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A SECOND-ORDER GLOBALLY CONVERGENT
DIRECT-SEARCH METHOD

AND ITS WORST-CASE COMPLEXITY

S. GRATTON, C. W. ROYER AND L. N. VICENTE

Abstract: Direct-search algorithms form one of the main classes of algorithms
for smooth unconstrained derivative-free optimization, due to their simplicity and
their well-established convergence results. They proceed by iteratively looking for
improvement along some vectors or directions. In the presence of smoothness, first-
order global convergence comes from the ability of the vectors to approximate the
steepest descent direction, which can be quantified by a first-order criticality (cosine)
measure. The use of a set of vectors with a positive cosine measure together with
the imposition of a sufficient decrease condition to accept new iterates leads to a
convergence result as well as a worst-case complexity bound.

In this paper, we present a second-order study of a general class of direct-search
methods. We start by proving a weak second-order convergence result related to
a criticality measure defined along the directions used throughout the iterations.
Extensions of this result to obtain a true second-order optimality one are discussed,
one possibility being a method using approximate Hessian eigenvectors as directions
(which is proved to be truly second-order globally convergent). Numerically guar-
anteeing such a convergence can be rather expensive to ensure, as it is indicated
by the worst-case complexity analysis provided in this paper, but turns out to be
appropriate for some pathological examples.

Keywords: Direct-search methods, derivative-free optimization, worst case com-
plexity, second order.
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1. Introduction
Derivative-free algorithms for unconstrained optimization attempt to min-

imize a function f : Rn → R without using any form of derivatives. Such
methods are particularly relevant when the function f comes from a simula-
tion code; indeed, the user seldom has access to the source code itself, but
rather to the outcome of computer runs, preventing the use of automatic
differentiation techniques to approximate the derivatives. In addition, such
simulations are often characterized by the particularly high cost of a single
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evaluation, which tends to make the use of finite-differences approximations
too expensive. As a result, derivative-based methods are not suited for such
problems, for which derivative-free optimization (DFO) algorithms have been
developed. For more general information on DFO and particular examples
of applications, we refer the reader to the monograph by Conn, Scheinberg,
and Vicente [13].
Among the most popular derivative-free methods are direct-search algo-

rithms of directional type that rely on exploring the variable space through
directions specified within the algorithm. At each iteration, a polling set
of directions is used to determine new points at which the function is eval-
uated; if such exploratory moves manage to find a point that reduces the
function value (possibly minus a term determined by the algorithm to make
the decrease sufficient enough), then this point becomes the current iterate.
Typical instances of direct search include Pattern Search [35], Generating
Set Search [28], and Mesh Adaptive Direct Search [4]. Under appropriate
smoothness and boundedness assumptions on f , these frameworks exhibit
first-order convergence provided the directions satisfy suitable properties.
The usual requirement on the polling sets is that they contain Positive Span-
ning Sets (PSSs), which are known to generate the variable space by positive
linear combination [15]. In a smooth setting, the use of those sets at each
iteration ensures that one of the directions always makes an acute angle with
the steepest descent one. This guarantees, eventually, that a satisfying func-
tion decrease is produced and, as a result, that a subsequence of iterates
converges towards a first-order stationary point (such convergence is called
global since it is independent of the starting point).
Second-order global convergence is usually less explored in direct search,

even though several algorithms attempt to use second-order aspects in their
framework [7, 14, 31]. In fact, proving second-order results for such zeroth-
order methods necessitates to strengthen the aforementioned descent require-
ments, thus raising the question of their practical relevance. Still, second-
order results for classical direct-search schemes have been established [1, 2, 3].
In all of those proofs, the concept of a refining direction is used for proving
second-order convergence. Given a subsequence of iterations, one defines the
set of refining directions with respect to this subsequence as the closure of the
limit points of the corresponding polling set subsequence [4]. One may thus
consider a subsequence of iterates converging to a first-order critical point and
the associated set of refining directions in order to state a second-order-type
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result. In the case of Pattern Search, the second-order optimality cannot be
proved with respect to all vectors in the space or, equivalently, all directions
in the unit sphere. However, if a given orthonormal basis and its opposite
appear infinitely many in the subsequence, it is possible to prove that the
limit point satisfies a pseudo-second order optimality property which is that
the Hessian is positive semidefinite in the directions of the basis [1, Theorem
3.9]. Regarding MADS-type methods, it was proved that if the set of refining
directions corresponding to a first-order convergent subsequence of iterates
is dense in the unit sphere, then the limit point of the subsequence satisfies
second-order necessary optimality conditions [2, Theorem 4.8]. The result is
the same for the Generating Set Search method with Curvature Information,
which uses a Hessian approximation to gather second-order information. In
fact, the quality of this approximation is crucial for second-order optimal-
ity [3, Theorem 3.6] and such an assumption is close to what is assumed in
second-order convergent model-based methods [12].
The aforementioned results are obtained considering the limits of first-order

convergent subsequences of iterations and the properties at these limits, and
this reasoning is inspired by the first-order one [4]. We are interested in an
other proof scheme that reasons at the iteration level. Indeed, it is known
that one may relate the step size to a certain measure of first-order optimality
(defined by the largest cosine of the angle made by the directions in the
polling sets with the negative gradient). Although, in the general case, this
measure is weaker than the gradient norm, it is possible to arrive at a first-
order result when using polling sets that keep such a measure bounded away
from zero [28]. One might thus wonder if it is possible to study second-order
properties also at the iteration level.
It is then the first goal of this paper to define an appropriate measure

of second-order criticality. As opposed to the first-order case, this measure
is not expected to lead to classic second-order results in general. However,
having defined this second-order measure, we examine the conditions under
which it enables to prove second-order global convergence. We know that
such a convergence is achieved by some direct-search instances relying either
on a sequence of directions dense in the unit sphere or on a Hessian approx-
imation. Even though those requirements have a practical cost, they make
sense considering what we ask from our method. The second goal of this
paper is to develop a direct-search scheme ultimately relying on a Hessian
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approximation for which we prove global convergence to second-order critical
points using our second-order measure.
Finally, we aim to provide a bound on the number of function evalua-

tions needed to reach an approximate satisfaction of a second-order crite-
rion. Note that this is only possible if we are able to measure the progress
made towards optimality at each iteration, which is indeed what we hope
to achieve using a second-order criticality measure. Such worst-case com-
plexity matters have already been investigated in direct search for first-order
optimality [36, 16, 17, 22] (see also [29] for the case of no step size increase
and [25] for the probabilistic case). On the other hand, second-order worst-
case complexity bounds have been derived in unconstrained smooth non-
convex optimization [9, 10] for derivative-based methods. It is thus natural
to look for similar results for direct search, in a second-order context.
The remaining of this paper is organized as follows. In Section 2, we

present the framework of our analysis and its first-order behavior, and study
the second-order properties that can be proved for such a class of methods.
Section 3 discusses possible ways to extend the weak second-order results
to obtain second-order convergence in the usual sense; as an illustration, we
introduce a second-order globally convergent algorithm. This latter method
is again considered in Section 4 for the derivation of a worst case complexity
result. Preliminary numerical experiments are presented in Section 5 to eval-
uate the appropriateness and practical cost of the second-order requirements.
Throughout the paper, the notation O(A) will stand for a scalar times A,
with this scalar depending solely on the problem considered or constants from
the algorithm. When appropriate, the dependence on the problem dimension
will explicitly appear in A.

2.Weak second-order results for direct search based on
sufficient decrease
In this section, we present an elementary direct-search algorithm in which

new points are considered if they satisfy a sufficient decrease. This is the
baseline of many algorithms in the Generating Set Search class [28]. We start
by recalling the first-order convergence results that can be certified when one
uses a particular kind of polling sets, then show that for any of those, there
is also a weak form of second-order optimality that can be proved.
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2.1. A general direct-search framework. We introduce below the frame-
work that we will use in our study. In the rest of the document, it will be
referred to as BDS, for Basic Direct Search.

Algorithm 2.1 (Basic Direct-Search).

Init. Choose x0 ∈ Rn, αmax > α0 > 0, 0 < θ < 1 < γ, and a forcing
function ρ : R+ → R+.

(1) Set k = 0.
(2) Generate a polling set Dk.
(3) If there exists dk ∈ Dk such that

f(xk + αk dk) < f(xk)− ρ(αk), (1)

then declare iteration k successful, set xk+1 = xk + αk dk, αk+1 =
min{γ αk, αmax}, k = k + 1 and go to 2.

(4) Otherwise declare the iteration unsuccessful, set xk+1 = xk, αk+1 =
θ αk, k = k + 1 and go to 2.

We refer to αk as the step size relative to the k-th iteration and to xk as
the k-th iterate. The set of successful and unsuccessful iterations will be
denoted by S and U , respectively. Note that one can add an optional search
step before polling along the directions of Dk; we omit this step here since it
does not affect the convergence nor the complexity analysis.
Under first-order assumptions on the objective function, one can analyse

both the first-order convergence [28] and the worst-case complexity [36] of the
algorithm. In our case, however, we will extend these assumptions beyond
what is needed for first order, since we are interested in second-order results.
We start by the assumptions on the objective function f .

Assumption 2.1. The function f is twice continuously differentiable with
Lipschitz-continuous gradient and Hessian, of respective Lipschitz constants
νg and νH .

Assumption 2.2. f is bounded from below on L(x0) = {x ∈ Rn : f(x) ≤
f(x0)} and we denote by flow a lower bound.

The next assumption concerns the forcing function ρ.

Assumption 2.3. The forcing function ρ : R+ → R+ satisfies the following
properties:
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i) ρ is non-decreasing;
ii) ρ(α) = o(α2) when α → 0+.

Note that when t → 0+, one has ρ(α) = o(α), as is required for proving
first-order convergence.
We finally look at the suitable properties for the direction sets, that involve

a particular class of sets called Positive Spanning Sets (PSS). The use of PSS,
that span Rn by positive linear combinations, is a common way of ensuring
that a direct-search method considers descent directions. Indeed, since f is
continuously differentiable, a PSS always contains a direction that makes an
acute angle with the negative gradient, thus ensuring descent if the step size
is sufficiently small [28]. Global convergence in then obtained by assuming
that there exists κg > 0 such that:

∀k, cm (Dk) = min
v∈Rn\{0}

max
d∈Dk

d⊤ v

∥d∥ ∥v∥
≥ κg. (2)

In other words, the sequence of cosine measures {cm(Dk)}k is bounded away
from zero; this represents our first requirement on the directions sets.
Existing second-order convergence analyses are based on symmetric polling

sets for a refining subsequence. Such symmetric sets satisfy the property
−D = {−d | d ∈ D} = D. Their use allows to take advantage of evaluations
of the function in opposite directions, which is fundamental if one aims to
consider the second-order difference scheme

f(xk + αk dk)− 2 f(xk) + f(xk − αk dk) = α2
k d

⊤
k ∇2f(xk) dk +O(α3

k) (3)

that serves as an approximation of the second-order directional derivative.
This being said, one can still prove results in the more general case where
each polling set admits a symmetric subset. This case is described in the
following assumption.

Assumption 2.4. The polling sets Dk are finite Positive Spanning Sets of
unitary vectors, such that the symmetric part of Dk defined by

Vk = {d ∈ Dk | −d ∈ Dk}
is not empty, and that the sequence of cosine measures is bounded from below
by κg > 0.

A relevant example of such a sequence is Dk = [Q −Q], where Q is a
rotation matrix; in that case, we have Dk = Vk at each iteration. Lemma 2.1
enlightens the second-order property that can be stated using Vk.
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Lemma 2.1. Under Assumptions 2.1 and 2.4, consider an iteration of index
k ∈ U . One has

∥∇f(xk)∥ ≤ κ−1
g

(
ρ(αk)

αk
+

νg
2
αk

)
(4)

and

min
d∈Vk

d⊤∇2f(xk) d ≥ −
(
2 ρ(αk)

α2
k

+
νH
3

αk

)
. (5)

Proof : We begin by proving (4). The proof is taken from [28] and is now well
known. If ∇f(xk) = 0, the result trivially holds, thus we assume in what
follows that ∇f(xk) ̸= 0. Since the iteration is unsuccessful, for each d ∈ Dk,
one has

−ρ(αk) ≤ f(xk + αk d)− f(xk). (6)

Thus, a first-order Taylor expansion of f(xk + αk d) together with Assump-
tion 2.1 leads to

−ρ(αk) ≤ αk ∇f(xk)
⊤ d+ αk

∫ 1

0

[∇f(xk + tαk d)−∇f(xk)]
⊤ d dt

≤ αk ∇f(xk)
⊤ d+

νg
2
α2
k. (7)

Hence

−d⊤∇f(xk) ≤ ρ(αk)

αk
+

νg
2
αk. (8)

Due to Assumption 2.4, we know that

max
d∈Dk

−d⊤∇f(xk) ≥ cm(Dk) ∥∇f(xk)∥ ≥ κg ∥∇f(xk)∥.

Let dk be a direction of Dk realizing this maximum. Then by considering
this direction in (8), one obtains (4).

Consider now a direction d ∈ Vk. Note that relation (6) also holds when d
is replaced by −d; if we sum the two resulting equations, we have:

−2 ρ(αk) ≤ f(xk + αk d) + f(xk − αk d)− 2 f(xk).

Thus, a second-order Taylor expansion of both f(xk+αk d) and f(xk−αk d)
leads to:

−2 ρ(αk) ≤ α2
k d

⊤∇2f(xk) d+
νH
3

α3
k, (9)
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thanks to the Lipschitz continuity of ∇2f . In particular, (9) holds for the
couple of directions that realize the minimum of d⊤∇2f(xk)d in Vk and the
relation (5) can be easily derived.

The previous result indicates that we can define a directional measure of
second-order optimality that will play a similar role as the cosine measure
in first-order optimality proofs. We thus introduce the Rayleigh measure of
a set of vectors for a given matrix. This definition is inspired by the local
cosine measure described in [25], which expresses the ability to approximate
a particular vector, and by the Rayleigh quotient, a useful tool while dealing
with second-order optimality [8]. Although not named, a similar quantity
was used by Gratton et al. [26] in the case of trust-region methods.

Definition 2.1. Let D be a set of unitary vectors in Rn and A an n-by-n real
symmetric matrix. The Rayleigh measure of D with respect to A is given by:

rm (D,A) = min
d∈D

d⊤Ad. (10)

This measure is an approximation of the lowest eigenvalue of A by the
minimum Rayleigh quotient among all vectors in D. This approximation is
an exact one when D contains an eigenvector associated to the minimum
eigenvalue of A: the Rayleigh measure is then equal to this lowest eigen-
value. More generally, if A has at least one negative eigenvalue, the Rayleigh
measure indicates if the set D contains directions corresponding to negative
curvature, i.e., to negative values of the Rayleigh quotient.
One sees that the Rayleigh measure of Vk with respect to the Hessian

matrix appears in (5). This naturally encourages the use of this measure
as an alternative to the minimum Hessian eigenvalue, which is the usual
second-order criterion.

2.2. First-order and weak second-order global convergence results.
In this section, we establish a second-order property related to the Rayleigh
measures, hence to the partial curvature information we are able to collect at
each iteration. This property generalizes the pseudo-second order optimality
conditions presented for pattern search [1], and was called weak second-order
optimality in [26] where the authors consider a trust-region framework with
incomplete curvature information; we will use the latter terminology.
Whether they concern first-order or second-order optimality, most conver-

gence proofs in direct-search methods are based on the convergence to zero of
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the step size along a subsequence of unsuccessful iterations. When sufficient
decrease is imposed, it is known that the whole sequence of step sizes goes to
zero. This is what is stated in the lemma below, which is proved for instance
in [28].

Lemma 2.2. Suppose that Assumption 2.2 holds. Then the step size sequence
{αk} produced by Algorithm 2.1 is such that

lim
k→∞

αk = 0. (11)

A first-order convergence proof uses (4) together with Lemma 2.2 to show
that there exists a subsequence of iterates that drives the gradient to zero.
Since we are interested in establishing second-order properties, we go a

step further and propose a weak second-order optimality criterion based on
the sequence of Rayleigh measures. Note that such a technique does not
guarantee that the algorithm is able to avoid converging to a maximizer or
a saddle point. Abramson showed in [1] that Algorithm 2.1 may converge to
critical points where the Hessian matrix has zero eigenvalues, even though
those points are not local minimizers. However, for these examples, one
still obtains the property called weak second-order optimality by Gratton et
al. [26], that is a second-order optimality with respect to a set of directions.
The formulation in our case is even more general, and is stated below.

Theorem 2.1. Suppose that Assumptions 2.1–2.4 hold. Then

lim inf
k→∞

max
{
∥∇f(xk)∥,− rm

(
Vk,∇2f(xk)

)}
= 0. (12)

In the specific case where Dk = Vk, the result becomes:

lim inf
k→∞

max
{
∥∇f(xk)∥,− rm

(
Dk,∇2f(xk)

)}
= 0. (13)

Proof : From Lemma 2.1, we know that for any unsuccessful iteration of index
k,

∥∇f(xk)∥ ≤ 1

κg

[
ρ(αk)

αk
+

νg
2
αk

]
(14)

and

− rm
(
Vk,∇2f(xk)

)
≤ 2ρ(αk)

α2
k

+
νH
3

αk (15)
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hold, hence

max
{
∥∇f(xk)∥,− rm

(
Vk,∇2f(xk)

)}
≤ max

{
1

κg

[
ρ(αk)

αk
+

νg
2
αk

]
,
2ρ(αk)

α2
k

+
νH
3

αk

}
. (16)

Lemma 2.2 ensures that there exists an infinite subsequence of unsuccessful
iterations. For such a subsequence, both (14) and (15) hold, and the right
part of each inequality goes to zero when k goes to infinity thanks to As-
sumption 2.3. We thus conclude that (12) holds. The specific case where
Dk = Vk is immediate.

Our analysis shows that any direct-search method that follows the frame-
work of Algorithm 2.1, i.e., uses a polling step and imposes a sufficient de-
crease of o(α2) exhibits weak second-order properties. In practice, if we were
to use the same symmetric set of directions at each iteration, we would know
that, at any limit point, the corresponding Rayleigh measure is nonnegative.
This result is tight in the sense that additional properties on the directions
are needed to ensure that the method does not converge to a first-order
stationary point that is not a minimum. Consider, for instance, applying
Algorithm 2.1 to the following function presented in [3]:

f1(x, y) = (9 x− y) (11 x− y) +
x4

2
, (17)

with x0 = (0, 0)⊤ as the initial point and Dk = [e1 e2 −e1 −e2] for all
k. One sees that the method cannot move away from the origin, which is
a saddle point. In that case, the coordinate directions and their negatives
are not of negative curvature, as the Rayleigh measure is equal to zero at
each iteration; the method is thus weakly second-order convergent on this
function, but not second-order globally convergent.

The following corollary clarifies the link between (12) and the second-order
results based on limit of refining directions [1, 2, 3]. Note that such a result
holds because of the continuity of the Rayleigh quotient.

Corollary 2.1. Under the assumptions of Theorem 2.1, suppose that the
sequence of iterates {xk} is bounded. Then there exists a subsequence of
iterates {xk}K converging to a limit point x∗ such that ∇f(x∗) = 0.
Define the set of refining directions V∗ by

V∗ = {d ∈ Rn | ∃L ⊂ K, {dl}l∈L → d, ∀l ∈ L, dl ∈ Dl} .
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Then the curvature at x∗ is nonnegative along the directions in V∗, i.e.,

∀d ∈ V∗, d⊤∇2f(x∗) d ≥ 0. (18)

Note that if V∗ is dense in the unit sphere, the limit point x∗ is a second-
order critical one; the second-order optimality is thus assured by a similar
argument as for the MADS methods [2], although those algorithms do not
enforce sufficient decrease.
PSSs without symmetric parts. When one aims for first-order convergence
results using PSSs, it is not necessary for those PSSs to have a non-empty
symmetric part [28]. One might thus wonder if second-order results are still
provable using PSSs for which the symmetric part is empty.
A feature of the directions of a given PSS D = [d1 · · · dm] is that there

always exist m nonnegative scalars (βi)i=1,m such that
∑m

i=1 βi di = 0 [15].
Considering Algorithm 2.1 and using these scalars, one can proceed as in
Lemma 2.1 to arrive at the following relation:

m∑
i=1

βi f(xk + αk di)−

(
m∑
i=1

βi

)
f(xk) ≥ −

(
m∑
i=1

βi

)
ρ(αk), (19)

which leads to
m∑
i=1

βi d
⊤
i ∇2f(xk)di ≥ −

m∑
i=1

βi

(
ρ(αk)

α2
k

+
νH
6

αk

)
. (20)

We may then derive the analysis in a similar way as before, and obtain a
result on the convergence of a weighted sum of Rayleigh quotients under the
appropriate assumptions, that is:

lim sup
k→∞

|Dk|∑
i=1

β
(k)
i (d

(k)
i )⊤∇2f(xk) d

(k)
i ≥ 0, (21)

where, for all k,
∑

i β
(k)
i d

(k)
i = 0.

One notices that we obtain a weaker result than in the symmetric case;
indeed, in (20), we used a specific positive combination {βi} without knowing
if it is the most relevant one. Besides, the combination depends on the
direction set, which possibly changes at each iteration, and the meaning
of (21) is then unclear. When the sets are symmetric, however, we can
explore this symmetry by constructing |D|/2 nonnegative combinations such
that only the coefficients corresponding to a couple of opposite directions are
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not equal to zero (as we have seen in the proof of Lemma 2.1). The resulting
properties are stronger as they involve the Rayleigh measure.

3. A direct-search method that ensures second-order op-
timality convergence
The goal of this section is to improve the second-order results of Section 2

in order to obtain a method that is second-order globally convergent in the
usual sense. Ideally, we would like to define a second-order property on
the polling directions which would be equivalent to the positive spanning
property for the first order. In derivative-based methods, this is done by
assuming that one of the directions is an approximate negative curvature
one, i.e., that if the Hessian ∇2f(xk) has a minimum eigenvalue λk < 0, that
one of the directions d ∈ Dk is such that

d⊤∇f(xk) ≤ 0 and d⊤∇2f(xk) d ≤ κλk, (22)

with κ ∈ (0, 1) independent of k. Such a requirement is classical in curvilin-
ear line search methods [30, 32, 34] and second-order convergent line-search
frameworks [23]. To generate such directions, one uses linear algebra tech-
niques such as the Bunch-Parlett factorization coupled with a Krylov sub-
space method [23].
In a derivative-free context, we do not have access to the Hessian matrix

or its product with a vector, but we can estimate Rayleigh quotients. The
first part of (22) is easy to satisfy, but the second inequality poses a harder
problem. Indeed, it can be rewritten as follows:

rm(Dk,∇2f(xk)) ≤ κ rm
(
Sn−1,∇2f(xk)

)
= κ

(
min
d∈Sn−1

d⊤∇2f(xk) d

)
= κλk, (23)

where Sn−1 denotes the unit sphere in Rn. It thus appears that a direct-search
method attempts to estimate at each iteration the solution of a quadratic
problem with a finite number of directions, and given the lack of knowledge
on the quadratic form itself, it seems really demanding to ask for such an
approximation.
At the same time, derivative-free trust-region methods have been proved

to converge towards a second-order stationary point, provided the models
used are sufficiently accurate (with error bounds as good as those provided
by second-order Taylor models) and it is possible to compute an approximate
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eigenvector for the minimization of the model in the trust region [12]. We
would like to combine features of the model-based methods with the existing
direct-search techniques that use curvature estimation [3, 31].

3.1. Using a Hessian approximation to determine additional direc-
tions. The instance of Generating Set Search using Curvature Information
presented in [20] uses a Hessian approximation which is updated along the it-
erations (the update may not occur at every iteration). In the unconstrained
case, the new directions are then obtained by computing the eigenvectors of
the approximate Hessian. It is then the quality of the approximation, of the
order of the step size, that leads to second-order global convergence.
This approach requires the use of PSSs of the form [Q −Q], where Q is

an orthogonal matrix. However, it is known [15] that both positive spanning
sets and positive bases are not necessarily made of 2n vectors, nor are they
necessarily symmetric. We thus would like to extend the idea of [20] in a
more general setting. In addition, we would like a method that does not
completely overtakes the framework of Algorithm 2.1; the expense of search-
ing for negative curvature should not intervene unless the usual first-order
approach has failed. This is the second objective of our algorithm. Last
but not least, the amount of function evaluations at each iteration should be
of order of n2, to be in accordance with the methods that build a Hessian
approximation or use models with second-order accuracy.
The above requirements lead to the following direct-search instance, called

AHDS, for Approximate Hessian Direct Search.

Algorithm 3.1 (Approximate Hessian Direct Search).

Init. Choose x0 ∈ Rn, αmax > α0 > 0, 0 < θ < 1 < γ, and a forcing
function ρ : R+ → R+. Set k = 0.

(1) Generate a Positive Spanning Set Dk. If there exists d ∈ Dk such that

f(xk + αk d) < f(xk)− ρ(αk), (24)

then declare iteration k successful with the direction dk = d and go to
5.
Otherwise, go to 2.

(2) If there exists d ∈ Dk such that (24) holds for −d, then declare the
iteration successful with the direction dk = −d and go to 5. Otherwise,
go to 3.
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(3) Choose Bk as a subset of Dk with n linearly independent directions,
which we index as d1, · · · , dn.
If there exists d ∈ {di + dj, 1 ≤ i < j ≤ n} such that (24) holds, then

declare the iteration successful with dk = d, and go to 5. Otherwise go
to 4.

(4) Define the matrix Hk as

(Hk)ii =
f(xk + αk di)− 2 f(xk) + f(xk − αk di)

α2
k

(25)

if i = j, and (Hk)ij = (Hk)ji =

f(xk + αk di + αk dj)− f(xk + αk di)− f(xk + αk dj) + f(xk)

α2
k

(26)

if i ̸= j, with (i, j) ∈ {1, . . . , n}2. Compute a unitary eigenvector vk
associated with the minimum eigenvalue of Hk. If vk or −vk satis-
fies the decrease condition (24), declare the iteration successful with
dk equal to vk or −vk (depending on which vector yields the lowest
function value), otherwise declare the iteration unsuccessful and go to
5.

(5) If the iteration was declared successful, set xk+1 = xk + αk dk, αk+1 =
min{γ αk, αmax}. Otherwise set xk+1 = xk, αk+1 = θ αk.

(6) Increment k by one and go to 1.

Algorithm 3.1 is close in spirit to the superlinearly convergent method
developed by Mifflin [31], although we do not use a gradient approximation.
Here, we rather focus on exploiting negative curvature if possible.
Note that in case of a successful iteration at Step 1, the method behaves

like Algorithm 2.1 with a PSS. Note also that we always require a decrease
using ρ(αk) whether the directions are unitary or not, but this does not affect
the convergence nor the complexity analyses.

3.2. Second-order global convergence of the new method. Having
presented our method, we now show that it is indeed second-order globally
convergent. The proof requires two intermediate results, that respectively
enlighten the properties of the approximate eigenvector vk and the theoretical
guarantees of every unsuccessful iteration.
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Proposition 3.1. Let vk be the unitary vector described in Step 4 of Algo-
rithm 3.1. Suppose that f satisfies Assumption 2.1 and that λmin(∇2f(xk)) <
0. Then one has:

v⊤k ∇2f(xk) vk ≤ σmin(Bk)
2 λk +

10 νH n

3
αk. (27)

where λk = λmin(∇2f(xk)).

Proof : The formulas defining the approximated Hessian Hk together with f
satisfying Assumption 2.1 lead to the following error bound:

∀(i, j) ∈ {1, . . . , n}2,
∣∣(Hk)ij − d⊤i ∇2f(xk) dj

∣∣ ≤ 5 νH
3

αk, (28)

hence

∥∥Hk −B⊤
k ∇2f(xk)Bk

∥∥ ≤
∥∥Hk −B⊤

k ∇2f(xk)Bk

∥∥
F

≤ n
5 νH
3

αk, (29)

where ∥ · ∥ denotes the Euclidean norm and ∥ · ∥F the Frobenius norm. From
this bound on the approximation error, one obtains a bound regarding the
minimum eigenvalue approximation (see [13, Proposition 10.14]):

∣∣λmin(Hk)− λmin

(
B⊤

k ∇2f(xk)Bk

)∣∣ ≤ n
5 νH
3

αk. (30)

Putting all together, one obtains

v⊤k ∇2f(xk) vk = λmin(Hk) + v⊤k
[
∇2f(xk)−Hk

]
vk

≤ λmin

(
B⊤

k ∇2f(xk)Bk

)
+∣∣λmin(Hk)− λmin

(
B⊤

k ∇2f(xk)Bk

)∣∣+ ∥vk∥2
5n νH

3
αk

≤ λmin

(
B⊤

k ∇2f(xk)Bk

)
+ (1 + ∥vk∥2)

5n νH
3

αk

= λmin

(
B⊤

k ∇2f(xk)Bk

)
+

10n νH
3

αk.
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Since Bk is a basis of Rn, B⊤
k Bk is positive definite. For every vector y ∈

Rn \ {0}, we have

y⊤B⊤
k ∇2f(xk)Bk y

∥y∥2
≥ λmin

(
B⊤

k ∇2f(xk)Bk

)
,

y⊤B⊤
k ∇2f(xk)Bk y

∥y∥2
× ∥y∥2

y⊤B⊤
k Bk y

≥ λmin

(
B⊤

k ∇2f(xk)Bk

) ∥y∥2

y⊤B⊤
k Bk y

,

y⊤B⊤
k ∇2f(xk)Bk y

y⊤B⊤
k Bk y

≥ λmin

(
B⊤

k ∇2f(xk)Bk

) ∥y∥2

y⊤B⊤
k Bk y

.

Taking the minimum over all non-zero vectors in Rn, one obtains:

λmin(∇2f(xk)) ≥ λmin

(
B⊤

k ∇2f(xk)Bk

)
max
y ̸=0

∥y∥2

y⊤B⊤
k Bk y

, (31)

again using the fact that Bk is a basis. Indeed, this ensures that both mini-
mum eigenvalues have the same sign: consequently, λmin

(
B⊤

k ∇2f(xk)Bk

)
<

0 and the minimum becomes a maximum. One finally has

λmin(∇2f(xk)) ≥
λmin

(
B⊤

k ∇2f(xk)Bk

)
σmin(Bk)2

, (32)

hence the result.

Note that in Algorithm 3.1, we do not allow for a computation of the
approximate Hessian along several iterations, yet in such cases, one can still
derive errors bounds that turn out to be worse than those presented above.
Indeed, in a scenario where an approximation of the Hessian is computed
separately along p successive iterations, one can prove that if such iterations
are unsuccessful, then the error bound (29) becomes of order O(θ−p n νH αk).
This holds for a naive implementation of the method, thus these bounds are
likely to be improved by considering efficient practical strategies. However,
this would require a thorough study that is beyond the scope of the present
paper.
Proposition 3.1 shows that the approximation error between v⊤k ∇2f(xk) vk

and λk involves the minimum singular value of a certain matrix, as well as an
error of order O(n νH αk). These elements are consistent with those obtained
when using fully quadratic models (see [13, Part I] and the references therein).
In fact, the square of the singular value σmin(Bk) plays a role that is similar to
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the poisedness constant, hence we make the following assumptions on those
singular values.

Assumption 3.1. The polling sets satisfy Assumption 2.4. In addition, the
bases Bk are chosen such that there exists σ > 0, independent of k, such that

∀k, σmin(Bk)
2 ≥ σ. (33)

When the Bk are orthonormal bases, one can choose σ = σmin(Bk) = 1.
This is the case, for instance, when all polling sets are equal to [Q −Q], with
Q being an orthogonal matrix.

Lemma 3.1. Consider an unsuccessful iteration of Algorithm 3.1 such that
cm(Dk) ≥ κg > 0 and σmin(Bk)

2 ≥ σ. Suppose that f satisfies Assump-
tion 2.1. In that case,

∥∇f(xk)∥ ≤ κ−1
g

(
ρ(αk)

αk
+

νg
2
αk

)
(34)

is satisfied, and, if λk < 0,

λk ≥ −σ−1

(
2 ρ(αk)

α2
k

+ (10n+ 1)
νH
3
αk

)
(35)

holds.

Proof : Equation (34) is obtained as in the proof of Lemma 2.1, considering
that we use a PSS Dk at each iteration.
To arrive at (35), notice that we evaluate f at both xk+αk vk and xk−αk vk.

Thus, we can obtain the analogous of (9) for vk, which is

−2 ρ(αk) ≤ α2
k v

⊤
k ∇2f(xk) vk +

νH
3
αk. (36)

Since we are in the assumptions of Proposition 3.1, we can replace the
Rayleigh quotient by an expression only depending on λk and αk, and we
arrive at (35).

We point out that for unsuccessful iterations, the corresponding Rayleigh
measure is an approximation of the minimum eigenvalue with an error in
O(αk): this is the key property that turns the weak second-order results
into strong second-order ones. Indeed, we obtain the following convergence
theorem, whose proof follows the one of Theorem 2.1, only with λk playing
the role of rm

(
Vk,∇2f(xk)

)
.
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Theorem 3.1. We consider Algorithm 3.1 under Assumptions 2.1, 2.2, 2.3
and 3.1. Then,

lim inf
k→∞

max {∥∇f(xk)∥,−λk} = 0, (37)

i.e., the method is second-order globally convergent.

This result confirms that whenever directions determined by a Hessian
approximation are used, the accuracy of the approximation is the key for
controlling the second-order criterion (namely the minimum Hessian eigen-
value). This has an undeniable cost in terms of function evaluations. How-
ever, if some special structure is known about the problem, then this amount
of evaluations can be reduced. Random sampling can also reduce the cost if
the Hessian is sparse, even if the sparsity pattern is unknown [6].

4.Worst case complexity
This section is dedicated to the complexity of direct search in determining

second-order stationary points. We mainly develop our reasoning for the
“strong” second-order globally convergent approach of Section 3.2. This
being said, the upcoming analysis is valid for any second-order criterion of
interest, and weak second-order complexity results are also discussed at the
end.
We are looking for a bound on the number of iterations needed to ensure:

inf
0≤l≤k

∥∇f(xl)∥ < ϵg and sup
0≤l≤k

λk > −ϵH , (38)

given two thresholds ϵg, ϵH ∈ (0, 1). When (38) is satisfied, we say that we
reached approximate second-order optimality, with respect to ϵg and ϵH . Al-
though the first-order result established by Vicente [36, Corollary 3.1] could
still be applied to the settings of Sections 2 and 3, we treat first and second-
order optimality simultaneously, for both self-containedness and clarity. The
analysis establishes separate bounds on the number of successful and unsuc-
cessful iterations needed to achieve (38).
For the rest of this section, we will consider a typical family of forcing

functions, namely ρ(t) = c
6 t

p, where c > 0 and p > 2 (those functions clearly
satisfy Assumption 2.3). We start by bounding the number of successful
iterations.

Theorem 4.1. Suppose that the assumptions of Theorem 3.1 hold. Assume
that Algorithm 3.1 is applied with ρ(t) = c

6 t
p with c > 0 and p > 2.
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Given ϵg, ϵH ∈ (0, 1), let k0 be the index of the first unsuccessful iteration
and assume that (38) does not hold, and let l1 be the first index such that (38)
is satisfied at iteration l1+1. Then the number of successful iterations between
k0 and l1, denoted by |Sl1(k0)|, is bounded as follows:

|Sl1(k0)| ≤
⌈(

6(f(xl0)− flow)

c θp Lp
s

)
max

(
κ−p
g ϵ−p

g , (σ−1 n)
p

min(p−2,1) ϵ
− p

min(p−2,1)

H

)⌉
,

(39)
where

Ls = min

(
1, L−1

1 , L
− 1

min(p−2,1)

2

)
, L1 =

c+ 3 νg
6

, and L2 =
c+ 11 νH

3
.

Proof : For every l ∈ U such that k0 ≤ l < l1, we know that (38) does not
hold, and thus either

∥∇f(xl)∥ ≥ ϵg (40)

or
λl ≤ −ϵH . (41)

In the first case, using (34), we have that

ϵg ≤ ∥∇f(xl)∥ ≤ κ−1
g

[c
6
αp−1
l +

νg
2
αl

]
.

Thus, if αl < 1,

ϵg ≤ c+ 3 νg
6κg

α
min(p−1,1)
l

and if not αl ≥ 1 > ϵg, from which we deduce

αl ≥ min(1, L
− 1

min(p−1,1)

1 )κ
1

min(p−1,1)
g ϵ

1
min(p−1,1)
g .

Since p > 2, this reduces to

αl ≥ min(1, L−1
1 )κg ϵg. (42)

In the second case, we obtain from (35) that

−ϵH ≥ λl ≥ −σ−1

(
c

3
αp−2
l +

(10n+ 1) νH
3

αl

)
≥ −σ−1 n

(
c

3
αp−2
l +

11 νH
3

αl

)
,

which leads by the same reasoning as above to

αl ≥ min(1, L
− 1

min(p−2,1)

2 ) (σ−1 n)−
1

min(p−2,1) ϵ
1

min(p−2,1)

H , (43)
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As a result of (42) and (43), for all unsuccessful iterations of index k0 ≤
l < l1, one has the following lower bound on the step size

αl ≥ Ls min

(
κg ϵg, (σ

−1 n)−
1

min(p−2,1) ϵ
1

min(p−2,1)

H

)
.

Consider now the successful iterations of index k, k0 < k ≤ l1. For each
iteration k of this type, one can backtrack to the previous unsuccessful iter-
ation (which exists since k0 ∈ U), denoted by l(k), such that αk ≥ θ αl(k),
given the update rules for the step size parameter. Thus, for any of those
iterations, one has:

αk ≥ θ Ls min

(
κg ϵg, (σ

−1 n)−
1

min(p−2,1) ϵ
1

min(p−2,1)

H

)
, (44)

and by definition of a successful iteration:

f(xk)− f(xk+1) ≥ ρ(αk)

≥ c

6
(θ Ls)

p min
(
κp
g ϵ

p
g, (σ

−1 n)−
p

min(p−2,1) ϵ
p

min(p−2,1)

H

)
.

Thus, by summing on all successful iterations until l1 excluded, we arrive at

f(xk0)− f(xl1) ≥ |Sl1(k0)|
c

6
(θ Ls)

p min
(
κp
g ϵ

p
g, (σ

−1 n)−
p

min(p−2,1) ϵ
p

min(p−2,1)

H

)
.

and the result stated in the theorem follows from Assumption 2.2.

We then treat the case of the unsuccessful iterations.

Theorem 4.2. Let the assumptions of Theorem 4.1 hold. Then, with the
same definitions for k0, l1, the number of unsuccessful iterations between k0
and l1 is at most |Ul1(k0)|, where

|Ul1(k0)| ≤ ⌈L3 |Sl1(k0)| + L4

− logθ e max

{
κ−1
g ϵ−1

g , (σ−1 n)
1

min(p−2,1) ϵ
− 1

min(p−2,1)

H

}⌉
(45)

with

L3 = − logθ γ and L4 = logθ

(
θ Ls e

αk0

)
.
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Proof : By induction, one has:

αl1 ≤ αk0 γ
|Sl1

(k0)| θ|Ul1
(k0)|,

which, as θ ∈ (0, 1), leads to

|Ul1(k0)| ≤ − logθ γ |Sl1(k0)| − logθ αk0 + logθ αl1. (46)

Since ln θ < 0, ln γ > 0, and αl1 is bounded below from (44), (46) becomes

|Ul1(k0)| ≤ L3 |Sl1(k0)|+ logθ

(
θ Ls

αk0

)

−
ln

(
max

{
κ−1
g ϵ−1

g , (σ−1 n)
1

min(p−2,1) ϵ
− 1

min(p−2,1)

H

})
ln θ

.

Finally, we apply ln(x) ≤ x− 1 and arrive at the desired result.

As explained in [36], the index of the first unsuccessful iteration k0 can be
bounded from above. In our case, we can choose the following quantity as
an upper bound:⌈

6(f(x0)− flow)

c αp
0

max
(
κ−p
g ϵ−p

g , (σ−1 n)
p

min(p−2,1)ϵ
− p

min(p−2,1)

H

)⌉
.

This leads to the following result regarding weak second-order optimality.

Theorem 4.3. Let the assumptions of Theorem 4.1 hold. The number of
iterations needed by Algorithm 3.1 to satisfy (38) is at most

O
(
max

(
κ−p
g ϵ−p

g , (σ−1 n)
p

min(p−2,1) ϵ
− p

min(p−2,1)

H

))
, (47)

where the constant in O(·) depends on νg, νH , α0, f(x0), flow, c, γ, θ, and p.

The best power of ϵH (that is, the least negative power) is here achievable
choosing p = 3.

We now give the corresponding result with respect to the number of func-
tion evaluations.

Theorem 4.4. Under the assumptions of Theorem 4.1, the number of func-
tion evaluations needed by Algorithm 3.1 is at most

O
(
m max

(
κ−p
g ϵ−p

g , (σ−1 n)
p

min(p−2,1) ϵ
− p

min(p−2,1)

H

))
, (48)
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with m is the maximum number of function evaluations performed in any iter-
ation. Here again, the constant in O(·) only depends on νg, νH , α0, f(x0), flow,
c, γ, θ, and p.

As in the first-order case [11, 17, 21, 36], we are interested in the order of
n that appears in the complexity bounds related to the number of function
evaluations. We will see that such an order is considerably higher than in the
first-order case, which is not surprising given the requirements we impose on
the polling sets.
The value of m in (48) depends on the choice of the polling sets, their

cardinality and whether they have a non empty symmetric part. For instance,
Dk = D⊕ = [I −I] leads to at most

m = 2n+
n2 − n

2
+ 2 =

n2 + 3n+ 4

2
evaluations. In addition, one can only obtain orthonormal bases from D⊕
and cm(D⊕) = 1/

√
n and thus one can replace κg by 1/

√
n and σ by 1.

However, when p = 3, κ−p
g becomes n

3
2 , thus less than n3, showing that the

second-order part dominates the power of n in (47). The dependence of (48)
on n, when using D⊕, is of the order n5.

Corollary 4.1. Consider the application of Algorithm 3.1, under the as-
sumptions of Theorem 4.1 with p = 3. Suppose Dk is chosen as D⊕ for all
k (or as any other PSS D such that m = O(n2), cm(D) = O (1/

√
n), and

the Bk
′s are orthogonal matrices). Then, to satisfy (38), the method takes at

most
O
(
n3 max

{
ϵ−3
g , ϵ−3

H

})
(49)

iterations and
O
(
n5 max

{
ϵ−3
g , ϵ−3

H

})
(50)

function evaluations, where the constant in O(·) only depends on νg, νH , α0,
f(x0), flow, c, γ, and θ.

As explained in Section 3, preliminary knowledge regarding the structure
of the Hessian may help reducing the powers of n.
Our analysis covers a wide class of direct-search algorithms. Note that

it can be simplified following the process of Konečný and Richtárik [29] in
the case where the step size is never increased and it is halved at every
unsuccessful iteration (i.e., γ = 1 and θ = 1/2). Choosing ρ(t) = t3 (hence
p = 3) as well as Dk = D⊕ for all iterations (as they provide the best
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known bounds), one could easily see that the number of successful iterations
becomes:

|Sl1(k0)| ≤
⌈(

f(xl0)− flow
8L3

s

)
max

(
n

3
2 ϵ−3

g , n3 ϵ−3
H

)⌉
, (51)

by the same reasoning as in the proof of Theorem 4.1. On the other hand,
since γ = 1 it would be much simpler to bound the number of unsuccessful
iterations. The result corresponding to (45) is

|Ul1(k0)| ≤
⌈
log2(αk0)− log2

(
Ls

2
min

{
ϵg√
n
,
ϵH
n

})⌉
. (52)

The conclusions of Corollary 4.1 are then unchanged in terms of dependences
on n,ϵg, and ϵH .
To the best of our knowledge, the above results are the first complexity

bounds to be established regarding the determination of second-order sta-
tionary points by a derivative-free method. It is interesting to compare them
to the existing second-order complexity bounds that have been obtained in
the derivative-based literature. Cartis et al [10] derived such bounds for ARC
and trust-region methods, respectively in

O
(
max

{
ϵ
−3

2
g , ϵ−3

H

})
and O

(
max

{
ϵ−2
g ϵ−1

H , ϵ−3
H

})
.

They proved also that whenever ϵH ≤ ϵg, the two bounds reduce to O(ϵ−3
H ),

and gave an example to show that such a bound is sharp in terms of this
tolerance. Our bound also reduces to O(ϵ−3

H ) in that case, so we may say
that the three bounds are comparable from such a point of view; in our case,
the sharpness of the bound remains to be proved.
When keeping both tolerances ϵg and ϵH in the bounds, we see that the first

part of our bound is worse than the one obtained by ARC, whereas it seems
comparable to the one for trust-region methods. However, we obtain ϵ−3

g

instead of ϵ−2
g ϵ−1

H . This discrepancy is related to the decrease requirements.
In trust-region methods, provided (38) is not satisfied, one has

f(xk)− f(xk+1) ≥ η min
{
µ1 ϵg δk, µ2 ϵH δ2k

}
and δk ≥ µ3 min{ϵg, ϵH},

(53)
where η, µ1, µ2, µ3 are positive constants and δk is the trust-region radius,
which is the key argument to prove the complexity results [10, Section 4].
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Two decreases are considered in (53), concerning respectively first and second-
order criteria. In our direct-search frameworks, we only have one decrease
formula that depends on α3

k, hence the discrepancy.
Although we were not able to find second-order complexity results for

derivative-free equivalents of ARC and trust-region methods [11, 12] in the
existing literature, it is our belief that these results would match those in [10]
regarding the powers of the tolerances, again because of the decrease formulas
that are employed to prove the convergence.
Finally, we point out that a complexity result can be established given

a weak second-order criterion such as the one presented in Section 2. The
resulting bounds are of the same order in terms of powers of ϵg and ϵH ,
but, due to the fact that we use the result of Lemma 2.1 to establish the
complexity bounds, one can reduce the dependence of the dimension up to

O(n
3
2 max

{
ϵ−3
g , ϵ−3

H

}
) (54)

on the number of iterations and

O(n
5
2 max

{
ϵ−3
g , ϵ−3

H

}
) (55)

for the number of function evaluations. Although these results concern
weaker properties, they can serve for a comparison between our general
direct-search method and, say, a trust-region method with incomplete cur-
vature information such as the one developed in [26]. For such a trust-region
scheme, it may be possible to derive a complexity result, either in a derivative-
based [27] or a derivative-free [21] context.

5. Numerical observations
Having introduced second-order aspects in a direct-search framework, we

have established that such a method converges towards second-order sta-
tionary points. This ensures that the algorithm is able to exploit negative
curvature whenever needed. For instance, we can apply Algorithm 3.1 to the
function f1 described in Section 2.2, starting at the origin with the polling
set equal to D⊕. As we have seen, none of these polling directions will yield a
decrease in the objective function, because the corresponding values in those
directions are always positive. However, if we compute an approximate Hes-
sian and its eigenvector associated with the minimum eigenvalue, we obtain
a direction in which the function has a negative value. With a sufficiently
small step size, it will satisfy the sufficient decrease condition.
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Besides escaping saddle points and local maximizers, the use of negative
curvature is also known to improve the practical performance of line-search
methods [23, 30, 34], as going in negative curvature directions possibly leads
to faster decrease in the objective function value. We are interested in know-
ing if our approach allows for the same kind of improvement.
We compare implementations of Algorithms 2.1 and 3.1 on less pathological

cases than the one mentioned above. The test functions are taken from
the CUTEst package [24], and have been identified as presenting negative
curvature at some points by Avelino et al. [5, Table 6]. This represents
a total of 60 problems out of the 119 problems tested in [5]. For all of
those problems, we used the smallest dimension available in the SIF files,
resulting in 36 problems with dimensions less than 10, 22 problems having
dimensions between 10 and 15, 1 problem with dimension 28, and 1 problem
with dimension 50.
We tested four types of polling sets choices for Step 1 in Algorithm 3.1. The

two first choices correspond to the set D⊕, that we defined in Section 4, and a
minimal positive basis with uniform angles (see [13, Corollary 2.6]), denoted
by Vn+1. These are common choices in practice, and also typical examples
of polling sets, respectively with and without symmetric parts. The two
other types of PSSs are based on D⊕ and Vn+1, built by applying a rotation
matrix Q to those sets. All of our choices keep Dk constant throughout
all iterations. However, to measure the effect of our approach on a larger
variety of sets, we ran the method ten times, varying the ordering of the
vectors for the choices {D⊕, Vn+1}, or changing the rotation matrix Q in the
other cases. Table 1 summarizes our polling set choices for clarity; in the rest
of the section, we will identify a method as bdsi or ahdsi with i ∈ {0, 1, 2, 3}
indicating the polling choice.

Polling Number Set type Cardinality Variant
0 D⊕ 2n Ordering of directions
1 QD⊕ 2n Rotation matrix Q
2 Vn+1 n+ 1 Ordering of directions
3 QVn+1 n+ 1 Rotation matrix Q

Table 1. The different polling set choices.

For all methods, the forcing function was ρ(t) = 10−3 t3, the starting point
was the one defined by CUTEst, and the starting step size was α0 = 1. We



26 S. GRATTON, C. W. ROYER AND L. N. VICENTE

consider that a run is successful whenever the final function value f∗ satisfies:

f∗ − fopt < ϵ (f(x0)− fopt) , (56)

where fopt is the best value obtained by all variants with an extended budget
of 5000n iterations, and ϵ > 0 is a given tolerance [33]. For each method,
it is plotted a performance profile [18] for the average number of function
evaluations taken on the 10 runs.
The results we present illustrate the typical behavior of Algorithm 3.1

compared to the classic direct-search scheme of Algorithm 2.1. Figure 1
firstly shows profiles obtained for the symmetric polling choices 0/1. One sees
that the methods bds0 and bds1 perform still better than ahds0 and ahds1

in terms of efficiency (ratio=0). However, the ahds methods eventually solve
more problems than the bds ones (large ratio), thus being more robust. This
tendency was to be expected, as second-order mechanisms help in exploiting
negative curvature.
Figure 2 is related to the non-symmetric polling set choices, and is char-

acteristic of the performances of both methods. For such polling strategies,
the gain from the bds to the ahds methods is even higher than in the sym-
metric case and now also present in efficiency. However, when one looks at
the directions that lead to successful iterations for the ahds methods, one
sees that half of the successful iterations are successful at Step 1 of Algo-
rithm 3.1, one third are successful at Step 2, and only around 10% at Step 4.
Our interpretation is that considering opposite directions already increases
the chances to exploit negative curvature (as it guarantees weak second-order
global convergence), while allowing to poll along additional directions in the
case of a non-symmetric PSS.
To support this hypothesis, we implemented a variant of Algorithm 3.1

without Steps 3 and 4; this method will be denoted by sds (symmetrized
direct search) in the rest of the section. We aim to compare bds, ahds, and
sds algorithms using non-symmetric PSSs for polling. For such a polling
choice, the bds method only exhibits first-order properties, while the sds

variant is weakly second-order convergent in the sense of Theorem 2.1. As
for the ahds method, it is second-order convergent.
Figures 3 and 4 present the results for the polling strategies 2/3. One

observes that the sds method is generally more efficient than the corre-
sponding bds and ahds instances, the only exception being when ϵ = 10−6

and Dk = Vn+1. In this particular setting, the ahds method outperforms the
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(a) ϵ = 10−3.

(b) ϵ = 10−6.

Figure 1. Performance of the methods with polling choices 0/1,
given a budget of 2000n evaluations.

other two, and the reason appears to be that the amount of successful itera-
tions corresponding to the Step 4 of the method is significantly higher than
in the other settings. Besides, on both Figures 3 and 4, the ahds method
clearly stands out as the most robust implementation. The conclusions of
Figure 1 can thus be extended for the non-symmetric case: the ahds algo-
rithm eventually benefits from the computation of an approximate Hessian
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(a) ϵ = 10−3.

(b) ϵ = 10−6.

Figure 2. Performance of the methods with polling choices 2/3,
given a budget of 2000n evaluations.

eigenvector. These profiles promote the use of symmetric positive spanning
sets as a first attempt to catch negative curvature information, and con-
firm that curvature has even more chance of being exploited by computing a
Hessian approximation.
A final comment can be made by studying the relative performance among

different instances of Algorithm 3.1 (see Figure 5). The method ahds0 solves
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(a) ϵ = 10−3.

(b) ϵ = 10−6.

Figure 3. Second-, first- and weakly second-order direct-search
methods, with polling choice 2 and a budget of 2000n evalua-
tions.

the most problems within the given budget, and also outperforms the other
variants. Using symmetric positive spanning sets and building Hessian ap-
proximation with respect to orthonormal bases thus seems to allow exploiting
more second-order information in general. Note again that the weak second-
order properties of the polling set are particularly relevant, and likely to
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(a) ϵ = 10−3.

(b) ϵ = 10−6.

Figure 4. Second-, first- and weakly second-order direct-search
methods, with polling choice 3 and a budget of 2000n evalua-
tions.

provide curvature information. As we have seen, completing the polling with
a phase of Hessian approximation is an additional tool that appears to pay
off in the long run.
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(a) ϵ = 10−3.

(b) ϵ = 10−6.

Figure 5. Comparison of the ahds methods, given a budget of
2000n evaluations.

6. Concluding remarks
As shown in this paper, weak second-order optimality can be established for

a broad class of direct-search methods. Indeed, a measure depending on the
directions considered by the method tends to be nonnegative; this measure is
the best information one can use to approximate the minimum Hessian eigen-
values. For this measure to become a true second-order global convergence
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criterion, one needs to go further than a simple polling along vectors of a PSS.
This was done by building a Hessian approximation, resulting in a provably
second-order convergent direct-search instance. This technique also exhibits
a worst-case complexity bound, that matches in order of the stationarity
tolerances those of second-order convergent derivative-based methods. The
dependence on the problem dimension is however worsened compared to the
first-order case. This is due to the expense of constructing an approximated
Hessian, which overwhelms the cost of polling using a PSS. Although patho-
logical examples exist that illustrate the necessity of such approximations,
it seems that the practical cost remains at a reasonable level, yet possibly
higher than for the first-order case. This being said, if one can afford the ex-
pense in function evaluations, one benefits from exploiting negative curvature
in practice, especially while searching for high accuracy solutions. Moreover,
the sole introduction of weak second-order aspects (e.g. by symmetrizing
the polling sets) can already improve the performance for problems where
curvature is worth considering.
A natural follow-up to this study is to consider the strong second-order

requirements of Section 3 in a probabilistic context. As in the first-order
case [25], this could lead to an almost surely convergent method while im-
proving both the worst-case complexity and the practical efficiency. Regard-
ing the weak second-order results of Section 2, one might want to study
their impact in the context of multilevel optimization methods, as it was
done for the trust-region methods [26]. Indeed, the study of the curvature
along some directions might be helpful in this regard, and direct-search meth-
ods have already been adapted to the multilevel framework [19]. Finally, a
more difficult challenge would be to translate the features of curvilinear line
searches from derivative-based optimization in a derivative-free environment;
this could lead to the design of a general direct/line-search framework that
would also be second-order convergent. Probabilistic assumptions may also
play a significant role to reduce the cost of such algorithms.
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