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EXPLORING SMARTPHONE SENSORS
FOR FALL AND EMERGENCY DETECTION

I. N. FIGUEIREDO, C. LEAL, L. PINTO, J. BOLITO AND A. LEMOS

Abstract: Falling, and the fear of falling, is a serious health problem among the
elderly. It often results in physical and mental injuries that have the potential to se-
verely reduce their mobility, independence and overall quality of life. Nevertheless,
the consequences of a fall can be largely diminished by providing fast assistance.
These facts have lead to the development of several automatic fall detection sys-
tems. Recently, many researches have focused particularly on smartphone-based
applications. In this paper, we study the capacity of smartphone built-in sensors
to differentiate fall events from activities of daily living. We explore, in particu-
lar, the information provided by the accelerometer, magnetometer and gyroscope
sensors. A collection of features is analyzed and the efficiency of different sensor
output combinations is tested using experimental data. Based on these results, a
new, simple, and reliable algorithm for fall detection is proposed. In addition, we
also present the algorithm for an innovative emergency application for smartphones,
designated by knock-to-panic (KTP). This ingenious system enables users to simply
hit their devices in order to send an alarm signal to an emergency service. This
application can not only be seen as a backup in case of failure of the fall detection
algorithm, but also as a complete and autonomous emergency system. Moreover,
the simple and fast activation of KTP makes it a viable and potentially superior
alternative to traditional emergency calls. In fact, it is our belief that KTP can be
useful to the general population and not only to elderly persons. The two proposed
methods are threshold-based algorithms and are designed to require a low battery
power consumption.

Keywords: Fall detection, Knock-to-panic, Smartphone, Tri-axial accelerometer,
Threshold-based method.
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1. Introduction

Statistics and facts related with falls in elderly people is somewhat worry-
ing. For instance, approximately one in every three people over the age of
sixty five experience a fall, at least once a year, and these are the leading
cause of hospitalization for this age group [17]. Another very concerning as-
pect of falls, among the elderly, is their reluctance to seeking treatment after
suffering an injury. A further common occurrence is the elderly’s inability
to stand up after a fall, even when the physical injuries are not severe [18].
This event, known as “long lie”, has a strong psychological impact on those
affected, and it has been revealed that this experience is associated with a
very high risk of morbidity and mortality [8]. Moreover, the economic impact
of falls was estimated in 2000 to be $US19 billion in the US only [16]. All of
this is even more relevant when one considers that the number of old people
(above 60 years old) in the world is expected to increase from 841 million in
2013 to more than 2 billion in 2050 [14].
The previous findings, stress the necessity for healthcare providers to focus

on measures to reduce the risk and severity of falls-related injuries. Au-
tomatic fall detection systems are an important component in this effort
and is a current major research topic. In a general sense, fall detection is
a multidisciplinary and complex problem which involves two main compo-
nents: the conception of suitable devices and the recording of the device
signals that are subsequently processed, with appropriate algorithms, in real
time, with the goal of correctly distinguishing real falls from activities of
daily living (ADL). Traditionally, fall detection systems are based on body-
attached accelerometers and gyroscopes. The features generally used for fall
detection are the magnitude of the acceleration, posture monitoring, change
in orientation, vertical velocity, angular velocity, and angular acceleration
[3, 11, 4, 19, 6]. Automated image analysis systems based on video camera
images have also been proposed [13]. Other approaches like the GoSafe sys-
tem (http://www.lifelinesys.com/content/), known as PERS (personal emer-
gency response system), a commercial wearable device from Philips, allow
users to push a emergency button in the event of a fall. However, these solu-
tions have some drawbacks. The wearable devices are not well tolerated by
the elderly while camera-based solutions can not be applied without violating
privacy.
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In response to some of these issues, many researchers are focusing their ef-
forts on smartphone-based applications. In fact, the increasing popularity of
smartphones makes them an attractive platform for the development of new
fall detection systems. Moreover, smartphones are well accepted, even among
the elderly population, and the already built-in communication facilities, in-
cluding, e.g., SMS (short message service) and GPS (global position system),
makes them a perfect candidate for an automatic fall detection system that
covers the detection and communication stages. The increasing number of
built-in sensors, such as accelerometer, gyroscope, and magnetometer, is also
highly advantageous to researchers. On the other-hand, smartphone systems
also offers many challenges. Issues like the huge variety of devices, and in-
herently the massive amount of software and hardware, make the task of
developing new algorithms a formidable challenge. Moreover, the portabil-
ity of smartphones makes it almost impossible to predict or simulate all the
scenarios that an algorithm might encounter. The reliability and quality
of the smartphones sensors is also a question of concern. Finally, we can
not neglect the impact of the algorithms on the smartphone performance
and battery life. Smartphones are multitasking systems, which have limited
resources, and they were not intended for this purpose.
Smartphone-based fall detectors have already been presented in the lit-

erature [1, 7, 20] and some dedicated applications, like e.g. the iFall [15],
are available in the Android Play Store. A common aspect in all of these
studies is the use of threshold-based algorithms and accelerometer data. For
instance, Dai et al. in [7] propose four thresholds for the difference between
the maximum and minimum values of the magnitude of the acceleration vec-
tor and vertical acceleration in four defined time windows. In the algorithm
of Abbate et al. [1], a fall is simple defined as a peak in the magnitude of
the acceleration higher than a threshold followed by a time period where
the magnitude of the acceleration is lower than another threshold. The rea-
son behind threshold methods and acceleration-only features is identical, to
reduce battery drain. Threshold methods have lower complexity and com-
putational cost, while the accelerometer has low power consumption when
compared e.g. with the gyroscope. Note that accelerometers are also cheaper
than gyroscopes and, therefore, more common in smartphones. For further
review on fall detection methods and challenges we refer to [9, 10].
Whereas fall detection have emerged and gained considerable attention in

the literature, emergency detection in a more general setting is an area in
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which little research has been carried out. Solutions similar to the aforemen-
tioned PERS systems could potentially be used, however, the poor acceptance
by elderly and general population may be a difficult problem to overcome.
One rare example of a study involving the detection of emergency scenarios
using smartphones is presented in [12]. In that work, the authors defined an
emergency scenario as a shock followed by a period of low or no activity. To
identify this pattern they suggest the use of the smartphone accelerometer
sensor. Namely, they characterize this type of event as a large and rapid
change in the acceleration followed by a period of lower acceleration. Ac-
cording to the authors, a car accident or a sudden fall are two examples of
the type of emergency events that can be detected by the algorithm. The re-
liability and accuracy of such approach is questionable and no experimental
results were provided. Therefore, we believe that a better and more effective
algorithm needs to be developed.
The purpose of this paper is to describe a new fall detection algorithm and

an innovative emergency detection algorithm, herein designated by knock to
panic (KTP) algorithm, as well as the evaluation of their performance in
collected data. The fall detection algorithm is devised to detect a fall (a
sudden incontrollable descent) suffered by the smartphone user. The KTP
algorithm is prepared to identify a knock to panic movement. This latter
consists in the movement of hitting the device, executed by the smartphone
user. Both algorithms are threshold-based and rely only on the data informa-
tion provided by the smartphone built-in accelerometer sensor. These two
characteristics are of utmost importance since they help reducing battery
power consumption, a crucial issue for smartphone users. In addition, the
tests conducted for evaluating the two algorithms (and reported herein), as
well as the currently on going tests in real environments (in senior care or
senior monitoring contexts, both residential or domiciliary) carried out by
our collaborative partner (http://oncaring.com/) confirm the very good per-
formance of these detection algorithms. Moreover modified algorithms (for
fall and KTP detection) are also briefly described in order to increase the
battery life-time.
The remainder of the paper is organized in two main parts. In the first

one, Section 2, we discuss fall detection. More precisely, in subsection 2.1,
we detail the material and experimental setup, in subsection 2.2 we present
the features extracted for analysis, and in subsection 2.3 algorithms and
numerical results are discussed. We finish this first part in subsection 2.4 with
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a brief presentation of a support vector machine binary classifier. The second
part, Section 3, is dedicated to KTP. The description of the algorithm takes
place from subsection 3.1 to subsection 3.5 and we evaluate the algorithm
performance with experimental data in subsection 3.6. Finally, we draw some
conclusions and discuss future research directions.

2. Fall Detection

In this section we essentially describe threshold-based algorithms for fall
detection for smartphone users. A fall is a sudden incontrollable descent
suffered by the smartphone user. It has a particular pattern that is encoded
in the signals transmitted by the built-in sensors of the smartphone. These
signals can be analysed and processed, in order to automatically recognize the
target fall pattern movement. We start by describing the type of smartphones
and sensors used in our tests as well as the data collected for the experiments,
in subsection 2.1. Then we explain, in subsection 2.2, the relevant features
for fall classification using the outputs of different sensors. In subsection 2.3
we define 4 different threshold-based algorithms and evaluate and compare
their correspondent performance on the used data set. Finally, in subsection
2.4 we present the results obtained with a more sophisticated algorithm, a
support vector machine (SVM) binary classifier, in our data set, and compare
its performance with the most promising threshold-based algorithm defined
in subsection 2.3, that relies only on the acceleration sensor. The latter
algorithm has an important advantage over the SVM algorithm, because
since it is simpler, the computational power is less, and consequently it does
not increase too much the battery power consumption, which is a practical
and crucial aspect for smartphone users.

2.1. Experimental Setup. In this subsection we describe the smartphones,
the sensors, and the data that we gathered for the fall detection study. The
smartphones used were a Samsung Galaxy Nexus and a Samsung Galaxy
Nexus S, both equipped with the Android operating system (version 4.1.2).
These devices have a wide range of sensors, including triaxial accelerometer,
triaxial gyroscope, and magnetometer. In addition to these sensors, Android
also provides, e.g., the linear acceleration and the orientation of the device.
These quantities are usually obtained through the fusion of sensor data, how-
ever, the exact method is not available, and the actual implementation may
differ from device to device. For completeness, a very brief description of
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these sensors and quantities is given herein. We also refer to Figure 1, where
the smartphone reference frame (x-, y- and z- axis) and orientation angles
(roll, pitch and azimuth) are depicted.

Figure 1. Smartphone reference frame and orientation angles.

The accelerometer sensor measures the acceleration force in meters per
square second (m/s2) applied to the device along each axis. We recall that
this acceleration signal includes the effect of gravity. The gyroscope returns
the angular velocity in radians per second (rad/s), i.e., the rate of rotation
around each one of the three axes. The magnetometer measures the mag-
netic field in microtesla (µ/T ), and it is used to calculate the azimuth. The
orientation sensor gives the rotation angles (roll, pitch, and azimuth) of the
smartphone with respect to the correspondent axis, and their calculation in-
volves the accelerometer, magnetometer and gyroscope sensors. Finally, the
linear acceleration is the acceleration without gravity, also known as dynamic
acceleration. This linear acceleration can be obtained by projecting the ac-
celeration into a fixed coordinate system, using the orientation information,
and removing the known gravity vector. Alternatively, a high-pass filter can
be applied, for deriving the linear acceleration.
The data reported in this subsection were collected by the company On-

caring (http://oncaring.com/). The data-set consists of simulated falls and
ADL. The simulated falls were performed by one young adult, and for safety
reasons a mattress was used. The ADL collection involved a larger number
of individuals. In total five young adults executed multiple ADL tasks. Dur-
ing these experiments, the smartphone was positioned in the trouser front
pocket or in a belt worn around the hip. A total of 74 falls and 136 ADL
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ADL Total number

Walk 14

Walk downstairs and upstairs 9

Run 5

Sit down and stand up from a chair 15

Sit down and stand up from the floor 15

Sit down and stand up from a low stool 4

Sit down and stand up from a couch 4

Lie down and stand up from the bed 15

Lie down and stand up from the floor 6

Pick an object off the floor 8

Get in and out of the tub 5

Bump into someone 7

Sit down abruptly on a chair 8

Roll over on the floor 4

Kneel down to the floor 8

Get in and out of the car 5

Vertical jump 4

FALLS Total number

Backward fall ending lying in lateral position 6

Backward fall ending lying 4

Forward fall with arm protection ending lying 7

Forward fall ending lying in lateral position 11

Lateral fall to the right ending lying 4

Lateral fall to the left ending lying 5

Lateral fall against wall ending lying 6

Fall from a chair ending lying 10

Run and fall ending lying 11

Walk and fall ending lying 10

Table 1. List of ADL movements and simulated falls performed
by the volunteers.

were recorded overall. Among these, 6 falls and 37 ADL were obtained with
the Samsung Galaxy Nexus S. The complete list of ADL activities is given
in Table 1. This set of ADL was chosen in such a way that it would be
representative of daily activities that can potentially cause false positives
in fall detection threshold-based algorithms relying only on the acceleration
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sensor. Table 1 also lists a description of the type of falls that were collected.
This data-set is relatively diverse with respect to both falls and ADL, as this
Table 1 indicates.
For all the movements the signal of the gyroscope, accelerometer, liner ac-

celeration, and orientation were recorded. Unfortunately, the gyroscope data
obtained with the Samsung Galaxy Nexus S were lost because of technical
problems. The accelerometer and gyroscope amplitude range was set at ±20
m/s2 and ±50 rad/s, respectively. The sampling frequency was fixed at 100
Hertz (Hz) in the Samsung Galaxy Nexus and at 50 Hz in the Samsung
Galaxy Nexus S. The acquired data is inherently affected by noise mea-
surement. Here, we applied a first-order exponential low-pass filter (cut-off
frequency of 5 Hz) for smoothing and noise reduction. The choice of this
type of filter is motivated by their simplicity and suitability for real-time
implementation.

2.2. Feature Extraction. The chosen features analyzed in this paper for
fall detection are described in this section. We note that identical or similar
parameters have been previously suggested by other authors, and without
being exhaustive we refer for instance to [1, 7, 20, 15, 3, 11, 4, 19, 6] for more
details.
We remark that these features, which correspond to appropriate quantifi-

cations of the sensors’ signals, are then used for a binary classification of the
different movements into fall or non-fall. This decision is based on a sim-
ple thresholding approach, that is afterwards explained in subsection 2.3, by
checking for each movement the different features sequentially.
Firstly, we introduce some useful notations. At time tn we denote the

accelerometer data by An = (An
x, A

n
y , A

n
z ), for n = 1, . . . , N , with N the total

number of samples, represent by Ln = (Ln
x, L

n
y , L

n
z ) the linear acceleration

signal, and the output of the orientation sensor, roll, pitch, and azimuth
angles, respectively, is represented by On = (On

r , O
n
p , O

n
a). The measurements

of the gyroscope at time tn are denoted by Gn = (Gn
x, G

n
y , G

n
z ) . Moreover,

we also introduce the vectors

A = (An)Nn=1, L = (Ln)Nn=1, O = (On)Nn=1, and G = (Gn)Nn=1

as well as

Ax = (An
x)

N
n=1, Ay = (An

y)
N
n=1, Az = (An

z )
N
n=1,
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Figure 2. The SV pattern for a simulated “backward fall end-
ing lying” (left) and the ADL “sit down and stand up from the
floor” movement (right).

and similar definitions apply to Lx, Ly, Lz, to Or, Op, Oa and to Gx, Gy,
Gz. In addition we remark that the number of samples can vary with the
frequency of the signal.
Feature SV (sum of the components of the acceleration vector). The first
feature used to distinguish between fall and ADL is the sum of the absolute
value of the components of the acceleration vector (SV ), which is defined as
follows,

SV = (SV n)Nn=1, SV n = |An
x|+ |An

y |+ |An
z |, (1)

with | · | representing the absolute value. A typical example of this quantity
for a fall event is shown in Figure 2. The peaks in SV occur as a consequence
of the impact of the human body with the ground. In the same figure, we
also plot the measured SV for an ADL. Note the smaller maximum for SV
in the latter.
Although SV seems to be an important feature for fall detection it might

not be enough for distinguishing correctly a fall from a non-fall. Therefore
extra features, as the following ones, are necessary for a more correct classi-
fication.
Feature OV (orientation variation). It is expected that during a fall event,
the acceleration signal will exhibit rapid and significant variations along all
the three directions x, y and z. In order to quantify this behavior we define
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Figure 3. Plot of OV resulting from a simulated fall (left) and
the ADL “sit down and stand up from a chair” movement (right).

a new fall feature based on the change of the angle between two consecu-
tive acceleration readings. This quantity, herein called orientation variation
(OV ), is defined by

OV =

[

cos−1

(

An ·An+1

‖An‖‖An+1‖

)]

180

π
, for n = 1, . . . , N − 1, (2)

where ‖ ‖ denotes the Euclidian norm, the dot symbol in the numerator
stands for the scalar product of two vectors and 180

π
results from radians to

degrees conversion. As an example, Figure 3 shows the feature OV corre-
sponding to the acceleration signal of a simulated fall and a particular ADL,
for comparison. The analysis of both figures reveals that during the fall
event, OV reaches higher values than during the ADL task. For the fall the
maximum value is bigger than 30 degrees (◦) and smaller than 7◦ for the
ADL.
Feature CO (change in orientation). Another feature that we have studied
is the change in orientation (CO) of the device before and after a fall. We
implement this feature by estimating the angle between two acceleration
vectors. We proceed as follows. First, we define a time window of size
4s centered at the predicted fall time, that corresponds to the maximum
of feature SV . Then, we create two vectors, Āb and Āe, by averaging the
acceleration data over the first second and last second of the window of size
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4s, respectively. Finally, as in (2), we define the angle

CO =

[

cos−1

(

Āb · Āe

‖Āb‖‖Āe‖

)]

180

π
. (3)

We expect a significant difference between the initial and final position of the
device, and this variation must be reflected in the value of CO. Moreover,
we take a 4s window because we estimate that a fall lasts approximately 2s.
Feature V A (vertical acceleration). The vertical component of acceleration
(V A), is a feature usually considered in fall detection algorithms [4, 7]. It is
defined by

V A =
L · g

‖g‖
, (4)

where g is the gravity vector, which can be calculated by subtracting the
linear acceleration from the acceleration, that is g = A− L. V A provides a
measure for the magnitude of the linear acceleration L in the direction of the
earth gravity vector. Thus, it is plausible to expect that a fall will produce
large values of V A, which may be useful to separate fall from non-fall. This
prediction is illustrated in Figure 4 that shows the profile of V A during a fall
and during an ADL movement.
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Figure 4. The vector V A resulting from a simulated “forward
fall ending lying in lateral position” (left) and the ADL “sit down
and stand up from a chair” movement (right).
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Feature OD (orientation angles). Now we explore the orientation sensor, by
defining a feature that is based on the difference of consecutive values of the
sensor output, the roll, pitch and azimuth angles. More precisely, we measure
the quantity

OD = |On+1
r − On

r |+ |On+1
p − On

p |+ |On+1
a − On

a |, for n = 1, . . . , N − 1,
(5)

where |.| stands for the absolute value. With this approach we attempt
to capture the rapid change in orientation that occurs during a fall. The
pitch (Op) and azimuth (Oa) angles belong to the interval [−180◦, 180◦] and
[0◦, 360◦], respectively. Note that when a measured value oversteps these
limits, a discontinuity or jump of 360◦ occurs. For instance, the azimuth
angle jumps from 0◦ to 360◦ (or 360◦ to 0◦) when the measured value is
approaching 0◦ (or 360◦). Therefore before calculating (5), it is necessary
to correct the pitch and azimuth angles. Regarding the roll angle it does
not show this behavior, and its values change continuously in the interval
[−90◦, 90◦].
Figure 5 displays the OD feature for a fall and an ADL movement. In

this particular example, the difference in magnitude between the two cases
is evident.
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Figure 5. The vector OD for a simulated “backward fall ending
lying in lateral position” (left) and the ADL “pick an object off
the floor” movement (right).
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Figure 6. The calculated SVG for a simulated “lateral fall
against wall ending lying” (left) and the ADL “walk” movement
(right).

Feature SVG and SVGA (gyroscope). Finally, we consider the information of
the gyroscope sensor. What we predict is that a fall leads to significant
values in the angular velocity and angular acceleration, when compared to
an ADL movement. Moreover, in comparison with ADL tasks, those values
should be sufficiently large to provide an accurate distinction between fall and
ADL. As mentioned in subsection 2.1, the angular velocity is available as the
output of the gyroscope sensor. The components of the angular acceleration,
denoted herein by GAn = (GAn

x, GAn
y , GAn

z ) at time n, can be approximated
by forward finite differences, that is

GAn
x =

Gn+1
x −Gn

x

∆t
, for n = 1, . . . , N − 1, (6)

where ∆t is the inverse of the signal frequency (similarly definitions apply to
GAn

y and GAn
z ). Based on this reasoning, we study the values of the following

two features, the sum of the absolute value of the components of the angular
velocity

SVG = (SV n
G )

N
n=1, SV n

G = |Gn
x|+ |Gn

y |+ |Gn
z |, (7)

and the sum of the absolute value of the components of the angular acceler-
ation

SVGA = (SV n
GA)

N
n=1, SV n

GA = |GAn
x|+ |GAn

y |+ |GAn
z |. (8)

The SVG curves displayed in Figure 6 reveal that, at least in this case, our
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expectations were confirmed. In the simulated fall, the maximum value of
SVG is bigger than the double of the value of SVG obtained in the ADL. The
analysis of SVGA, not shown here, allows to draw an identical conclusion.

2.3. Fall Detection Algorithms and Results. In this subsection we de-
scribe and analyse four fall detection threshold-based algorithms, relying on
the features previously defined. Besides the evaluation of the performance
of these algorithms, a main goal is also to understand if the use of the linear
acceleration, orientation or gyroscope data can significantly improve the per-
formance of the fall detection algorithm that relies only in the acceleration
sensor, but somehow incorporates the information about the orientation of
the device. Therefore, we consider the following algorithms.

• Alg1 that only uses acceleration data by combining sequentially the
features SV , OV and CO.

• Alg2 that consists of Alg1 plus feature V A (the vertical acceleration).

• Alg3 that adds the orientation feature OD to Alg1.

• Alg4 that adds the gyroscope information features SVG and SGGA to
Alg1.

Next, a detailed description of the threshold-based algorithm Alg1 is pre-
sented. We omit the descriptions of the other three algorithms, they are only
briefly outlined, because of the their similarity with the structure of Alg1.

Algorithm Alg1

1. Let Csv, Cov and Cco be 3 pre-defined and fixed thresholds.

2. Alg1 starts by applying a low-pass filter to the original acceleration
signal in a sliding window of size 2s. Then, with the filtered data,
the feature SV is computed, as defined in (1) and let tsv be the time
corresponding to the maximum value of SV in this window.

3. If this maximum value is above the critical threshold Csv, the move-
ment might be a fall and Alg1 proceeds to the next point. Otherwise
the movement is not a fall and Alg1 stops.
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4. Then equation (2) is used to compute OV within the time window
[tsv − 1, tsv + 1]. If the maximum value of OV in [tsv − 1, tsv + 1] ex-
ceeds a threshold value Cov, the movement might be a fall and Alg1
proceeds to the next point. Otherwise the movement is not a fall and
Alg1 stops.

5. The feature CO is computed, as explained in subsection 2.2, that
is by averaging the acceleration data over [tsv − 2, tsv − 1] and over
[tsv + 1, tsv + 2], and by using equation (3).

If the obtained value of CO is above a threshold Cco the algorithm
considers that a fall has occurred and an emergency signal is sent to
the monitoring system. Otherwise Alg1 ends and the movement is not
a fall.

Algorithms Alg2, Alg3, and Alg4 correspond to variants of Alg1 obtained
by including extra different features. In all cases, these extra features are
calculated in the time window [tsv − 1, tsv + 1] as in the computation of OV .
For Alg2, we monitor the maximum value and the l1-norm of V A (defined

by
∑N

n=1 |V An| and normalized by the total number of points N , whenever
necessary, to account for frequency differences). For Alg3 we measure the
maximum value of OD, and for Alg4 the maximum values of the features SVG

and SVGA are considered. Moreover, as described above, three thresholds are
used in Alg1, Csv, Cov, and Cco. Besides these three thresholds, we also define
the thresholds Cva and C l1

va for Alg2, Cod for Alg3 and Csvg and Csvga for Alg4,
with obvious meaning.
All these algorithms were tested on the data-set described in Table 1 of

subsection 2.1. The performance of the algorithms was quantified by using
sensitivity and specificity measures. In this case, sensitivity measures the
capacity of the algorithm to detect a fall. It is defined by

Sensitivity =
number of TP

number of TP + number of FN
,

where TP represents a true positive, that is a fall correctly detected by the
algorithm and FN represents a false negative, that is a fall not detected by
the algorithm. On the other hand, specificity measures the reliability of the
algorithm, i.e., the capacity of the algorithm to reject non-fall events, and is
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defined by

Specificity =
number of TN

number of TN + number of FP
.

Here, TN stands for a true negative, that is an ADL not identified as a fall by
the algorithm, and FP stands for a false positive, that is an ADL erroneously
classified as fall, by the algorithm.
We explain now, how we have chosen the thresholds Csv, Cov, Cco, Cva,

C l1
va, Cod, Csvg and Csvga, for the features SV , OV , CO, V A, OD, SVG and

SVGA, respectively. We first choose a training subset of the whole data set,
and in this training subset we compute the values of all the features (SV ,
OV , CO, V A, OD, SVG and SVGA) for all the movements (fall and ADL).
Among all the values we choose, for each feature, the maximal value (which
is the threshold) such that the 6 thresholds provide approximately 100% of
sensitivity for Alg1, Alg2, Alg3 and Alg4. This high level of sensitivity is
essential in fall detection systems. Afterwards, with these set of thresholds
we compute the specificity and the sensitivity for the whole dataset. The
used threshold values as well as the maximum value for all the falls recorded
are shown in Table 2.

Feature Fall Value Fall description Threshold

SV 23.45 Fall from a chair ending lying Csv = 23

OV 18.53 Backward fall ending lying Cov = 18

CO 66.33 Forward fall with arm protection ending lying Cco = 65.5

V A 4.93 Fall from a chair ending lying Cva = 4.72

V A 1.49 Backward fall ending lying C l1
va = 1.48

OD 253.88 Forward fall with arm protection ending lying Cod = 250

SVG 6.02 Backward fall ending lying Csvg = 5.9

SVGA 111.21 Backward fall ending lying Csvga = 110

Table 2. Features and thresholds adopted in the fall detection algorithms.

The results obtained for each algorithm are summarized in Table 3 and
reveal that Alg1 performs well with 92.65% for the specificity. This speci-
ficity value corresponds only to 10 FP. Comparing these results with the
performance of algorithms Alg2, Alg3 and Alg4 it is possible to conclude
that apparently the features used in Alg1 are good enough and no significant
advantage is gained by increasing the number of features with extra sensor
data.
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This conclusion is very important when we take into consideration the
computational and power costs. We cannot neglect the limited computational
and battery power of smartphone devices. In fact, the power required by the
gyroscope, used in Alg2, Alg3, and Alg4, is much higher than the power
demand of the accelerometer sensor used in Alg1.
Table 3 shows that Alg2 eliminates only two more FP, leading to 8 FP,

whereas with Alg3 the number of FP is 9, i.e., only one more FP is correctly
classified. A direct comparison between Alg1 and Alg4 (last two rows in
Table 3 that correspond to the results in a subset of the data set that also
has the gyroscope information) shows almost identical results. In this case
the specificity of Alg1 is 91.92% and that of Alg4 is 93.94%. These values
correspond to 8 FP and 6 FP, respectively.

TP FP TN FN Sensitivity Specificity

Alg1 74 10 126 0 100% 92.65%

Alg2 74 8 128 0 100% 94.12%

Alg3 74 9 127 0 100% 93.38%

Alg1 68 8 91 0 100% 91.92%

Alg4 68 6 93 0 100% 93.94%

Table 3. Sensitivity and specificity results for each algorithm.
The last two rows correspond to the results in a subset of the
data set that has the gyroscope information (some data do not
have this information).

To gain more insight about Alg1 and the influence of the 3 different fea-
tures SV , OV and CO, we present in Table 4 the sensitivity and specificity
results for different features combinations. In particular, we observe that
none of these 3 features can be removed without substantially reducing the
sensitivity. We also note that feature OV has a strong positive impact in
the algorithm performance. To the best of authors knowledge this is the first
time that the feature OV is used in a fall detection algorithm.
With respect to the number of FP of Alg1 displayed in Table 3, most of

them are due to the ADL “sit down abruptly on a chair” movement (4 FP),
followed by “get in and out of the car” movement (3 FP). This means, that
in more than 50% of the cases, these two ADL originate FP. These are very
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Features TP FP TN FN Sensitivity Specificity

SV + OV 74 38 98 0 100% 72.06%

SV + CO 74 56 80 0 100% 58.82%

OV + CO 74 19 117 0 100% 86.03%

Table 4. Sensitivity and specificity results for Alg1 by consid-
ering only two different combinations among the 3 features SV ,
OV and CO.

similar movements, that can generally be classified as “sitting abruptly”. The
pattern for this type of movement resembles a fall, and therefore it poses a
real challenge to fall detection systems, especially the ones based solely on
acceleration signals. The remaining FP were caused by the ADL “kneel down
to the floor” movement (1 FP), and the ADL “lie down and stand up from
the floor” movement (2 FP).
We also have tested two algorithms that only use the features SV and

V A, and SV and OD, and obtained specificity values of 46.10% and 40.28%,
respectively, which reveals that these features are not reliable. These values
can also be compared with those given in Table 4.
The results obtained in this study seem to be in disagreement with some

results reported in the literature, but this discrepancy is apparent, and the
reason is due to the fact that the other authors use different location for
the sensors and also the quality and type of the chosen sensors is different
from ours. For instance in [3], 100% sensitivity and specificity were obtained
with an algorithm that is based only on gyroscope data. In our data-set, an
algorithm that relies only on SV , SVG, and SVGA results in 100% sensitivity
and 71.84% specificity. However, in [3] the authors use an improved gyro-
scope sensor fixed to the trunk, which is a better place for the sensor in fall
detection. We also tried to extract vertical velocity features from the verti-
cal acceleration in a similar way to the one presented in [4]. However, our
results were not satisfactory, while in that study the authors also obtained
100% sensitivity and specificity. But, again, we must stress that in this case
better sensors than ours were used, and in addition, the sensors were fixed
to the trunk.

Remark 2.1. Finally we remark that we have conducted some experiments
using a modified version of the fall detection algorithm Alg1, with the goal
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of decreasing the smartphone battery consumption. The changes are listed
below:

1. No low-pass filter is applied to the original acceleration signal.

2. In step 4 of algorithm Alg1 the maximum value of OV is computed in
the time interval centered in tsv with size 0.7s, instead of 2s as indi-
cated before.

3. For the computation of feature CO the time interval [tsv − 2, tsv + 2]
of size 4s, is replaced by a shorter time interval also centered in tsv,
but with size 3s, and the averages Āb and Āe are created by averaging
the acceleration data over, respectively, the first half second and last
half second of this new window of size 3s.

The experimental results show the performance is a little bit worse as shown
in Table 5 (compare with Table 3). We observe that if we keep the low-pass
filter the results are very similar to those obtained with Alg1 in Table 3. By
removing the low-pass filter the values for feature SV increase, therefore the
value Csv was changed to 39.

Modified Alg1 Sensitivity Specificity TP FP TN FN

Changes 1, 2 and 3 98.65% 82.35% 73 24 112 1

Changes 2 and 3 98.65% 91.91% 73 11 125 1

Table 5. Sensitivity and specificity results for the modified fall
detection algorithm Alg1.

2.4. Support Vector Machine Classifier. In this subsection, we briefly
discuss the results obtained with a support vector machine (SVM) binary
classifier on our dataset and compare SVM and Alg1 performances. For this
SVM classifier, we use exactly the same features of Alg1, that is SV (sum
of the absolute value of the components of the acceleration vector), OV
(orientation variation) and CO (change in orientation).
Before proceeding, we observe that in our study we did not consider the

possibility of implementing this type of SVM algorithm for fall detection
in smartphones, because as it requires more computational power than the
threshold-based algorithms, it causes some technical difficulties associated
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with the lack of energy and computing power in smartphones devices. One
possible solution to this problem would be to transmit the data (or at least
some of the data), in real time, to a remote computer to perform further anal-
ysis. This procedure would allow the use of more sophisticated classification
methods like, for example, SVM, whose results are herein discussed.
For this experiment, we used the SVM Toolbox LIBSVM developed for

Matlab software [5], and the RBF (Radial Basis Function) kernel was adopted.
In order to avoid over-fitting, two-fold cross validation was employed. There-
fore, our database was partitioned into two sets. Each set contained equal
number of falls and ADL, 37 and 68, respectively, and an attempt was made
to evenly distribute all the falls and ADLs across both sets.
The classification performance was evaluated by the accuracy measure,

which is defined as follows

Accuracy =
Number of correct predictions

Number of positives + Number of negatives
.

In particular, we are more interested in the accuracy of the testing set, since
it is considered a better indicator of the algorithm effectiveness than in the
accuracy of the training set. Two parameters need to be optimized for SVM.
We have followed the recommended “grid-search” procedure. Thus several
pairs of these two parameters were tried, and the one with the best accuracy
for the cross-validation of the testing sets was selected.
The best accuracy results for the set of 3 features SV + OV + CO, and

also for other combinations, with only 2 out of these 3 features, are given
in Table 6. For the 3 features SV + OV + CO, SVM gives an accuracy of

Features Accuracy Sensitivity Specificity

SV +OV + CO 96.19% 95.95% 96.32%

SV +OV 85.24% 82.43% 86.77%

SV + CO 88.57% 85.14% 90.44%

OV + CO 95.71% 95.95% 95.59%

Table 6. Performance of the SVM classifier.

96.19%, a sensitivity of 95.95%, and a specificity of 96.32%. We also point
out the performance of the combination OV +CO is very similar to the one
obtained with SV +OV +CO. In fact, the same sensitivity was obtained and
the specificity value is only slightly lower. These results confirm the quality
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of the three features SV +OV +CO and of the features selected, especially
OV and CO, to accurately classify fall and ADL events.
Finally, in Table 7, we reveal the number of actions that were misclassified

by SVM using the three features SV + OV + CO. It is interesting to note,
that among the 5 FP, 4 are “sit down abruptly on a chair” movements, and
1 is the ADL “kneel down to the floor” movement. These 5 actions, with the
exception of 1 ADL “sit down abruptly on a chair” movement, were already
misclassified by the threshold-based approach Alg1. The 3 FN correspond to
“a lateral fall to the right ending lying” , “a forward fall with arm protection”,
and “a walk and fall ending lying”.

Features TP FP TN FN

SV +OV + CO 71 5 131 3

Table 7. Classification results for SV + OV + CO using SVM.

By comparing these results with those obtained for Alg1 in Section 2.3, we
conclude that they are very similar, and consequently the threshold-based
algorithm Alg1, although simpler has a performance as good as the more
elaborated and complex SVM algorithm.

3. KTP Detection

In this section we focus our attention on the knock to panic (KTP) detec-
tion. After defining the KTP protocol, we describe an automatic threshold-
based algorithm. It relies only on the acceleration data and the KTP pattern
(see Figure 7). The structure of the KTP algorithm involves the following
sequential three steps: Step 1- knocks’ detection, Step 2 - verification of the
stability conditions and Step 3 - verification of the oscillatory conditions. In
Step 1 we look for the primary feature in the KTP pattern and Steps 2 and
3 correspond to secondary features of the KPT pattern that are imposed in
order enforce the KTP detection and to avoid misclassification with other
movements. At the end of this section we describe the results of the tests
conducted for evaluating the KTP detection algorithm.

3.1. Protocol Definition. By definition, KTP consists in the movement of
hitting the device three or more times along the face parallel to the screen in
the front or back of the device - this procedure is refer herein as “knocks”.
During this movement the smartphone must be completely stationary (and
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located in the trouser front pocket or in a belt worn around the hip). If
these conditions are fullfiled, a specific acceleration pattern is observed in
the smartphone accelerometer response signals. An example of such pattern
is depicted in Figure 7. As can be observed the three knocks, made by the
user smartphone, are clearly visible in the Az component of the acceleration
(blue curve) along the z-axis, that is perpendicular to the screen plane, while
the acceleration signals Ax, Ay along the x- and y-axis (green and red curves)
are almost constant. We refer the reader to Figure 1 for an illustration of the
smartphone reference frame. We describe the techniques used to correctly
identify this KTP pattern in the next 3 subsections.
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Figure 7. KTP pattern represented by the accelerometer data.

3.2. Step 1 - Knocks’ Detection. In the following, the algorithm for
KTP detection is described in detail. We start with some useful notation.
We denote by |S| the number of elements of a set S. As before, we define the
acceleration vector An = (An

x, A
n
y , A

n
z ), for n = 1, . . . , N , for time tn, where

t1 = 0 is the initial time and tN = T the final time. Let v̄I denote the mean
of a vector v in the time interval I = [t1, t2], with 0 ≤ t1 < t2 ≤ T . We define
the sets It, Im and Ik as

It = [tm, tm + 0.5[ ∪ [tm + 0.5, tm + 2.5] = Im ∪ Ik, for 0 ≤ tm ≤ T − 2.5.
(9)
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That is, It denotes a time interval of size 2.5s, which is written as the union
of the time interval Im of size 0.5s with the time interval Ik of size 2.0s.
The KTP algorithm is devised to continuously analyze the KT patterns in

a rolling window of 2.5s. Moreover, since the KTP movement is by definition
a quick movement (in practice the user is in panic), we then stipulate that
it has to be executed in a time window of 2s. The set Ik is the time interval
where the knocks are expected to occur and Im is the preceding short interval.
This first step of the algorithm involves the detection of the knocks, at

least 3. As illustrated in Figure 7, when KTP is executed at least three large
peaks appear in the Az component of the acceleration. The highest peaks are
in the positive part of the z- axis if the knocks are executed in the front of
the device, otherwise if the knocks are applied in the back of the device the
highest peaks appear in the negative part of the z- axis. In order to detect
these peaks we proceed as follows.

• Let Cz be a critical pre-defined threshold. Firstly, we compute Āz,Im

(the mean value of Az in Im), and secondly, we look for values of Az

bigger than Āz,Im +Cz, or smaller than Āz,Im−Cz, in the time interval
Ik. Thus, we define the set of time knocks candidates, T+

knocks when
the user hits the front of the smartphone, or T−

knocks when the user hits
the back of the smartphone, by

T+
knocks = {tn ∈ Ik : An

z ≥ Āz,Im + Cz}

T−
knocks = {tn ∈ Ik : An

z ≤ Āz,Im − Cz}.
(10)

These sets identify the times at which the component of the accelera-
tion along the z- axis is above the line Āz,Im +Cz for T

+
knocks, or below

the line Āz,Im − Cz for T−
knocks.

• Note that a minimum time span between knocks must be observed.
Thus let Ct be a pre-defined small time range. In order to eliminate
the elements of T+

knocks (or T−
knocks) that are separated apart by less

than Ct, we update them according to (assuming that the elements of
these sets are already sorted in ascending order)

T+
knocks := T+

knocks \ {t
m ∈ T+

knocks : tm+1 − tm ≤ Ct}

T−
knocks := T−

knocks \ {t
m ∈ T−

knocks : tm+1 − tm ≤ Ct}.
(11)
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After this, if the number of elements in T+
knocks or in T+

knocks is still
bigger or equal than 3, that is if the condition

|T+
knocks| ≥ 3 or |T−

knocks| ≥ 3 (12)

is still verified, then 3 possible knocks are detected and the algorithm
proceeds to the next step for checking other conditions.

The values used for the thresholds Cz and Ct, in the tests, are indicated
in Table 8. Throughout this paper, whenever we refer to T+

knocks we can also
refer to T−

knocks (depending if the knocks are executed on the front or back of
the smartphone) with convenient adjustments.

3.3. Step 2 - Stability Conditions. The KTP protocol demands that the
device must be completely stopped. As is shown in Figure 7, this require-
ment results in an almost constant acceleration, especially for the Ax and
Ay components. In this second step we model this property in the interval
It = Im ∪ Ik, see (9).
Let Cm be a pre-defined threshold, and T+

k the maximum time interval
spanned by T+

knocks (respectively T−
k if T−

knocks is used). Then consider the
following sets,

S1,x = {An
x : tn ∈ It and |Āx,Im − An

x| ≤ Cm}

S2,x = {An
x : tn ∈ It}

S3,x = {An
x : tn ∈ T+

k and |Āx,Im −An
x| ≤ Cm},

S1,y = {An
y : tn ∈ It and |Āy,Im − An

y | ≤ Cm}

S2,y = {An
y : tn ∈ It}

S3,y = {An
y : tn ∈ T+

k and |Āy,Im − An
y | ≤ Cm},

S1,z = {An
z : tn ∈ It and |Āz,Im −An

z | ≤ Cm}

S2,z = {An
z : tn ∈ It}

S3,z = {An
z : tn ∈ T+

k and |Āz,Im − An
z | ≤ Cm},

(13)

where Āx,Im, Āy,Im and Āz,Im are the mean values of Ax , Ay and Az in Im
(the “normal” time interval that preceds the interval Ik where knocks might
exist), respectively. We note that S1,. represents the values of the acceleration
component that are contained in a strip of thickness 2Cm and centered at
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the mean value of that acceleration component in Im. S2,. is the set values
of the acceleration component in all the interval It. Finally S3,. represents
the values of the acceleration component, for the time interval Ik where the
possible knocks were detected, that are contained in a strip of thickness 2Cm

and centered at the mean value of that acceleration component in Im.
Let C1,x, C1,y, C1,z, C3,x, C3,y, C3,z be positive pre-defined thresholds smaller

or equal to one, herein understood as percentages. Then, we define the two
following stability conditions

|S1,x| ≥ C1,x|S2,x|, |S1,y| ≥ C1,y|S2,y|, |S1,z| ≥ C1,z|S2,z|, (14)

|S3,x| ≥ C3,x|S2,x|, |S3,y| ≥ C3,y|S2,y|, |S3,z| ≥ C3,z|S2,z|. (15)

The condition (14) states that a certain percentage of values of Ax, Ay, and
Az in the interval It must be located around the respective mean calculated
in the interval Im. Condition (15) has the same meaning, but it is applied
only in the interval T+

k , i.e., in the interval where the possible knocks were
detected.
The values used, in the tests, for all these thresholds are indicated in Table

8. We remark that the percentages C1,z and C3,z should be always much
smaller than C1,x and C3,x or C1,y and C3,y, because the stability conditions
are mainly satisfied by the Ax and Ay components of the acceleration (as can
be seen in Figure 7). In addition, C3,z should be smaller than C1,z, because
C3,z is associated with the interval Ik where the knocks might occur while
C1,z is linked to the entire interval It.

3.4. Step 3 - Oscillatory Condition. Note that while the KTP peaks are
clearly more pronounced in the Az component, they can also sometimes be
observed in the Ax and Ay components (see Figure 8). This can happen,
for instance, if some movement occurs in those directions during the KTP
action. Nevertheless, the peaks, which are visible in Figures 7 and 8, are
characterized by a quick rise and an equally rapid decay. In order to capture
this behavior, let Co be another predefined threshold and we introduce the
following sets

S4,x = {An
x : tn ∈ It and |An

x − Āx,Im| ≥ Co}

S4,y = {An
y : tn ∈ It and |An

y − Āy,Im| ≥ Co)}

S4,z = {An
z : tn ∈ It and |An

z − Āz,Im| ≥ Co},

(16)
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Figure 8. KTP pattern showing also some oscillations in the
Ax and Ay components.

representing the components Ax, Ay and Az of the acceleration that are
outside the strip, with thickness 2Co, and centered respectively at Āx,Im,
Āy,Im and Āz,Im (those are the acceleration averages in the “normal” time
interval Im, that preceds the interval Ik where knocks might exist). Then,
we denote by seq4,x, seq4,y and seq4,z the number of elements, of the longest
sequences of consecutive elements in S4,x, S4,y and S4,z, respectively. The
oscillatory condition associated with (16) is then defined as follows

seq4,x ≤ C4,x|S2,x|, seq4,y ≤ C4,y|S2,y| and seq4,z ≤ C4,z|S2,z|, (17)

where C4,x, C4,y and C4,z are 3 pre-defined thresholds, that represent per-
centages. This condition (17) specifies bounds for the number of consecutive
acceleration points that are outside the aforementioned strips. Cleary we
should allow a large percentage for the acceleration component along the z-
axis. The values for the thresholds Co, C4,x, C4,y and C4,z used in the tests
are displayed in Table 8.

3.5. KTP Algorithm. We summarize now the KTP threshold-based algo-
rithm.

1. Set the thresholds Cz, Ct for koncks’ detection, Cm, C1,x, C1,y, C1,z,
C3,x, C3,y, C3,z for the stability conditions and Co, C4,x, C4,y, C4,z for
the oscillatory conditions.
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2. Read the data given by the acceleration sensor in a rolling window of
size 2.5s.

3. Detect the possible knocks by checking condition (12). If this condi-
tion is verified proceed to the next step, otherwise no KTP is detected.

4. Check the stability conditions (14) and (15). If they are verified pro-
ceed to the next step, otherwise no KTP is detected.

5. Check the oscillatory conditions (17). If it is verified a KTP is detected
and an emergency signal is sent to the monitoring system, otherwise
the algorithm ends without any KTP detection.

3.6. Numerical Experiments for KTP. To test the efficiency of the
proposed algorithm, a data set with 326 movements was collected by the
company Oncaring (http://oncaring.com/) by a group of 5 different users.
In total 117 KTP and 209 ADL (like walking, running, jumping, and sitting),
were recorded. Specific movements that could generate FP, such as “using the
phone”, were also monitored. The smartphones used were the same described
in subsection 3.1. From the total data samples, 19 KTP and 73 ADL were
obtained with the Samsung Galaxy Nexus S. For all the experiments the
smartphone was placed in the trouser front pocket or in a belt worn around
the hip. Moreover, KTP movements were recorded with the user in different
positions, e.g., lying on the floor, seated on a chair or standing-up.
For defining the 13 thresholds Cz, Ct, Cm, C1,x, C1,y, C1,z, C3,x, C3,y, C3,z,

Co, C4,x, C4,y, C4,z, we have applied the same strategy described in Section
2.3 for the fall detection, by defining a training subset of the whole dataset
and setting these thresholds such that a desired level of specificity (about
99%) of specificity is reached. We note that, in contrast to the fall detection
algorithm where we set the thresholds in the training data set to reach 100%
of sensitivity, for the KTP algorithm the goal is to reach about 100% of
specificity. In fact, for the KTP detection algorithm it is essential to have
no false alarms, since the user can repeat the KTP movement several times
if the alarm is not activated the first time the user hits the device for doing
a KTP movement. A list of the thresholds used is given in Table 8.
In Table 9 we present the results of our algorithm. As this table shows,

the algorithm has a high sensitivity (91.45%) and even higher specificity
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Threshold Value Step

Cz 7 Knocks’ detection

Ct 0.15

Cm 2 Stability Conditions

C1,x 0.7

C1,y 0.7

C1,z 0.4

C3,x 0.4

C3,y 0.4

C3,z 0.1

Co 4 Oscillatory Condition

C4,x 0.03

C4,y 0.03

C4,z 0.04

Table 8. Thresholds adopted for KTP detection.

(96.19%). We also point out that all the FP were due to the action of using
the phone, e.g., writing SMS. This type of FP can be very difficult to identify.
One possible solution is to activate the algorithm only when the smartphone
screen is locked. In the FN group, 2 were consequence of malfunction of the
smartphone. In the other 8 cases the algorithm stopped in Step 3, since the
condition (12) (|T+

knocks| ≥ 3 or |T−
knocks| ≥ 3) was not satisfied. This was due

to the fact that the threshold Cz was to high. Unfortunately, we were unable
to eliminate more FN without significantly increasing the number of FP. For
instance, taking Cz = 5 we only increase the sensitivity to 92.31% while the
specificity reduces to 83.73%.

Sensitivity Specificity TP FP TN FN

91.45% 96.19% 107 8 202 10

Table 9. Sensitivity and specificity results for the algorithm KTP.

Remark 3.1. Finally, we briefly explain some simplifications we have car-
ried out in the KTP algorithm, described in Section 3.5, in order to reduce
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the computational execution, and thus for decreasing the smartphone battery
consumption:

• In step 2 we have included the following initial extra condition, in the
rolling window of size 2.5s

|max
n

An
z −min

n
An

z | ≥ Cz

This extra condition acts as a prediction of condition (10). If it is
verified, then it is likely that condition (12) will be also verified, so
the KTP algorithm proceeds with steps 3, 4 and 5. Otherwise it is
considered that there is no KTP movement and no computations are
performed in this window.

• We have also simplified conditions (14-15), by imposing them only for
the Az component, so only the conditions involving S1,z, S2,z and S3,z

are used.

• We have simplified condition (17), by imposing it again only for the
Az component.

Clearly these simplifications have improved the battery life-time, but the ex-
perimental results show the performance is a little bit worse with respect to
the specificity as shown in the Table 10 (to compare with Table 9)

Sensitivity Specificity TP FP TN FN

91.45% 93.81% 107 13 197 10

Table 10. Sensitivity and specificity results for the simplified
KTP algorithm.

3.6.1.KTP (smartphone placed over a hard surface). Now we analyze a very
specific scenario, namely when the device is placed on a hard surface such
as a table, and the user hits the device at least 3 times. This particular
situation presents some challenges since the accelerometer signal can be very
different from the KTP pattern that is produced when the device is located
in the trouser front pocket or in a belt worn around the hip. Moreover, we
also observed that the shape of the signal can be very different from one
device to another. These issues are well illustrated in Figures 9 and 10.
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Figure 9. Examples of table KTP patterns represented by the
accelerometer response for the smartphone Samsung Galaxy
Nexus.
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Figure 10. Examples of table KTP patterns represented by
the accelerometer response for the smartphone Samsung Galaxy
Nexus S.

Nevertheless, we have applied the KTP algorithm to a data-set of 43 KTP
movements, when the device is placed over a table, herein called “table KTP”
movements. The results are given in Table 11. As can be seen, approximately
65% of table KTP movements were detected by the KTP algorithm described
in Section 3.5. To improve these results, we have developed an extra module
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in the KTP algorithm, the “table module”, that models the particular table
KTP pattern.

TP FN

KTP Algorithm 28 15

KTP Algorithm + Table module 41 2

Table 11. Results for KTP and extended KTP algorithms in
the dataset with 43 table KTP.

The structure of this additional module includes the KTP algorithm, as
described in Section 3.5, but the following changes:

• There is an additional stability condition, defined by

maxS∗
x ≤ Ct,x, maxS∗

y ≤ Ct,y,

maxS∗
z ≤ Ct,z, minS∗

z ≤ C1
t,z.

(18)

where

S∗
x = {An

x : tn ∈ Im}, S∗
y = {An

y : tn ∈ Im}, S∗
z = {An

z : tn ∈ Im},

and max and min denote the maximum and minimum absolute values,
respectively, of the acceleration components in the correspondent sets.

• The threshold values are shown in Table 12, and they are different
from those used in the KTP algorithm (displayed in Table 8)

Note that condition (18) allows to identify when the device is stationary on a
flat surface, in the time interval Im that precedes the time interval Ik where
the table knocks might occur. In fact, since the smartphone is placed over the
table, the first two conditions state that the acceleration components Ax and
Ay along the x- and y- axes are close to zero, whereas the second conditions
force Az, the acceleration component along the z- axis to be very close to
the standard value of the gravitational acceleration (this is the convention
for Android smartphones).
The results with this new table module are also presented in Table 11, and

they reveal that 95% of the table KTP movements are now detected with
the extended KTP algorithm.
We have also tested the KTP algorithm with the table module, in the full

data-set containing 160 KTP (117+43), referred in Section 3.6 obtained after
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Threshold Value Step

Cz 2 Knocks’ detection

Ct 0.04

Cm 2 Stability Conditions

C1,x 0.9

C1,y 0.9

C1,z 0.7

C3,x 0.8

C3,y 0.8

C3,z 0.2

Ct,x 1.5

Ct,y 1.5

Ct,z 11

C1
t,z 9

Co 4 Oscillatory Condition

C4,x 0.02

C4,y 0.02

C4,z 0.03

Table 12. Thresholds adopted for the new module table KTP.

adding the 43 table KTP. In Table 13 we present the results. In comparison
with Table 9 there are no false positives generated by the extra module, so
the specificity is kept.

Sensitivity Specificity TP FP TN FN

93.75% 96.19% 150 8 202 10

Table 13. Sensitivity and specificity results for the KTP algo-
rithm + Table module in the full data-set with a total of 160
KTP (43 table KTP) and 210 ADL.

We conclude this section with an important observation. The KTP protocol
may not be respected by the table module, as the algorithm may detect KTP
movements with less than the three predefined knocks. This problem arises
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because of the acceleration signal itself (which is related to the hardware)
and because the thresholds Ct and Cz indicated in Table 12 are too small.
So further studies on these issues should be done, namely the dependence of
threshold values on the characteristics of the device.
Moreover we emphasize that the table module could be an independent

application to be used in different contexts.

4. Conclusion

In this paper, we have analised smartphone sensors to determined their
reliability to discriminate between falls and ADL. Based on our results, the
accelerometer appears to be the most reliable sensor. Using the informa-
tion provided by this sensor a novel algorithm was proposed and tested. The
algorithm Alg1 is simple and can easily be implemented in smartphones plat-
forms. In our data-set, its performance leads to 100% sensitivity and 92.65%
specificity. The SVM analysis confirms the good performance of the proposed
methodology. These results are promising, but more experiments must be
done and other issues should be explored, e.g., the influence of individual
physical factors and smartphone location in the body should be further in-
vestigated. Furthermore, we also need to address the false positive results
generated by the ADL “sitting abruptly” movement. Another, aspect that
needs further study is the difference in acceleration signals from simulated
and real falls. The study presented in [2] suggests that there are important
differences, and the performance of fall detection algorithms with real data
is seriously affected. In cooperation with our industry partner we are now
testing the algorithm in real world environment. This will allow us to collect
valuable data to explore these issues in future research.
We have also described in detail a KTP detection algorithm. Some numer-

ical results for evaluating the performance of the algorithm were also given.
Currently, this algorithm is also being tested in realistic situations (in senior
care and senior monitor services), and so far the results confirm the reported
experimental findings. Both sensitivity and specificity are very high, reaching
values of 90%. Moreover, a very good level of acceptance and approval has
been observed among both elderly and non-elderly users (e.g. caregivers).
We believe that KTP has a huge potential, and if these preliminary results
are confirmed, this inventive application may become a widespread emer-
gency detection tool in the future. In addition we remark that the intensity
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of the knocks depend on the strength applied by the user. Young and el-
derly people clearly might generate knocks with different intensities. Thus
adaptive thresholds should be considered and implemented in the future.
To finish this conclusion, we notice that no correlation was observed be-

tween the two smartphones and any specific type of fall, ADL or KTP. This
fact suggests that the results are unbiased with respect to differences in fre-
quency and hardware. However, the number of samples obtained with the
lower frequency Samsung Galaxy Nexus S is considerably smaller, and there-
fore the robustness of the algorithms relative to different types of devices and
frequencies needs additional research. This topic is currently under study.
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