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ABSTRACT: We give a 2-dimensional version of the adjoint triangle theorem due to
Eduardo Dubuc. We also show that the pseudomonadicity characterization (due to
Enrico Vitale, Francisco Marmolejo and Ivan Creurer) is a consequence of the biad-
joint triangle theorem. Furthermore, our main theorem can be seen as a generaliza-
tion of the construction given by Stephen Lack of the left 2-adjoint Ps-Alg — Alg,
(which is itself a corollary of the strict version of the biadjoint triangle theorem
given in this paper). At last, we give two brief applications: we prove a result on
lifting biadjunctions and study pseudo-Kan extensions.
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Introduction
Assume that £ : A - C, J: A - B, L : B — C are functors such that

there is a natural isomorphism

A

A
A(;A

Eduardo Dubuc [2] proved that if L : B — C is precomonadic, £ : A — C
has a right adjoint and A has some needed equalizers, then J has a right
adjoint. In this paper, we give a 2-dimensional version of this theorem. More
precisely, let A, 2B and € be 2-categories and assume that

EA->CJ:A->BL:B->C

are pseudofunctors such that L is pseudoprecomonadic and E has a right bi-
adjoint. We prove that, if we have the pseudonatural equivalence below, then
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J has a right biadjoint, provided that 2l has some needed descent objects.

L . x
E\;A

We, also, give necessary and sufficient conditions under which the unit and
the counit of the obtained biadjunction are pseudonatural equivalences. More-
over, we prove a strict version of this theorem. That is to say, we show
that, with some extra hypotheses, it is possible to construct (strict) right
2-adjoints.

Robert Blackwell, G. M. Kelly and John Power [1] had already given sev-
eral constructions of biadjunctions related to two-dimensional monad theory.
Since some of them are particular cases of the biadjoint triangle theorem
established here, many applications are already covered by the fundamental
article [1].

Also, Theorem 4.1 may be seen as a generalization of the construction
given by Stephen Lack [10] of the left biadjoint to the inclusion of the strict
algebras into the pseudoalgebras

Alg, — Ps-Alg

Still, the idea of the proof of the biadjoint triangle theorem came from the
original adjoint triangle theorem due to Eduardo Dubuc [2, 16].

In Section 1, we recall Eduardo Dubuc’s theorem, in its enriched version.
This version gives the 2-adjoint triangle theorem for 2-pre(co)monadicity. In
Section 2, we change our setting: we recall some definitions and results of
the 3-category 2-CAT of 2-categories, pseudofunctors, pseudonatural trans-
formations and modifications. Most of them can be found in Ross Street’s
articles [14, 15].

Section 3 gives definitions and results related to descent objects, which
is a type of 2-categorical limit presented in [14, 15]. To do so, we employ
the concept of pointwise pseudo-Kan extension, claiming that it is a good
way of handling the universal properties and exact conditions related to this
2-dimensional limit.

Within our established setting, in Section 4 we prove our main results
on biadjoint triangles, while, in Section 5, we give such results in terms of
pseudopre(co)monadicity and show that the pseudo(co)monadicity theorem
of Ivan Le Creurer, Francisco Marmolejo and Enrico Vitale [11] is a corollary
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of the biadjoint triangle theorem. Moreover, in Section 6 we show the theorem
of [10] on the inclusion Alg, — Ps-Alg as a consequence of the theorems
presented herein. At last, we discuss a straightforward application on lifting
biadjunctions in Section 7.

Since our main application in Section 7 is about construction of right bi-
adjoints, we prove the theorem for pseudoprecomonadic functors instead of
proving the theorem on pseudopremonadic functors. But, for instance, to
apply the results of this work in the original setting of [1], or to get the con-
struction of the left biadjoint given in [10], we should, of course, consider the
dual version: the Biadjoint Triangle Theorem 4.3.

This work was realized during my PhD program at University of Coimbra,
under supervision of Maria Manuel Clementino.

1. Enriched Adjoint Triangles

Consider a (cocomplete, complete and symmetric monoidal) closed cate-
gory V. It is well known that the results on (co)monadicity in V-CAT are
similar to those of the classical context of CAT (see, for instance, [1, 3, 12]).
And, actually, some of those results of the enriched context can be seen as
consequences of the classical theorems because of Ross Street’s work [12].

Our main interest is in Beck’s theorem for V-precomonadicity. More pre-
cisely, it is known that the 2-category V-CAT admits construction of coal-
gebras [12]. Therefore every left V-adjoint L : B — € comes with the
corresponding Filenberg-Moore factorization.

B . CoAlg

N

C

If V = Set, Beck’s theorem says that ¢ is fully faithful if and only if every
component of the unit 7 : Id, — UL of the adjunction L - U is a regular
monomorphism. This is equivalent to say that the diagram below is an
equalizer for every object X of B. And, if this happens, we say that L is
precomonadic.

Ny Myrx

ULULX

UL(ny)
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With due adaptations, this theorem also holds for enriched categories. That
is to say, ¢ is V-fully faithful if and only if the image of the diagram above by
the hom-functors B(Y, —) are equalizers in V for every object Y and every
object X of B (i.e. the diagram above is a V-equalizer for every object X of
B). And, therefore, this result gives what we need to prove Proposition 1.1,
which is the enriched version for Eduardo Dubuc’s theorem [2].

Proposition 1.1 (Enriched Adjoint Triangle Theorem). Let E : A — C,
J:A—>Band L : B — € be V-functors such that LJ = E. Assume that
(L,U,n,e), (E,R,p,p) are V-adjunctions and L is V-precomonadic. The
V -functor J has a right V-adjoint G if and only if, for each object Y of B,
GY s the V-equalizer of

RLU by Ny pry )P riy

RLY RLULY
RL(ny)

in the V -category A.
Proof: Given an object A of A and an object Y in B,

B(JAm,,) B(J Ay Ly )
“~ B(JA,ULY) B(JA,ULULY)
B(JAUL(n,))

B(JA,Y)

is, by hypothesis, an equalizer in V. Furthermore, we have isomorphisms
B(JA,ULY)=C(LJA,LY) = C(FA,LY) =~ A(A,RLY)
and
B(JA,ULULY) = A(A, RLULY),
natural in A and Y. Therefore

B(JA,Y) —= A(A, RLY)

A(A, RLULY)

is an equalizer. And, by the weak Yoneda Lemma, since the parallel mor-
phisms above are natural in A, there are morphisms ¢y, ry : RLY — RLULY
such that the images by the hom-functor A(A, —) are the parallel mor-
phisms of the diagram above. Assuming that the pair (gy,ry) has a V-
equalizer GY in A for every Y, we have that A(A, GY) is also an equalizer
of A(A, qy), A(A,ry). Therefore we get a V-natural isomorphism

A(=,GY) = B(J—-,Y).
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Reciprocally, if G is right V-adjoint to J, then A(—, GY) = B(J—,Y) is an
equalizer of

A=, qv), A(—=,ry) : A(—, RLY) > A(—, RLULY).
And, hence, GY is the V-equalizer of

Ty

RLY RLULY

qy

And this completes the proof that, indeed, the V-equalizers of gy, ry are also
necessary. |

In the proof above, observe that, indeed, ry = RL(U ()1, 51y )Prry and
qv = RL(n,). That is to say, for each object Y of the category B, the
equalizer of the parallel arrows

RLWU by Ny pry )P iy

RLY RLULY
RL(ny)

are precisely the needed equalizers.

Proposition 1.1 applies to the case of CAT-enriched category theory. But
it does not give results about pseudomonad theory. For instance, the (dual of
the) construction above does not give the left biadjoint constructed in [1, 10]

Ps-Alg — Alg,

2. Bilimits

We denote by 2-CAT the 3-category of 2-categories, pseudofunctors (ho-
momorphisms), pseudonatural transformations (strong transformations) and
modifications. The precise definitions can be found in [14]. And, since this
is our main setting, we recall some results and concepts related to 2-CAT.
Most of them can be found in [14], and a few of them are direct consequences
of results given there.

Firstly, we have the bicategorical Yoneda lemma. Denoting by [S, CAT]pg
the 2-category of pseudofunctors & — CAT, pseudonatural transforma-
tions and modifications, the bicategorical Yoneda lemma says that there is a
pseudonatural equivalence

[8, CAT]pS(S(a, —), D) ~ D(CL)

given by the evaluation at the identity. And this Yoneda lemma gives the
Yoneda embedding.
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Lemma 2.1 (Yoneda Embedding [14]). The Yoneda 2-functor

Y : A - [Q[Op, CAT]pS

is locally an equivalence (that is to say, it induces equivalences between the
hom-categories).

Considering pseudofunctors L : 28 — € and U : € — B, we say that
U is right biadjoint to L, denoted by L - U, if we have a pseudonatural
equivalence €(L—,—) ~ B(—,U—). This concept can be also defined in
terms of unit and counit as it is done at Definition 2.2. The equivalence of
the definitions is a consequence of the (bicategorical) Yoneda Lemma.

Definition 2.2. [[5, 11]] Let B and € be 2-categories and let U : € — B
and L : B — € be pseudofunctors. L is left biadjoint to U if there exist

(1) pseudonatural transformations n : Idy — UL and € : LU — Ide
(2) invertible modifications s : Id;, = (¢L)o(Ln) and t : (Ue)o(nU) = Idy

such that the following equations hold [5, 11]:

Idgg IdSB
n "(n) =

n = n
UL UL

UL
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LU LU
\LnU %
LULU —2 LU
;U), € = €
el & e =
LU Ide Ide

g

Remark 2.3. A biadjunction L - U has at least one associated data of
counit and unit (L, U, n, €, s,t) as described above. Unlike the strict case, this
data is not uniquely determined up to isomorphism, although it is determined
up to equivalence. Still, to construct the pseudofunctors of our biadjoint
triangle theorems, we often need a chosen data of units and counits. Thus,
in these cases, herein, we say “the biadjunction (L, U, n, ¢, s,t)”.

If it exists, a birepresentation of a pseudofunctor U : € — CAT is an object
X of € endowed with a pseudonatural equivalence €(X,—) ~ U. When U
has a birepresentation, we say that U is birepresentable. And, in this case,
by Lemma 2.1, its birepresentation is unique up to equivalence.

Lemma 2.4 ([14]). Assume that U : € — [BP, CAT]ps is a pseudofunctor
such that, for each object X of €, UX has a birepresentation

ex : UX ~ B(—,UX).

Then there 1s a pseudofunctor U : € — B such that the pseudonatural equiva-
lences ex are the components of a pseudonatural equivalence U ~ B(—, U—),
in which B(—,U—) denotes the pseudofunctor

¢ — [BP CAT]ps
X - B(—,UX)

As a consequence, a pseudofunctor L : 8 — € has a right biadjoint if and
only if, for each object X of €, the pseudofunctor €(L—, X) is birepresentable.
Id est, each object X is endowed with an object U X of 6 and a pseudonatural
equivalence

¢(L—, X) ~ B(—,UX).
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The natural notion of limit in our context is that of (weighted) bilimit,
instead of the rather restrictive notion of (weighted) strict 2-limit. Namely,
assume that 8 is a small 2-category, if W : 8 — Cat,D : § — 2 are pseudo-
functors, the (weighted) bilimit, denoted herein by {W, D}, ., if it exists, is a
birepresentation of the 2-functor

A —» CAT
X — [8, CAT]ps(W,A(X,D-))

That is to say, if it exists, a bilimit is an object {W,D},, endowed with a
pseudonatural equivalence (in X) 20(X, {W, D},,) ~ [8, V]ps(W,A(X, D—)).
Since, by the Yoneda lemma, {W, D},. is unique up to equivalence, we say
the (weighted) bilimit.

Still, if W and D are 2-functors, recall that the (strict) weighted limit
{W, D} is, if it exists, a 2-representation of the 2-functor

X — [§, CAT|(W,24(X,D-)),

in which [8, CAT] is the 2-category of 2-functors § — CAT, 2-natural trans-
formations and modifications.

It is easy to see that CAT is bicategorically complete. More precisely, if
W :8 — Cat and D : § — Cat are pseudofunctors, then

{W, ®}bi X~ [8, CAT]pS(W, D)

Moreover, from the bicategorical Yoneda lemma of [14], we get the (strong)
Yoneda lemma.

Lemma 2.5 ((Strong) Yoneda Lemma). Let D : § — 2 be a pseudofunctor
between 2-categories. There is a pseudonatural equivalence {8(a,—), D}, ~

D(a).

Proof: By the bicategorical Yoneda lemma, we have a pseudonatural equiva-
lence (in X and a) [8, CAT]ps(8(a, —),A(X,D—)) ~ A(X,D(a)). Therefore
D(a) is the bilimit {8(a, —), D},;. |

Let S be a small 2-category and D : § — 2 be a pseudofunctor. Consider
the pseudofunctor

[S,Q:]ps — [Q[OP,CAT]]DS
W [DW
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in which the 2-functor Dy is given by X — [8, CAT]ps(W,2A(X,D—)). By
Lemma 2.4, we conclude that it is possible to get a pseudofunctor {—, D},
defined in a full sub-2-category of [8§, CAT]|ps of weights W : § — CAT
such that 2 has the bilimit {W, D},..

3. Descent Object

In this section, we describe the 2-categorical limits called descent objects.
We deal with these 2-limits via pointwise right Kan extensions, since it seems
more natural to give the “exact conditions” when using this approach.

We need both constructions, strict descent objects and descent objects
[15]. Our domain 2-category, denoted by A, is the dual of that defined at
Definition 2.1 in [11].

Definition 3.1. We denote by A the 2-category generated by the diagram

d° 00
d
0 1 50 2 ot 3
dt 02

with the 2-cells:
o OFd = odM i i< k
ng : s'd’ =1d,
ny ¢ Id, = s%d"
a : d'd=dd

satisfying the equation below

0 0
d & =
al = |d
N
nQo
1

The 2-category A is, herein, by definition, the full sub-2-category of A with
objects 1,2,3. We denote the inclusion by j : A — A.
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Given a 2-functor D : A — 2, we denote by Ran;D : A — A the pointwise
right Kan extension of D along j (if it exists). Recall that

Ran;D(a) := {A(a,j—),D}

and that Ran;D is, actually, an extension of D, since j is Cat-fully faithful [7].

Assuming that Ran;D exists, we call Ran;D(0) herein the strict descent
object of D. This terminology is coherent with [10, 14]. Moreover, assume
that © : A — 2 is a 2-functor such that Ran;(D o j) exists, then we get a
comparison 1-cell ® — Ran;(D oj). We say that D is of strict descent if this
comparison 1-cell is an 1somorphism. That is to say, ® is of strict descent if
® is the pointwise right Kan extension of 2 o j.

In analogy to the strict case, we define the pointwise pseudo-Kan extension,

which is stronger then the notion of quasi-Kan extension already considered
by John Gray [4, 6].

Definition 3.2. [Pointwise pseudo-Kan Extension] Assume that D : A — 2
is a pseudofunctor. If {A(O,j—), D}b_ exists, we define the pointwise right

1
pseudo-Kan extension as follows:

PsRan;D : A -2
“«n {A(a’j_)’D}bi

Note that a pointwise right pseudo-Kan extension is unique up to pseudo-
natural equivalence.

Since j is fully faithful, by the Yoneda Lemma 2.5, PsRan;D is an extension
of D : A — 2 up to pseudonatural equivalence. More precisely, (PsRan;D)oj
is pseudonaturally equivalent to D. Also, as in the strict case, if ® : A — Ais
a pseudofunctor such that the pointwise pseudo-Kan extension PsRan;(® oj)
exists, we get a comparison 1-cell

D — PsRan;(D oj).

But, postponing its construction (to section 7), for our purposes herein, we
say that © is of effective descent if PsRan;(D0oj) is pseudonaturally equivalent
to®.

If D: A — 2is a pseudofunctor, PsRan;D(0) is called the descent object
of D. Thus, if it exists, the descent object is unique up to equivalence.
Moreover, the inclusion j : A — A has the following special property: if the
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pointwise right Kan extension of a 2-functor D along j exists, it is a pointwise
right pseudo-Kan extension. In particular, strict descent objects are descent
objects.

Theorem 3.3. Let D : A — B be a pseudofunctor. The right pointwise
pseudo-Kan extension PsRan;iD exists and PsRan;D = D if and only if we
have a pseudonatural equivalence

PsRaniB(a, D—) ~ B(a, D).

Proof: This follows from the definition of weighted bilimit. That is to say,
by definition,
{A(o,j—),%(a,p—)} ~ 9B (a,D(0))

bi
is a pseudonatural equivalence in a iff {A(O, i-), D}b' exists and

{A(o,j—),D} = D(0).

bi
[ |

Herein, we say that an effective descent diagram D : A — B is preserved
by a pseudofunctor L : B — € if L o D is of effective descent. While,
D : A — ‘B is an absolute effective descent diagram if D is preserved by any
pseudofunctor L.

In this setting, a pseudofunctor L : B — € is said to reflect absolute
effective descent diagrams if, whenever a 2-functor D : A — 8 is such that
L o D is an absolute effective descent diagram, D is of effective descent.
Moreover, we say herein that a pseudofunctor L : 8 — € creates absolute
effective descent diagrams if L reflects absolute effective descent diagrams
and, whenever a diagram D : A — 8 is such that Lo D has a pointwise right
pseudo-Kan extension

PsRan;(LoD): A - ¢

which is an absolute effective descent diagram, D has a pointwise right
pseudo-Kan extension such that L o PsRan;(D) ~ PsRan;(L o D).

Remark 3.4. The dual notion of descent object is that of codescent object,
described by Stephen Lack [10] and Ivan Le Creurer, Francisco Marmolejo,
Enrico Vitale [11]. Of course, to approach such weighted colimit, we can
consider the dual of the concepts given above. That is to say, considering the
inclusion v : A% — AP if D : A°®? — 2 is a 2-functor, we call Lan,D(0)
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the strict codescent object of D, when Lan,D denotes the pointwise left
Kan extension of D along v (provided that Lan,D exists). And we say
that © : A% — A is strictly effective codescent if the comparison 1-cell
Lan,(D ov) — D is an isomorphism.

And, also, we can define the pointwise left pseudo-Kan extension PsLan, D,
via weighted bicolimits. Again, we say that © : A — 2 is of effective
codescent if PsLan,(® ov) is pseudonaturally equivalent to ©.

4. Biadjoint Triangles

In this section, we give a 2-dimensional version of the adjoint triangle
theorem [2]. As it is shown in [11], for each object X of an 2-category B, the
unit 7 : Idy — UL of a biadjunction L 4 U : 8 — € gives rise to a 2-functor
Dx : A — 8. That is to say, the diagram below with the obvious 2-cells
induced by Definition 2.2 of unit and counit.

Nurx vLvrnx
n
X - ULX Ule, ) ULULX —UL(y  )— ULULULX
UL(nX) ULUL(nX)

More precisely, if (L,U,n,¢e,s,t) : B — € is the biadjunction above, for
each object X of B, we define the 2-cells of the diagram Dx : A — ‘B
as follows: Dx(a) = (nnX :UL(n,)n, = nULXnX> is the isomorphism 2-cell

component of the pseudonatural transformation n at the morphism 7n,. And,
analogously, the images of the 2-cells o;; are defined to be the corresponding
components of 7.

DX(001) = (mULX) : UL(T]ULX)T]ULX = 77(UL)2X77ULX
DX(UO2) = (nUL(nX)) : (UL)Q(UX)%LX = 77(UL)2XUL(77X)

Drtow) = (2%, ) UL, )6E, ) LRIV = VL0, UL0,)

MTuLx "x UL(nx)mx

In which, if v, w are composable morphisms of A,

¢y UL(v)UL(w) = UL(vw)
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denotes the 2-cell isomorphism of the pseudofunctor UL. At last, we define
the images of ng and n;.

DX(nO) = (tLX) : U(gLX)nULX = IdULX
Dx(n1) = (Us),
(G

e x> (UX)

) MU (5,60, ) + Wy = ULz, UL,

Recall that, as a consequence of Definition 2.2, indeed, Dy is well defined.
More precisely, in fact, the following equation holds.

Dx(0)

Dx(1)

Theorem 4.1 (Biadjoint Triangle). Let E: A - €, J: A > B, L:B > C
be pseudofunctors such that there is a pseudonatural equivalence

)"
A;A

Assume that (E, R, p, i, v,w) and (L, U, n, e, s,t) are biadjunctions. For each
object X of the 2-category B, the unit n : Idy — UL induces a 2-functor
Dyx : A — B,

2

Morx Tyrvrx
n
X ———ULX Ule,y) ULULX —UL(y,x)— ULULULX
UL(ny) ULUL(ny)

(with the 2-cells described above). If Dx is of effective descent for every
object X of B, then J has a right biadjoint if and only if, for every object
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Y of B, the descent object of the diagram Dy : Ao (with the obvious
2-cells)

RLU(kry Myrry PRy RLU(kryry Myrrury PRIULY
RLY Rlepy )———— RLULY —————RL(nyy) RLULULY
RL(ny) RLUL(ny)
exists in 2.

Proof: Our main argument follows from Yoneda Lemma 2.1 and from the fact
that, by Theorem 3.3, pointwise right pseudo-Kan extensions are determined
and preserved by 2-representable functors.

Firstly, observe that we can replace the hypothesis of a pseudonatural
equivalence LJ ~ E by an equality LJ = FE, since everything works up
to equivalence. More precisely, since, by hypothesis, LJ is pseudonaturally
equivalent to a left biadjoint, LJ is a left biadjoint as well. Define, then,
E:=LJ.

By the biadjunctions L 4 U and F H R, for each object Y of B, we get
the following pseudonatural equivalences:

B(J—, ULY) ~

S

(E—,LY)
(-, RLY)
B(J—,ULULY) ~ €(E—,LULY)
~ A(—, RLULY)
B(J—,ULULULY) ~ &(E—,LULULY)
~ A(—, RLULULY)

2

Recall that, by hypothesis, for each object Y of 98, the diagram Dy : A > B

Moy NMyrury
"
Y ————ULY Ulepy) ULULY —UL(yy )— ULULULY
UL(n,) ULUL(n,)

is of effective descent. And, therefore, for each object Y of B, taking the
image by the 2-representable functor 8B(J—, —), we conclude that

B(J—, Dy) : A — CAT,
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given by
B(J—,Y)
%(me)l B(J 1y 1y ) B0 p)24)
B(J—, ULY) <—B(J-Ule,y )— B(J—, (UL)*Y) —B(J~UL(ny 1, )= B(J—, (UL)*Y)

B(J—UL(ny)) B(J—,(UL)*(ny))

is of effective descent. And, by our previous observations, the diagram above
is pseudonaturally equivalent to ®y : A — CAT below.

B(J—,Y) —=A(—, RLY) == A(—, RLULY) == A(—, RLULULY)

Thus Dy is of effective descent. When considering the restriction ®y o j, by
the Yoneda Lemma, we get Dy in 2,

RLY == RLULY —= RLULULY

such that 20(—, Dy) is pseudonaturally equivalent to ®y oj. Assume that,
for each object Y of B, Dy : A — 2 has a descent object, i.e. there is
a pointwise right pseudo-Kan extension PsRan;Dy : A — 2. We define
GY := PsRan;Dy(0).

Assuming the existence of PsRan;Dy, since Dy is of effective descent, we
have the following pseudonatural equivalences:

Dy =~ PsRani(Dy oj)
~ PsRan;A(—, Dy)
~ 2A(—,PsRan;Dy)
And, in particular, B(J—,Y) ~ Dy (0) ~ A(—, PsRan;Dy(0)) ~ A(—, GY).
And this completes the proof that J 4 G, in which G can be defined point-
wisely by GY = PsRan;Dy (0).
Reciprocally, assume that we have a biadjunction J 4 G. By hypothesis,
the diagram below is of effective descent for every object Y of 2. And this

implies that G is, actually, the descent object of Dy, which proves that the
existence of such descent object is also needed.

A(—, GY) ~ B(J—,Y) — A(—, RLY) == A(—, RLULY) == A(—, RLULULY)
|
As in the 1-dimensional case [2], there is a special type of biadjoint tri-
angles: namely, if the induced pseudocomonads from £ - R and L H U

are equivalent. More precisely, in the setting of Theorem 4.1, we define
0 := (Id, = u)(n = Idyr) and get the following corollary.
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Corollary 4.2. Let LJ = E be a biadjoint triangle satisfying the hypotheses
of Theorem 4.1. We denote by G the obtained right biadjoint of J. And we
assume that 0 := (Id,, = u)(n=1d,,) is isomorphic to the identity Id, (and, of
course, we also assume that U = JR).

Then the pseudofunctor J : %l — B preserves the effective descent diagram

Dy : A -2

for every object Y of B if and only if the counit € of the biadjunction J -4 G
is a pseudonatural equivalence. That is to say, JoPsRan;i(Dy) is of effective
descent for every object Y of B if and only if the counit

£:JG — Idg

18 a pseudonatural equivalence.
Also, the unit ) of the biadjunction J 4 G is a pseudonatural equivalence
if and only if the 2-functor D : A — A (with omitted 2-cells)

PrREA PREREA
p
A t > REA~—R(,,)—— REREA —RE(p,,,)— REREREA
RE(p,) RERE(p,)

is of effective descent for every object A of 2.

There is a trivial result on biadjoint triangles: if a biadjunction
JH4G: A -8B

has a pseudonatural equivalence as counit, then a pseudofunctor L : 8 — €
has a right biadjoint if and only if L o J also has a right biadjoint R. In this
case, the right biadjoint of L is given by J o R. Thereby, if the first part of
the Corollary 4.2 holds, we may conclude that U ~ J o R.

We establish below the obvious dual result of Theorem 4.1, which is the
relevant theorem to the usual context of pseudopremonadicity. For being
able to give this dual version, we have to employ the observations given in
Remark 3.4 on codescent objects, and the terminology established there.

Theorem 4.3 (Biadjoint Triangle). Let R: A - €, J: A ->B U :B > C
be pseudofunctors such that we have a pseudonatural equivalence UJ ~ R.
Assume that E, L are left biadjoints, with E 4 R and L 4 U. We know
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that, each object X of the 2-category B, the counit € : LU — Idg induces the
2-functor Dx below.

9 9

LUX LULUX
X ? LUX L(ngx) LULUX <—LU(eyx)— LULULU X
LU(e,) LULU (¢ .)

If Dx s of effective codescent for every object X of B, then J has a left
biadjoint if and only if, for every object Y of B, 2 has the codescent object
of the diagram (with the obvious 2-cells):

EU(ey) EULU(ey)
BEUY ————E(yy) EFEULUY EU(epyy)————— BEULULUY
EU(L(pyy )€ ypuy Wreuy BU(L(py Luy e spuruy WeuLuy

4.1. Strict Version. The employed techniques to prove strict versions of
Theorem 4.1 are virtually the same. That is to say, we just need to repeat
the same constructions, but, now, by means of strict descent objects and
2-adjoints.

Let U : € - B, L : B — € be 2-functors, such that (L,U,n,¢,s,t) is
a biadjunction. We denote by x : €(L—, —) ~ B(—,U—) the associated
pseudonatural equivalence, that is to say, for every object X of B and every
object Z of €,

¢(LX,Z) - B(X,UZ)
f = U(f)ny

Observe that, for every pair of objects (X, Y’) of B, the diagram Dy : A — B
induces the 2-functor Dif : A — CAT (with omitted 2-cells)

B(X,Y)
|

Xx,z) -

Lyy Ly vry ° Xix,oy) LX,(UL)QY °Xx,LuLy)
C(LX,LY) ~——LX¢.y) C(LX, LULY ) —(LX,LUL(nyy )— €(LX, L(UL)?Y)
¢(LX,L(ny)) ¢(LX,LUL(ny))

Theorem 4.4 (Strict Biadjoint Triangle). Let £ : % — €, J : A — B,
L :B — € be 2-functors such that LJ = E. Assume that (E, R, p,p) is a 2-
adjunction and (L,U,n,€,s,t) is a biadjunction such that n=1d, is a (strict)
2-natural transformation. For every object A of A and every object X of B,
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we know that the unit n : Id — UL induces the diagram
D4 : A — CAT

%(JA, X)
|
Lyax Lyavrx®Xgarx) LJA,(UL)QXO X(ga,LuLx)
Q‘:(EA, LX) ~—YBAg, ) — Q:(EA, LULX) —C¢(BALUL(y 5 ))— Q:(EA, L(UL)QX)

C(EA,L(ny)) C(EA,LUL(ny))

(with omitted 2-cells). If D4 is of strict descent (effective descent) for every
object A of A and every object X of B, then J has a right 2-adjoint (biadjoint)
if and only if, for every object Y of B, the strict descent object (descent

object) of Dy : A — A (with the obvious 2-cells)

RL(ny) RLUL(ny, )
RLY Rlepy)————— RLULY —RL(nyy) RLULULY
RL(U(kLy )0 rLy )PRLY RL(U(kLyLy MyrivLy PrivLy
exists 1n 2.

Proof: Indeed, by the 2-adjunction (E, R, p, 1) and, since n=Id, is a 2-natural
transformation, for every object A of 2l and every object Y of 28, the diagram
]D){,A o j is 2-naturally isomophic to

A(A, Dy) : A — CAT

Therefore, for every object Y of 8, Dy has a pointwise right Kan extension
Ran; Dy if and only if, for every object A of A,

DA = Ran; (DA 0 §)
= RCLTLJ’Q[(A, Dy)
~ 2A(A, Ran;Dy)

In particular, if we assume that there is a strict descent object GY of Dy
(for every object Y of B), then

B(JAY) = D{*(0)
Ran;A(A, Dy (0))
~ A(A, Ran;Dy(0))
~ A(A,GY)

(for every object A of ). And this completes the proof that J - G, in which
G can be defined pointwisely by GY = Ran;Dy (0).

12
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Reciprocally, assume that we have a 2-adjunction J 4 G. By hypothesis,
the diagram below is of strict descent for every object Y of B. And this
implies that GY is, actually, the strict descent object of Dy, which proves
that the existence of such strict descent object is also needed.

A(—,GY) =B(J—,Y) —=A(—, RLY) == A(—, RLULY ) —= A(—, RLULULY)
|

Actually, in Theorem 4.4, unlike the 2-adjoint version, to get the right
biadjoint we do not need the hypothesis of 7+ 1Id, being a 2-natural transfor-
mation. This hypothesis was used only to conclude that the pseudonatural
equivalence D{# o j ~ 2A(A, Dy) is actually a 2-natural isomorphism.

5. Pseudoprecomonadicity

Herein, a pseudomonad is the same as a doctrine, whose definition can be
found in page 123 of [14], while a pseudocomonad is the dual notion. As in
the 1-dimensional case, for each pseudocomonad 7" on a 2-category 2, there is
an associated biadjunction Ps-T-CoAlg — 2, in which Ps-T-CoAlg is the
2-category of pseudocoalgebras, pseudomorphisms and transformations [10].
Also, every biadjunction L -4 U induces a comparison pseudofunctor and an
Eilenberg Moore factorization [11] below, in which 7' = LU denotes the in-
duced pseudocomonad. See, for instance, the formal theory of pseudomonads
developed by Stephen Lack [9].

B K Ps-T-CoAlg

y

¢

If K is locally an equivalence, we say that L is pseudoprecomonadic. While,
if K is a biequivalence (i.e. K is locally an equivalence and surjective on ob-
jects up to a pseudonatural equivalence), we say that L is pseudocomonadic.
Ivan Le Creurer, Francisco Marmolejo and Enrico Vitale [11] characterized
pseudoprecomonadic and pseudocomonadic functors.

In this section, we give some remarks about the results of [11]. Firstly, the
pseudo(co)monadicity theorem [11] can be seen as a corollary of the biadjoint
triangle theorem. Secondly, the pseudoprecomonadicity characterization [11]
shows that one of the hypotheses of Theorem 4.1 is equivalent to saying that
L is pseudoprecomonadic. More precisely, we have the following results.
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Proposition 5.1. Let L : B — € be a pseudofunctor such that L is left
biadjoint to U. Then, as described above, we get the corresponding Filenberg
Moore factorization

B K Ps-CoAlg

o

¢

The comparison pseudofunctor K is locally an isomorphism (locally an equiv-
alence) if and only if the diagram D5 : A — CAT (with omitted 2-cells)

B(X,Y)
|

L)i/’y Ly vry ® Xx,Lv) LX,(UL)QY °Xx,LuLy)
C(LX,LY) ~——<(LXepy) C(LX,LULY ) —€(@X.LUL(nyy )— €(LX, L(UL)?Y)
¢(LX,L(ny)) ¢(LX,LUL(ny))

is of strict descent (effective descent) for every pair of objects X,Y of B.

Proof: This proposition is easy to check (only using definitions). And, actu-
ally, it follows from an observation already given in [13]: if L is strictly pseu-
docomonadic (that is to say, the comparison 2-functor is an isomorphism),
then

B(X,Y)
L%,y Ly vry ®Xxoy) Ly iy ® Xx.LuLy)
C(LX,LY) —(LXe,y —— €(LX, LULY ) —€(LX.LUL(n, 1, )— &(LX, L(UL)?Y)
@(LX,L(nY)) @(LX,LUL(T]Y))
is of strict descent for every pair X,Y of objects in 8. u

We say that a left biadjoint functor L : 8 — € is strictly pseudopre-
comonadic if the comparison pseudofunctor K is fully faithful (which means,
K is locally an isomorphism). Thereby, Propostion 5.1 gives a characteri-
zation os pseudoprecomonadic and strictly pseudoprecomonadic pseudofunc-
tors.

Also, in the setting of Proposition 5.1, by the biadjunction L H U, we
conclude that, for each pair X,Y of objects in 98, the diagram D5 is pseudo-
naturally equivalent to the diagram 98B(X, Dy). Thus, by Theorem 3.3, Dy
is of effective descent for every object Y of B if and only if D5t is of effective
descent for every pair of objects X,Y of B. We conclude, therefore, the
characterization of pseudoprecomonadic pseudofunctors (which was proven
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originally in [11]), that is to say, a left biadjoint pseudofunctor L : B — € is

pseudoprecomonadic if and only if the diagram Dy : A — B (with omitted
2-cells)

Morx Myrvrx
n
X ———ULX Ule,y) ULULX —UL(ny,x)— ULULULX
UL(ny) ULUL(ny)

is of effective descent for every object X of 6. And, therefore, we can
reformulate our Biadjoint Triangle Theorem 4.1.

Theorem 5.2 (Biadjoint Triangle Theorem). Let £ : A — €, J : A — B,
L : B — € be pseudofunctors such that there is a pseudonatural equivalence

L .3
E\;A

Assume that (E, R, p, pi,v,w) and (L,U,n, ¢, s,t) are biadjunctions and L is
pseudoprecomonadic. Then J has a right biadjoint if and only if, for every
object Y of B, A has the descent object of the diagram Dy : A — A (with
the obvious 2-cells)

2

RLU(kry Myrry PRy RLU(kryry Myriury PRIULY
RLY Rlepy )————— RLULY —————RL(nyLy) RLULULY
RL(ny) RLUL(ny, )

Corollary 5.3. Let LJ = E be a biadjoint triangle satisfying the hypotheses
of Theorem 5.2. We denote by G the obtained right biadjoint of J. And we
assume that the biadjunction E - R induces the same pseudocomonad as
L+4U.
Then the 2-functor J : A — B preserves the effective descent diagram
Dy : A -

for every object Y of B if and only if the counit € of the biadjunction J 4 G
is a pseudonatural equivalence. That is to say, JoPsRan;(Dy) is of effective
descent for every object Y of B if and only if the counit

gZJGHId%

18 a pseudonatural equivalence.
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Furthermore, the unit 7 of the biadjunction J - G is a pseudonatural
equivalence if and only if the 2-functor Dy : A — A (with omitted 2-cells)

PrREA PREREA
p
A t > REA~—R(,,)—— REREA —RE(p,,,)— REREREA
RE(p,) RERE(p )

15 of effective descent for every object A of 2.

Once we know that pseudocomonadic pseudofunctors create absolute ef-
fective descent diagrams, we can get the pseudocomonadicity theorem [11]
as a consequence of the Biadjoint Theorem 5.2 and Corollary 5.3. To do so,
assuming that E : %l — € is a left biadjoint which creates absolute effec-
tive descent diagrams, we have to consider the commutative triangle of the
Eilenberg Moore factorization

A I Ps-CoAlg

L
¢

Note that, for each object Y of Ps-CoAlg, the diagram Dy : A - A is
such that E o Dy has a pointwise right pseudo-Kan extension

PsRan;(E o Dy) ~ L o Dy

which is an absolute effective descent diagram. Therefore, since F creates
absolute effective descent diagrams, we conclude that Dy has a descent ob-
ject. And, then, by Theorem 5.2, J is left biadjoint to a pseudofunctor G.
Moreover, since

E o PsRani(Dy) = LJ o PsRan;(Dy) ~ L o Dy

is an absolute effective descent diagram and L creates absolute effective de-
scent diagrams, we conclude that JoPsRan;(Dy ) is of effective descent. Thus,
by Corollary 5.3, we conclude that the counit of the biadjunction J - G is a
pseudonatural equivalence.

Furthermore, for each object A of A, EoD 4 is an absolute effective descent
diagram. And, since E creates absolute effective descent diagrams, we con-
clude that D is of effective descent. Thus, by Corollary 5.3, the unit of the
biadjunction J - G is a pseudonatural equivalence. Therefore J is, indeed,
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a biequivalence. And this proves that F is pseudocomonadic if and only if £
has a right biadjoint and it creates absolute effective descent diagrams.

Lemma 5.4 (Pseudocomonadicity [11]). A left biadjoint pseudofunctor
L:B5—>¢C

18 pseudocomonadic if and only if it creates absolute effective descent dia-
grams.

As a consequence of Lemma 5.4, compositions of pseudocomonadic functors
are pseudocomonadic. Furthermore, within the setting of Theorem 4.1, if J
has a right biadjoint and E is pseudocomonadic, then J is pseudocomonadic
as well.

Corollary 5.5. Let LJ = E be a biadjoint triangle satisfying the hypotheses
of Theorem 5.2 such that L is pseudocomonadic. We denote by G the obtained
right biadjoint of J. And we assume that the biadjunctions E 4 R and L 4 U
induce the same pseudocomonad.

Then the pseudofunctor 2 : A — € preserves the effective descent diagram

Dy : A -2

for every object Y of B if and only if the counit € of the biadjunction J 4 G
15 a pseudonatural equivalence. That is to say,

E o PsRan;i(Dy)
15 of effective descent for every object Y of B if and only if the counit
£:JG — Idg
18 a pseudonatural equivalence.

Proof: Since L creates absolute effective descent diagrams, it is easy to see
that J o Dy : A — A is effective descent (for every object Y of 9) if and
only if LJ o Dy ~ E o Dy is effective descent (for every object Y of B). =

6. Coherence
In the setting of [10], we have a 2-comonad T on a 2-category €. If
T-CoAlg,

denotes the 2-category of strict algebras, morphisms and transformations,
then the canonical 2-adjunction £ 4 R : CoAlg — € induces an Eilenberg
Moore factorization w.r.t. the pseudocomonadic functor Ps-T-CoAlg — €.
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T-CoAlg —'~ Ps-T-CoAlg,

T

¢

The firs part of Stephen Lack’s result on this triangle says that J has a right
2-adjoint G if the diagrams Dy : A — T-CoAlg have descent objects (for
every object Y) . And, hence, Theorem 5.2 can be seen as a generalization
of his construction. And, actually, his result is a consequence of the strict
version, that is to say, Theorem 6.1.

The second part says that the counit of the 2-adjunction J - G is a
pseudonatural equivalence if £ o PsRan;Dy is of effective descent (for every
object Y'). Therefore, Corollary 5.3 and Corollary 5.5 are generalizations of
the second part. Also, when using Theorem 6.1 (which is the Theorem 4.4)
and Corollary 5.5, we get a proof of the result of [10] on pseudoalgebras and
possible (strict) generalizations (because £ 4 R and L - U induce the same
pseudocomonad).

Theorem 6.1 (Strict Biadjoint Triangle Theorem). Let
EA->CJ:A->BL:B->C
be 2-functors such that

AT B
N
¢
commutes. Assume that (E, R, p, 1) is a 2-adjunction and (L,U,n,¢e,s,t)

t
a biadjunction such that L is strictly pseudoprecomonadic and J(A(A, B))
contained in the subcategory of strict morphisms of

B(JA, JB) = Ps-CoAlg(KJA, KJB).

Then J has a right 2-adjoint if and only if, for every object Y of B, the strict
descent object of the diagram Dy : A —

18
18

RL(ny) RLUL(ny, )
RLY Rlepy )———— RLULY —————RL(nyLy) RLULULY
RL(U(tpy MyrLy PrLY RL(U(tpyy Myrrury PriULY

(with the obvious 2-cells) exists in 2.
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Also, it is known that, if 2l has strict descent objects and 7' is a 2-comonad
on 2 which preserves strict descent objects, then the forgetful 2-functor
T-CoAlg, — U creates strict descent objects. This fact gives what we need
to formulate the result of [10] as it is done there: namely, there is a right
2-adjoint to the inclusion T-CoAlg, — 2, and its counit is a pseudonatural
equivalence, if 2l has strict descent objects and T preserves them.

7. On lifting biadjunctions

One of the most elementary corollaries of the adjoint triangle theorem [2]
is about lifting adjunctions to adjunctions between the Eilenberg Moore cat-
egories. That is to say, let T': A - A and S : C — C be comonads. Assume
that the diagram
J

T-CoAlg S-CoAlg
L L
A 2 C

commutes and F has a right adjoint R. As a particular case of Eduardo
Dubuc’s result, we know sufficient (and necessary) conditions under which
the adjunction £ - R can be lifted to an adjunction J -4 G between the
coalgebras, since this setting gives the commutative diagram

J

S-CoAlg

N A

in which L is comonadic and E o L has a right adjoint. Therefore, by the
enriched version 1.1, we have the analogous result for 2-comonads and 2-
categories. Namely, let T: A — A and S : C — C be 2-comonads. Assume
that

A
E

T-CoAlg, / S-CoAlg,

=~
h
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is a commutative diagram, such that F has a right 2-adjoint R. Then Propo-
sition 1.1 gives necessary and sufficient conditions to construct a right 2-
adjoint to J. And, of course, as a consequence of Theorem 5.2, we have the
analogous version for pseudocomonads.

Corollary 7.1. Let T : A — A and S : € — &€ be pseudocomonads. If the

diagram
Ps-T-CoAlg d Ps-S-CoAlg
L L
2 g ¢

commutes and E has a right biadjoint, then J has a right biadjoint provided
that Ps-T-CoAlg has descent objects.

Actually, if, furthermore, 7' : A — A and S : € — € are 2-comonads such
that A, € have (and T, S preserve) strict descent objects and 2 has (and T
preserves) Cat-equalizers, as a consequence of the enriched adjoint triangle
theorem and the strict version of the biadjoint triangle theorem /coherence
result [10], we prove Corollary 7.2.

Corollary 7.2. Let A, € be 2-categories such that A and € have strict descent
objects. Assume that T : A — A and S : € — € are 2-comonads which
preserve strict descent objects. If, furthermore, T preserves (and 2A has)
Cat-equalizers, we have that, given a commutative diagram

T-CoAlg, d

S-CoAlg,

Ps-T-CoAlg —

Ps-S-CoAlg
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in which E has a right 2-adjoint, then J has a right 2-adjoint G and J has
a right biadjoint G. Moreover, recall that T-CoAlg, — Ps-T-CoAlg and
S-CoAlg, — Ps-S-CoAlg have right 2-adjoints such that their counits are
pseudonatural equivalences. Therefore there is a pseudonatural equivalence

T-CoAlg, - S-CoAlg,
G

Ps-T-CoAlg

Ps-S-CoAlg

in which the curved arrow denotes the right 2-adjoint to the inclusion

S-CoAlg, — Ps-S-CoAlg.

7.1. On pseudo-Kan extensions. One simple application of Corollary
7.1 is about pseudo-Kan extensions. In the 3-category 2-CAT, the natural
notion of Kan extension is that of pseudo-Kan extension. More precisely, a
right pseudo-Kan extension of a pseudofunctor

D:8§—-2A

along a pseudofunctor h : § — S, denoted by Ps-RanyD, is (if it exists) a
birepresentation of the pseudofunctor W — [8,A]pg(W o h, D). Recall that
birepresentations are unique up to equivalence and, therefore, right pseudo-
Kan extensions are unique up to pseudonatural equivalence.

Assuming that & and 8§ are small 2-categories, in the setting described
above, the following are natural problems on pseudo-Kan extensions: (1) in-
vestigating the left biadjointness of the pseudofunctor W — W o h, namely,
investigating whether all right pseudo-Kan extensions along h exist; (2) un-
derstanding pointwise pseudo-Kan extensions (that is to say, proving the
existence of right pseudo-Kan extensions provided that 2 has all bilimits).

It is shown in [1] that, if 8y denotes the discrete 2-category of the objects
of 8, the restriction

[87 Q[] - [807 Q(]
is 2-comonadic, provided that [8, 4] — [8g, 2] has a right 2-adjoint

Rany, : [8o, A] — [S,2A].



28 FERNANDO LUCATELLI NUNES

They also showed that the 2-category of pseudocoalgebras of the induced
2-comonad is [8, 2] ps. It actually works more generally: precisely,

[, Al ps = [So, A]ps

is pseudocomonadic whenever there is a right biadjoint
Ps-RanyD : [So, Al ps — [8, A ps,

because existing bilimits of 2 are constructed objectwisely (and, therefore,
the hypotheses of Lemma 5.4 is satisfied). Thus, we get the following com-
mutative square:

(S, ] ps S, 2] ps

ULQqPS

[807 Q[] [807 Q[]

Thereby, Corollary 7.1 gives a way to study pseudo-Kan extensions, even in
the absence of strict 2-limits. That is to say, on the one hand, if the 2-category
21 is complete, our results give pseudo-Kan extensions as descent objects of
strict 2-limits. On the other hand, in the absence of strict 2-limits and, in
particular, assuming that 2l is bicategorically complete, we can construct the
following pseudo-Kan extensions:

Ps-Ran : [So, U] H[SO,Q[]PS

S$9—8¢

D — Ps-Ran. . D: |z~ Da

89—38p
Ps-Ran : [SO,Ql] H[S,QI]PS

D —PsRan, D:|z— H S(z,y)hDy

—

yeSO

Ps-Rang ;1 [So,™A] — [8,A]ps

D = PsRang D (a — H 8(a, b)rh@b)

bESO
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in which [] and & denote the bilimit versions of the product and cotensor
product, respectively. Thereby, by Corollary 7.1, the pseudo-Kan extension
Ps-Rany, can be constructed pointwisely as descent objects of a diagram
obtained from the pseudo-Kan extensions above. Namely, Ps-Ran,Dx is the
descent object of a diagram

ap ay as

in which, by Theorem 4.1 and the last observations,

ay = H S(x,y)rh H Da
h(a)=y

Y ES-O

12

I1 (S(m,h(a))rhiDa)

(168()

a = [ 8(x,y)h (H 8(a, b)thb)
h(a)=y

beSy
~ |1 (S(x,h(a))rh (H S(a,b)mb>>
IS besy
~ I ((S(Q, b) x S(x,h(a))) thb)
(a,b)e8o %80

12

as

I1 ((S(b, ¢) x 8(a,b) x 8(z, h(a))) thc)
(a,b,c)ESO XSOXSO
This implies that, indeed, if 2 is bicategorically complete, then Ps-Ran,D
exists and, once we assume the results of [15] related to the construction of
weighted bilimits via descent objects, we conclude that

Ps-Rany,Dx = {S(m, h—), D}b.
Proposition 7.3 (Pointwise pseudo-Kan extension). Let 8,5 be small 2-
categories and 2l be a bicategorically complete 2-category. Ifh : 8 — S is a
pseudofunctor, then

Ps-Ran,Dx = {S(x, h—), D}bi
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Moreover, Corollary 7.2 gives a way of comparing strict Kan extensions
with pseudo-Kan extensions, provided that 2l has strict descent objects and
the (strict) Kan extensions exist: within this setting, that corollary gives the
construction of pseudo-Kan extensions via a strict Kan extension of a flexible
diagram [10].

At last, let 21 be a 2-category with all descent objects and T' be a pseu-
docomonad on 2. Recall that, if T' preserves all effective descent diagrams,
Ps-T-CoAlg has all descent objects. Therefore, if h : § — S is a pseudofunc-
tor, in this setting, the commutative diagram below satisfies the hypotheses
of Corollary 7.1 (and, thereby, it can be used to lift pseudo-Kan extensions
to pseudocoalgebras).

[S, Ps-T-CoAlg]ps

[S, Ps-T-CoAlg]ps

(S, ] ps 8, U] ps

Remark 7.4. Assume that h: 8§ — § is a pseudofunctor, in which S,S are
small 2-categories. There is another way of proving Proposition 7.3. Firstly,
we define the bilimit version of end. That is to say, if T': 8§ x 8°? — CAT is
a pseudofunctor, we define

fTﬁqﬂxwaammgmefmT)

From this definition, it follows Fubini’s theorem (up to equivalence). And, if
9, D : 8 — A are pseudofunctors, the following equivalence holds:

L%@mﬂﬁzﬁﬂhﬂﬂﬂ)

Therefore, if h : § — $is a pseudofunctor and we define

PsRan,Dx = {S(m, h—), D}bi :
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we get the pseudonatural equivalences below (analogous to the enriched case

7))

[S,Ql] (W, PsRany,D) ~ | AWz, PsRan,Dx)
PS J$
AWz, Sw,h— ,D

[ fio),

[8, Cat]pg (UA(z,h—), h(Wz, D))
J8

r

2

2

12

N

r

L CAT(2(z, h(a)), h(Wz, Da))

[

12

L CAT((z,h(a)),h(Wz,Da))

[

N

r

2

. |8, CAT| _(2(=h(a)),h(W—, Da))

r

12

A(W oh(a), Da)

J§
~ [8,A]pg (W oh,D)

This completes the proof that if the pointwise right pseudo-Kan extension
PsRany, exists, it is a pseudo-Kan extension. Within this setting and assum-
ing this result, the original argument used to prove Proposition 7.3 gets the
construction via descent objects of weighted bilimits originally given in [15].
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