartesian morphism (called the cartesian lifting of p along A),
α : E −→ A, with I(α) = p.

From now on we consider, other than the functor I another functor J . Let
(I, J) be an ordered pair of functors I, J : A −→ B, which will be displayed
either horizontally or vertically as

A
J

//
I //

B or A

J
��

I
��

B.

In this context we consider a special class of morphisms in A that we call
organic (due to the fact that their components under I and under J form
an exact patch). Note that on the vertical display the functor J appears on
the left while the functor I appears on the right, although the ordered pair
of functors is (I, J).

Definition 2.4. A morphism f : A −→ E in A is said to be a organic

morphism (or (I, J)-organic) if J(E) ∼= I(E) and the cospan

JA
J(f)

// JE ∼= IE IA
I(f)

oo

is an exact (right) patch in B.

Finally, we complete the setting by introducing another ingredient — the
Whitehead sequence — and the definition of L-condition and of action-
system.
Let (I, G, J) be an ordered triple of functors, displayed as

A

I //

J
// BGoo (8)

and such that IG = 1B = JG.

Definition 2.5. A Whitehead sequence is a triple (A, u, v) where A is an
object in A, while u and v are morphisms in A, of the form

GJ(A)
v // A

u // GI(A), (9)
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satisfying the following conditions

I(u) = 1IA (10)

J(v) = 1JA (11)

I(v) = J(u). (12)

Definition 2.6. We say that the L-condition holds for the triple of functors
(I, G, J) when for every diagram of solid arrows

GJE
g′

//___

g ""FF
FF

FF
FF

F
E

f ′

//___

α
��

GIE

A

β

OO

f

<<yyyyyyyyy

with I(β) = I(f), J(α) = J(g), I(α)J(f) = I(g)J(β) and αβ = 1A, if α
is cartesian and f is organic then there exists a unique Whitehead sequence
(f ′, g′) such that αg′ = g and f ′β = f .

Definition 2.7. A triple of functors (I, G, J) is called an action-system of
A over B when:

(1) the functor I is a fibration and J(α) is an isomorphism whenever α is
a cartesian morphism;

(2) for every A in A there exists an object Y ∈ B and a morphism
f : A −→ G(Y ) such that f is organic and, moreover, it is universal
from A to G;

(3) the L-condition holds.

The three main examples that have motivated these definitions that is (a)
groups, (b) abelian groups and (c) pointed sets, are presented in some detail
in the following section. It is expected that, due to their generality, these
definitions will be applicable in a wide variety of cases, allowing, in parti-
cular, the study of internal categories and internal groupoids via Whitehead
sequences in general contexts.
Some immediate consequences of the definitions are the following.

Proposition 2.8. Let (I, G, J) be an action-system of A over B. Then

(i) the functor G has a left adjoint;
(ii) there exists a unique natural transformation π : 1A −→ GI such that

for every object A in A, I(πA) = 1IA and J(πA) = 0;
(iii) there exists a functor A −→ Pt(B);
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(iv) for every Whitehead sequence (A, u, v) there exists, up to isomorphism,
a unique diagram in A

E
µ

//

α
��

GFA

A

β

OO

ηA

;;xxxxxxxxx

in which ηA is the universal arrow from A to the functor G, α is a
cartesian morphism, IE ∼= FA, and such that

GI(α)ηA = u

αβ = 1A

I(β) = I(ηA)

µβ = ηA

I(µ) = 1FA;

(v) every Whitehead sequence (A, u, v) induces a Whitehead sequence, say
(E, µ, ν), with the property that there exists a cartesian split epi-
morphism

α : E −→ A

(with a section β) such that µβ = ηA and αν = vGJ(α);
(vi) every Whitehead sequence (A, u, v) induces an infinite sequence of car-

tesian split epimorphisms

· · · A3
α3 // A2

α2 // A1
α1// A0 = A

which is uniquely determined by GI(α1)ηA = u and if βi is the section
of αi, for every i = 1, 2, . . ., by the equations

αiβi = 1Ai−1

I(βi) = I(ηAi−1
)

GI(αi+1)ηAi
βi = ηAi−1

I(αi+1)I(ηAi
) = 1IAi

.

Proof :

(i) Since, by Definition 2.7(2), for every object A in A, there exists an
object FA in B and an arrow ηA : A −→ GFA which, in particular,



CROSSED-MODULES AND WHITEHEAD SEQUENCES 11

is universal from A to the functor G, it follows directly from Theo-
rem 2(ii), on page 83 of [9], that G is (the right) part of an adjuntion
(F,G, η, ε).

(ii) Using the previous adjunction (F,G, η, ε), we observe that the exis-
tence of a morphism πA : A −→ GIA such that I(πA) = 1IA and
J(πA) = 0, is equivalent to the existence of a morphism

FA
εIAF (πA)

// IA

such that εIAF (πA)I(ηA) = 1IA and εIAF (πA)J(ηA) = 0. The as-
sumption (see Definitions 2.7(2), 2.4 and 2.1) that ηA : A −→ GFA is a
patch guarantees the existence, as well as the uniqueness, of εIAF (πA)
and hence of πA. The naturality of π follows from the naturality of η
and ε. Further details on this construction can be found in [12].

(iii) Using again the adjunction (F,G, η, ε) and the natural transformation
π : 1A −→ GI , from the two items above, we observe that to every A
in A we can associate the split extension

JA
J(ηA)

// FA
εIAF (πA)

//
IA.

I(ηA)
oo

Further details about this construction can be found in [12].
(iv) Let (A, u, v) be a Whitehead sequence. We will first show how to

obtain the morphisms α, β and µ and then show that they are uniquely
determined by the properties required. The morphism α : E −→ A
is the cartesian lifting of the morphism εIAF (u) : FA −→ IA, which
exists because the functor I is a fibration, and it is such that IE = FA
and I(α) = εIAF (u) or equivalently, via the adjunction, GI(α)ηA = u.
The morphism β : A −→ E is obtained as the unique morphism such
that αβ = 1A and I(β) = I(ηA) which exists because α is cartesian and
I(α)I(ηA) = 1A (this is a consequence of I(u) = 1IA). The morphism
µ is obtained by applying the L-condition (Definitions 2.7(3) and 2.6)
to the diagram

GJE
ν //___

GJ(α)
��

E
µ

//___

α
��

GFA

GJA
v // A,

β

OO

ηA

;;xxxxxxxxx
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which satisfies the needed conditions to guarantee the existence of
µ such that µβ = ηA and I(µ) = 1FA. It remains to show that µ
is uniquely determined by this two conditions. The morphism ν is
uniquely determined because α is cartesian and hence, by the unique-
ness property in the L-condition, we conclude that also µ is uniquely
determined.

(v) It follows from the Whitehead sequence constructed in the previous
item.

(vi) Having a Whitehead sequence (A, u, v) and using the construction on
the previous item we obtain α1 and β1 together with a new Whitehead
sequence (A1, µ1, ν1). This gives us the first element of the infinite
sequence. We can continue the sequence by replacing (A0, u, v) with
(A1, µ1, ν1) and thus successively iterate in order to obtain (An, µn, νn)
for an arbitrary n. At each level i = 1, 2, . . ., the morphism βi is
completely determined by αiβi = 1Ai−1

and I(βi) = I(ηAi−1
). In the

same way the morphism α, being a cartesian morphism, is completely
determined by GI(αi+1)ηAi

= µi. But, since µi itself is determined by
µiβi = ηAi−1

and I(µi) = 1I(Ai), the two equations

GI(αi+1)ηAi
βi = ηAi−1

I(αi+1)I(ηAi
) = 1IAi

uniquely determine αi.

We are now going to see the main examples of action-systems that moti-
vated the definitions above.

3. Pointed sets, groups and abelian groups

Let B be the category of abelian groups and A the category B×B with I
the second projection, J the first projection and G the diagonal functor. The
triple of functors (I, G, J) is an action system of A over B. As we sill see,
the same is true for the category of pointed sets and, more generally, in any
category B provided it is pointed, has binary coproducts and such that, for
every two objects X and B, the morphism ιX : X −→ X +B is the kernel of
[0, 1] : X + B −→ B.
Some simple observations presented next to support our claims are to be

compared with the respective items from Definition 2.7 of an action-system:
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(1) the functor I is a fibration and J(α) is an isomorphism if and only if
α is cartesian;

(2) every A = (X,B) in A has an object X +B in B and an arrow

(ιX , ιB) : (X,B) −→ (X +B,X +B)

which is organic and universal;
(3) to check that the L-condition holds we have to consider a diagram of

solid arrows of the form

(X,X)
(1,k)

//___

(1,h) %%KKKKKKKKK
(X, Y )

(k,1)
//___

α
��

(Y, Y )

(X,B)

β

OO

(k,s)

99ttttttttt

where we assume that α is cartesian, which means that, up to an
isomorphism, we can write it as α = (1X , α2), and (k, s) is an exact
patch, which means that (k, s) is a jointly epimorphic cospan and there
exists p : Y −→ B with ps = 1B and k the kernel of p; the remaining
assumptions only give α2k = h and we easily confirm the existence of
a unique Whitehead sequence (dashed arrows) satisfying the desired
equations.
Note that a Whitehead sequence (A, u, v), in this case, is completely

determined by either I(v) or J(u). In other words, it is completely
determined by a morphism h : X −→ B and it is of the form

(X,X)
(1,h)

// (X,B)
(h,1)

// (B,B).

Another example, in fact the main example since it was the main motiva-
tion of this work, is the case where B is the category of groups and A is the
category of group actions.
Classically, an action of a group B on a set X is a map ξ : B ×X −→ X

assigning to every pair (b, x) in B × X an element b · x in X such that
1 · x = x and (bb′) · x = b · (b′ · x). Equivalently it may be presented as a
group homomorphism

φ : B −→ Aut(X)

from the group B to the automorphism group of X. Another approach
consists on considering the group B as a one object groupoid and an action
as a functor

B −→ Set
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assigning the set X to the (only) object of the groupoid B and an auto-
morphism of X to each morphism in the groupoid B (that is to each element
of the group B). A convenient notation that illustrates this situation is the
following one.

B
X // Set

◦

b
��

X◦

Xb

��

◦ X◦

� //

In this language the conditions above are written as

X1 = 1X◦

and
Xb′Xb = Xb′b.

Again, in classical terms, a morphism between actions is a pair (f, g)

(X, ξ, B)

(f,g)
��

(X ′, ξ′, B′)

in which g : B −→ B′ is a group homomorphism while f : X −→ X ′ is a map,
such that

f(b · x) = g(b) · f(x).

Equivalently, it may be considered as a morphism in a (super) comma-
category

B
g

��

X //

⇓f

Set

B′ X ′

// Set

where f : X −→ X ′g is a natural transformation.
It is clear that instead of the category Set we can consider other categories,

obtaining there an appropriate notion of group action. In particular, if we
consider the category Grp of groups we obtain the category of group actions
on groups.
Let us consider now the case of an action-system where B is the category

of groups and A is the category of group actions on groups. An object A
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in A is a pair (X,B) in which B is a group (considered as a one object
groupoid) and X : B −→ Grp is a functor. The morphisms are the pairs
(f, g) with g : B −→ B′ a group homomorphism and f : X −→ X ′g a natural
transformation.
In this case I is the second projection, J is the first projection (in the

sense that J(X,B) = X◦) and, for every group B, G(B) = (B̄, B) where
B̄ : B −→ Grp corresponds to the action by conjugation of B onto itself, that
is B̄◦ = B and B̄b(b

′) = bb′b−1.
It follows that (I, G, J) is an action-system of A over B in which the

Whitehead sequences are precisely the crossed-modules of groups. Indeed it
is not difficult to check that a Whitehead sequence is determined by a pair
(A, h) where A is an object in A, h : JA −→ IA is a morphism in B, and
there exist two morphisms u and v

GJA
v // A

u // GIA

such that

I(u) = 1IA, J(v) = 1JA, I(v) = J(u) = h.

In other words a Whitehead sequence becomes a property on the object A
and the morphism h which is equivalent to the two well-known conditions
for a crossed module, namely

h(b · x) = bh(x)b−1 (13)

h(x) · x′ = x+ x′ − x (14)

in which we write X = JA additively, B = IA multiplicatively and denote
by b ·x = Xb(x) the result of the action of the element b in B on the element
x in X. Condition (13) is equivalent to the existence of u, while condition
(14) is equivalent to the existence of v.
The functor I is a fibration: the cartesian lifting of a morphism g : B′ −→ B

in B along an action (X,B) in A is given by

B′

g

��

Xg
//

⇓1

Grp

B
X // Grp

where 1 denotes the identity natural transformation of the functor Xg. If α
is a cartesian morphism in A then J(α) is an isomorphism in B. To each
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action (X,B) in A we can associate the semidirect product diagram

X◦
k // F (X,B) B

soo

in which F (X,B) = X◦ ⋊ B is the set of pairs (x, b) ∈ X◦ × B with the
operation

(x, b) + (x′, b′) = (x+Xb(x
′), bb′)

and k, s are the canonical injections. This diagram is an exact patch and,
moreover, the pair (k, s) can be seen as a universal arrow

(k, s) : (X,B) −→ GF (X,B).

In order to conclude that the triple (I, G, J) is an action-system of A over
B it remains to analyse the L-condition. In this case it simplifies to a diagram
in A as the one displayed below

(X̄◦, X◦)
(1,k)

//___

(1,h) &&MMMMMMMMMMM
(Xα2, Y )

(k,1)
//___

(1Xα2
,α2)

��

(Ȳ , Y )

(X,B)

(1X ,s)
OO

(k,s)

88rrrrrrrrrr

in which α2s = 1B and α2k = h. This diagram comes from assuming that
α = (1Xα2

, α2) is a cartesian morphism and that all the conditions in the
statement of the L-condition are satisfied. The extra piece of information is
the assumption that f = (k, s) is a organic morphism. From this we have
to show that (1, k) and (k, 1) are morphisms in A. The fact that (1, h) is
a morphism implies that (in fact it is equivalent to) Xh being equal to the
conjugation action on X◦, or in other words Xh = X̄◦. From here we can
conclude that (1, k) is a morphism since we have Xα2k = Xh = X̄◦.
The requirement that (k, 1) is a morphism in A is equivalent to the requi-

rement that
k(α2(y) · x

′) = y + k(x′)− y

holds for all x′ ∈ X◦ and all y ∈ Y (note that we write Xα2(y)(x
′) as α2(y) ·x

′

in order to simplify notation). To prove this condition we now make use of
the assumption that the morphism (k, s) is a organic morphism, which means
that the cospan

X◦
k // Y B

soo

is an exact patch and hence, every element y ∈ Y can be written in a unique
way as y = (x, b) with x ∈ X◦ and b ∈ B and, moreover, α2(y) = h(x) + b.
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It is now an easy calculation to verify the desired condition since we have
h(x) · x′ = x+ x′ − x because Xh = X̄◦.

4. A simplicial construction

In this section we introduce a simplicial construction which will be used in
the proof of the main result. We construct a simplicial object in a category
B from a sequence of cartesian split epimorphisms in a category A, which is
equipped with a realization functor into the category of points in B.
Let A and B be two categories and suppose that it is given a functor

A −→ Pt(B)

from the category A into the category of points (i.e. split epimorphisms) in
B. We call such functor a realization functor since it allows to consider (or
realise) an object in A as a split epimorphism in B. Giving such a functor
is to give an ordered pair of functors

F, I : A −→ Pt(B)

(we think of F as the domain functor and of I as the codomain functor)
together with two natural transformations

π : F −→ I and ι : I −→ F

which are related by the following condition

πι = 1I .

With this data, (F, I, π, ι), we are able to associate to every A in A a split
epimorphism in B of the form

FA
πA //

IA.
ιA

oo

In the proof of the following proposition we explain how to construct a
simplicial object in the category B, using the canonical split epimorphisms
associated to each object A in A, together with a sequence of cartesian split
epimorphisms in A.

Proposition 4.1. Let (F, I, π, ι) : A −→ Pt(B) be a functor from A into the
category of split epimorphisms in B. Suppose that for every split epimorphism
in A,

E
α // A,
β

oo
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if α is I-cartesian then the pair (Fβ, ιE) is jointly epimorphic. Then, every
sequence of split epimorphisms in A of the form

... An

αn // An−1
βn

oo ... A2

α2 // A1

α1 //

β2

oo A0
β1

oo (15)

in which αn is cartesian for all n, and

IAn = FAn−1

I(αn)ιn−1 = 1IAn−1
(16)

I(αn+1)F (βn) = 1IAn
,

induces a simplicial object in B.

Note that we denote πAn
and ιAn

by πn and ιn and omit some parenthesis,
so that I(A) becomes IA.

Proof : The simplicial object has the following form

... IA3 = FA2

π2 //

I(α3)
//

F (α2)
//

F 2(α1)
//

IA2 = FA1

π1 //

I(α2)
//

F (α1)
//

ι2oo

F (β2)
oo

F 2(β1)
oo

IA1 = FA0

π0 //

I(α1)
//

ι1oo

F (β1)
oo

IA0

ι0oo

· · · IAn+1 = FAn

πn //

I(αn+1)
//

F (αn)
//

F 2(αn−1)
//...

F i(αn−i+1)
//...

Fn(α1)
//

IAn = FAn−1

ιnoo

F (βn)
oo

F 2(βn−1)
oo

F i(βn−i+1)
oo

Fn(β1)
oo

· · ·
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in which F 2(α1) = F (F (α1)
∗) with F (α1)

∗ the unique morphism in A such
that α1F (α1)

∗ = α1α2 and I(F (α1)
∗) = F (α1), as illustrated in the following

picture

A1

α1

��

IA1

Iα1

��

A2

F (α1)
∗

>>}
}

}
}

}
}

}

α1α2

// A0 IA2

F (α1)

<<zzzzzzzzzzzzzz

I(α1α2)
// IA0,

that exists because α1 is I-cartesian and the triangle on the right is commu-
tative (see equation (17) below). Similarly, F 2(β1) = F (F (β1)

∗) with F (β1)
∗

the unique morphism in A such that α2F (β1)
∗ = 1A1

and I(F (β1)
∗) = F (β1),

as displayed in the following picture

A2

α2

��

IA2

Iα2

��

A1

F (β1)
∗

>>}
}

}
}

}
}

}

A1 IA1

F (β1)

<<yyyyyyyyyyyyyy

IA1.

In a similar fashion we can obtain F i(αn−i+1) and F i(βn−i+1) for all i up
to n. The details are omitted since we will not work with n greater than 2.
The necessary equations for the construction of F i(αn−i+1) are satisfied

because the pair

(F (βn), ιn)

is jointly epimorphic for all n. Indeed, for example, the construction of
F 2(αn−1) depends on the equation

I(αn)F (αn) = I(αnαn+1) (17)

which is true because we have

I(αn)F (αn)F (βn) = I(αn) = I(αnαn+1)F (βn)

and (since ι is natural)

I(αn)F (αn)ιn = I(αn)ιn−1I(αn) = I(αn) = I(αnαn+1)ιn.

Using the same technique it is possible to check that all the simplicial
equations are satisfied, a routine but demanding task.
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Let us now consider a simple example of this simplicial construction.
Let B be a pointed category with binary coproducts. Take A to be the

category B×B and, for every pair (X,B) of objects in B, define

I(X,B) = B

F (X,B) = X + B

πX,B = [0, 1] : X + B −→ B

ιX,B = ιB : B −→ X +B.

In this case the functor I is a fibration and a morphism α = (α1, α2) in
A is cartesian if and only if α1 is an isomorphism. Moreover, for any split
epimorphism

(E1, E2)
(α1,α2)

// (A1, A2)
(β1,β2)
oo

in A, if α1 is an isomorphism then the cospan

A1 + A2
β1+β2// E1 + E2 E2

ιE2oo

is jointly epimorphic (observe that (β1 + β2)ιA1
α1 = ιE1

).
Now, in the particular case of abelian groups, a sequence such as the one

displayed in (15) with αn cartesian for all n and satisfying equations (16) is
completely determined, up to isomorphism, by a morphism

h : X −→ B

and it is of the following form

A0 = (X,B)

A1 = (X,X + B)

A2 = (X,X + (X + B)) ∼= (X, 2X + B)

An = (X, nX + B)

α1 = (1X , [h, 1B])

β1 = (1X , ιB)

α2 = (1X , [ιX, 1X+B])

β2 = (1X , ιX+B)

αn+1 = (1X , [ιX, 1nX+B])

βn+1 = (1X , ιnX+B).
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In other words, it is completely determined by the first element of the se-
quence. This is not true in general but it gives a way to generate examples.
Going back again to a category B, pointed with binary coproducts, we can
consider a sequence of the form just describd and, by Proposition 4.1, we are
able to construct the following simplicial object

X + (2X + B)

[0,1]
//

[ιX ,12X+B]
//

1+[ιX ,1]
//

1+(1+[h,1])
//

X + (X +B)
∼=

2X +B

[0,1]
//

[ιX ,1X+B]
//

1+[h,1B]
//

ι2X+Boo

1+ιX+Boo

1+(1+ιB)
oo

X +B

[0,1]
//

[h,1]
//

ιX+Boo

1+ιBoo

B

ιBoo

(18)

which, for simplicity, we truncated at level 3.

5. The category of Whitehead sequences

Let (I, G, J) be a triple of functors as displayed in (8) such that

IG = 1B = JG.

We consider the category W(A) whose objects are the Whitehead sequences
in A (see Definition 2.5). A morphism f : (A, u, v) −→ (A′, u′, v′) between
two Whitehead sequences is a morphism f : A −→ A′ in A such that the two
squares below are commutative

GJA
v //

GJ(f)
��

A
u //

f
��

IGA

GI(f)
��

GJA′ v′ // A′ u′

// IGA′.

When, moreover, the triple of functors (I, G, J) is an action-system of A
over B (definition 2.7) and denoting by (F,G, η, ε) the system in which F is
the left adjoint ofG (Proposition 2.8(i)), then we can define a full subcategory
of W(A), denoted by W∗(A), as follows: a Whitehead sequence (A, u, v) is
an object in W∗(A) if every cartesian morphism α : E −→ A on its induced
sequence of cartesian morphisms (as in Proposition 2.8(vi)) has the property
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that the square

FE
εIEF (πE)

//

Fα
��

IE

Iα
��

FA
εIAF (πA)

// IA

is a pullback square. The morphisms πE : E −→ GIE and πA : A −→ GIA
are the components of the natural transformation that is obtained as in the
item (ii) of Proposition 2.8. For example, in the case of the category of
groups, together with the action-system of group actions over it (as illustra-
ted in Section 3), we have that to each cartesian morphism α : E −→ A its
associated square in the sense above is of the form

J(E)⋉ I(E)
[0,1]

//

J(α)⋉I(α)
��

I(E)

I(α)
��

J(A)⋉ I(A)
[0,1]

// I(A)

which is always a pullback square. Indeed, it simply follows from the fact
that α is cartesian and hence J(α) is an isomorphism.
We denote by Simp(B) the category of internal simplicial objects in B and

consider the category of internal categories inB, Cat(B), as a full subcategory
of Simp(B).

Theorem 5.1. Let (I, G, J) be an action-system of A over B. There is a
functor from W(A) into Simp(B) such that its restriction to W∗(A) factors
through Cat(B)

W(A) // Simp(B)

W ∗(A)
?�

OO

//___ Cat(B).
?�

OO

Proof : Following Proposition 2.8, to every Whitehead sequence (A, u, v) we
can associate an infinite sequence of cartesian split epimorphisms αi, with
section βi,

· · · A3
α3 // A2

α2 // A1
α1 // A0 = A
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such that I(α1) = εIAF (u) and for every i = 1, 2, . . .

I(αi+1) = εIAi
F (µi)

αiβi = 1Ai−1

I(βi) = I(ηAi−1
).

Here, (F,G, η, ε) is the adjunction as in Proposition 2.8(i), and (A1, ν1, µ1)
is the Whitehead sequence obtained (as in item (v) of Proposition 2.8) from
the Whitehead sequence (A, u, v). Similarly we obtain (Ai+1, νi+1, µi+1) from
(Ai, νi, µi) for all i ∈ N.
It follows that

I(Ai) ∼= F (Ai−1)

I(αi)I(ηAi−1
) = I(αi)I(βi) = 1IAi−1

I(αi+1)F (βi) = εAi
F (µi)F (βi) = εIAi

F (µiβi)

= εIAi
F (ηAi−1

) = εFAi−1
F (ηAi−1

)

= 1FAi−1
= 1IAi

.

In order to make use of Proposition 4.1 with the sequence of cartesian
morphisms as constructed above, the natural transformation πi = εIAi

F (πAi
)

(with πAi
obtained as in item (ii) of Proposition 2.8) and with ιi = I(ηAi

)
we have to verify that the pair (F (βi), I(ηAi

)) is jointly epimorphic. This is
a consequence of the fact that, for each A ∈ A, ηA is a organic morphism
(Definition 2.4) and hence the cospan (J(ηA), I(ηA)) is jointly epimorphic. In
particular, this implies that (F (βi), I(ηAi

)) is jointly epimorphic because each
J(βi) is an isomorphism (since α is cartesian then J(α) is an isomorphism
and so also J(β) is an isomorphism) and we have

J(ηAi
) = F (βi)J(ηAi−1)J(βi)

−1.

From here we can construct a simplicial object, in the same way as it was
done in the proof of Proposition 4.1, which is displayed up to level 3 (to
compare it with the notion of an internal category we will not need to go
further) as follows:
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FA2

π2 //

I(α3)
//

F (α2)
//

F 2(α1)
//

IA2 = FA1

π1 //

I(α2)
//

F (α1)
//

ι2oo

F (β2)
oo

F 2(β1)
oo

IA1 = FA0

π0 //

I(α1)
//

ι1oo

F (β1)
oo

IA0

ι0oo

Again, checking the simplicial conditions is a routine (although a deman-
ding) task.
This shows that we can assign a simplicial object to every Whitehead

sequence and, moreover, that this construction is functorial. Indeed, if

f : (A, v, u) −→ (A′, u′, v′)

is a morphism between Whitehead sequences then it can be lifted to the level
of infinite sequences of cartesian split epimorphisms so that it respects the
simplicial equations. This is possible because the morphisms αi are cartesian
and we will have

Ai+1
αi //

fi
��

Ai−1

fi−1

��

A′
i

α′

i // A′
i−1

for all i ∈ N with f0 = f .
This gives us a functor from W(A) into Simp(B). In order to be able to

compare the simplicial structure defined above with the one of an internal
category, we now give a diagram with the standard notation for an internal
category object in B. An internal category in B is a diagram of the form

C3

q2 //

m2 //

m1 //

q1 //

C2

p2 //

m //

p1 //

i2oo

i0oo

i1oo

C1

d //

c //

e2oo

e1oo

C0

eoo

(19)

where C0 and C1 are, respectively, the object of objects and the object of
morphisms, while d, e, c are, respectively, domain, identity, and codomain; C2
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is the object of composable pairs, obtained by the following pullback (with
p1, p2 the canonical projections and e1, e2 the induced inclusions)

C2

p2 //

p1
��

C1
e2

oo

c
��

C1

e1

OO

d // C0.

e

OO

e
oo

Similarly, C3 is the object of composable triples, specifically calculated for
generalized objects as

C3 = {((f, g), (h, k)) | (f, g), (h, k) ∈ C2, g = hk}

in other words it is the object in the following pullback diagram, of m along
p2

C3

q2 //

m1

��

C2
i2

oo

m
��

C2

i1

OO

p2 // C1.

e1

OO

e2
oo

Note that C3 can also be given by the following pullback

C3

q2 //

q1
��

C2
i2

oo

p1
��

C2

i1

OO

p2 // C1

e1

OO

e2
oo

which is equivalent, being then C3

C3 = {((f, g), (h, k)) | (f, g), (h, k) ∈ C2, g = h}.

To the reader not familiar with the above notation for internal categories,
and in order to easily compare it with the more standard simplicial one,
it may be helpful to consider the particular case where C0 = 1 and write
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m(x, y) = xy, in this case we have

p2(x, y) = y

p1(x, y) = x

e1(x) = (x, 1)

e2(y) = (1, y)

q2(x, y, z) = (y, z)

q1(x, y, z) = (x, y)

m1(x, y, z) = (x, yz)

m2(x, y, z) = (xy, z)

i1(x, y) = (x, y, 1)

i2(y, z) = (1, y, z)

i0(x, z) = (x, 1, z).

(20)

Table 1 translates the (relevant) simplicial equations into the definition
of internal category. The first column contains the equation in the context
of an internal category; the middle column presents the equivalent simplicial
equation, obtained by the simplicial construction above; the last column gives
the corresponding equation in the context ofA andW(A) where we can easily
see why the equation is true: lines 1 to 6, by definition; lines 7, 10 and 11 by
naturality; lines 9 and 12, see equation (17); it remains to explain line 8 —
it follows from the fact that I(µ) = 1 = I(πA1

) and π0J(ηA) = 0 = J(πA1
),

since ηA is organic for every A in A.
We now have the following: if the squares

FA1
π1 //

F (α1)
��

IA1

I(α1)
��

FA
π0 // IA

, FA2
π2 //

F (α2)
��

IA2

I(α2)
��

FA1
π1 // IA1

are pullbacks, then the simplicial object constructed above is, in fact, an in-
ternal category object in B. This proves that W∗(A) factors through Cat(B).
Indeed an object of W(A) is in W∗(A) as soon as every morphism α in its
induced infinite sequence of cartesian split epimorphisms has the property
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Cat(B) Simp(B) W(A)
1 de = 1 π0ι0 = 1 I(πA) = 1
2 ce = 1 I(α1)ι0 = 1 I(µ) = 1
3 p2e2 = 1 π1ι1 = 1 I(πA1

) = 1
4 me2 = 1 mι1 = 1 I(µ) = 1
5 me1 = 1 mF (β1) = 1 µ1β1 = ηA
6 p1e1 = 1 F (α1)F (β1) α1β1 = 1
7 cp2 = dp1 I(α1)π1 = π0F (α) πAα = GI(α)πA1

8 dp2 = dm π0π1 = π0m G(π0)µ1 = G(π0)πA1

9 cp1 = cm I(α1)F (α1) = I(α1)I(α2) uα1 = GI(α1)µ1

10 p2e1 = ed π1F (β1) = ι0π0 πA1
β1 = GI(β1)πA

11 p1e2 = ec F (α1)ι1 = ι0I(α1) F (α1)I(ηA1
) = I(ηA)I(α1)

12 mm1 = mm2 I(α2)F (α2) = I(α2)I(α3) µ1α2 = GI(α2)µ2

Table 1. Translation between equations: from the language of
internal categories, to simplicial objects, to Whitehead sequences.

that the square

FE
εIEF (πE)

//

F (α)

��

IE

I(α)

��

FA
εIAF (πA)

// IA

is a pullback.

6. Groupoids and Whitehead sequences

We are now interested in the case when there is an equivalence between the
category of Whitehead sequences in A and the category of internal groupoids
in B, as it is the case, for example, for the category of groups and group
actions.

Theorem 6.1. Let (I, G, J) be an action-system of A over B. If the pair of
functors (I, J) is jointly conservative and there is an equivalence of categories

A ∼ Pt(B),

compatible with the system (I, G, J), then there is an equivalence of categories

W∗(A) ∼ Gpd(B).
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Proof : Suppose we have an equivalence of categories

A
∼

−→ Pt(B)

which is compatible with the action-system, that is, an object A in A is
realized as a point of the form

FA
εIAF (πA)

// IA,
I(ηA)

oo

where F is the left adjoint of G. The equivalence allows us to assume that
for any given split extension

X
k // Y

p
//
B

s
oo

we can find an object A in A such that the following diagram commutes

JA
J(ηA)

// FA
εIAF (πA)

//

∼=

��

IA
I(ηA)

oo

X
k // Y

p
//
IA.

s
oo

This fact, together with the assumption that the pair of functors is jointly
conservative, proves that B satisfies the Split Short Five Lemma and hence
any internal category object in B is also a internal groupoid (see [2] and
references there). It remains to prove that given a internal groupoid in B

we can find a Whitehead sequence such that, after applying the simplicial
construction, the original groupoid is recovered, up to isomorphism.
The procedure is as follows. Given a internal groupoid as in (19), using

C1

d // C0
e

oo

we obtain an object A in A such that

JA
J(ηA)

// FA
εIAF (πA)

//

∼=

��

IA
I(ηA)

oo

X
k // C2

d // C0.
e

oo
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The morphism c gives

u : A −→ GIA

with u = G(c)ηA which is such that I(u) = 1 and J(u) = h = c ◦ ker(d).
In order to obtain v : GJA −→ A with J(v) = 1 and I(v) = J(u) = h, we

consider the pair (m, 1) as a morphism of points

C2

dp2 //

m
��

C0
e2e

oo

C1

d // C0,
e

oo

and transfer it, via the equivalence, from Pt(B) to A, in order to obtain, say

E

m∗

��

A.

It follows that JE = FAh where h∗ : Ah −→ A is the cartesian lifting of
h : JA −→ IA, given by h = J(u) as defined above. This is possible because,
on the one hand JE is the kernel of dp2, while on the other hand, FAh is the
pullback of h along d.
In this way we have a morphism

JE = FAh

J(m∗)
// JA

and, via the adjuntion (see Proposition 2.8(i)), we also have a morphism

Ah

ρ=GJ(m∗)ηA
// GJA

such that I(ρ) = 1JA and J(ρ) = 1JA. Now, using the fact that I and J are
jointly conservative we conclude that ρ is an isomorphism, and so we obtain
the desired v = h∗ρ−1. This gives a Whitehead sequence

GJA
v // A

u // GIA
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such that, applying the simplicial construction to it, we obtain, up to iso-
morphism, the original groupoid as

FA1

I(α2)
//

∼=

��

FA

π0)
//

I(α1)
//

∼=

��

IAι0oo

C2
m // C1

d //

c
//
C0eoo

and this completes the proof.

7. Conclusion

We conclude with an application of the previous result in the case where
the category B is pointed and protomodular.
In general, in order to have an action-system, we can always take A to

be the category of all stable and exact patches in B. Then, for an object
A = (X, Y, k, s, p) as in Definition 2.2, we define I(A) = B, J(A) = X and
F (A) = Y . Moreover, if for every object B in B the diagram

B
〈1,0〉

// B ×B
π2 //

B
〈1,1〉
oo

is a stable patch (as it is always the case in a pointed protomodular category)
then we have a functor G and the system (I, G, J) is an action system of A
over B provided that the L-condition holds. In the case when B is a proto-
modular category, considering the system (I, G, J) as before, if f : A −→ Y ′

is a organic morphism then we have Y ′ ∼= FA, which is an immediate con-
sequence of the Split Short Five Lemma. This means that the L-condition
can be simplified and it becomes equivalent, in this context, to the following
condition:

Every Peiffer graph is a multiplicative graph.

In the paper [14] it is proved that if B is a semi-abelian category then this
condition is equivalent to the so-called Smith is Huq condition.
As an application of Theorem 6.1 we can state a similar result to the one

presented in [11] concerning the description of internal groupoids in a pointed
protomodular category.
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Let B be a pointed and protomodular category in which every
Peiffer graph is a multiplicative graph. Then, giving an internal
groupoid in B is to give an exact patch

X
k // Y B

soo

together with a morphism

h : X −→ B

such that the two dashed arrows can be inserted in the diagram

X
〈1,0〉

// X ×X

���
�

�
X

〈1,1〉
oo

h
��

X

h
��

k // Y

���
�

�
B

soo

B
〈1,0〉

// B ×B B
〈1,1〉
oo

in order to make it commutative.

Further details can be found in [11], see also [10, 15].
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