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Abstract: The main goal of this paper is to present a unifying theory to describe
the pure rolling motions of Riemannian symmetric spaces. We make a clear con-
nection between the structure of the kinematic equations of rolling and the natural
decomposition of the Lie algebra associated to the symmetric space. This empha-
sizes the relevance of Lie theory in the geometry of rolling manifolds. It becomes
clear why many particular examples scattered through the existing literature always
show a common pattern.

1. Introduction
Riemannian symmetric spaces play an important role in many areas that

are interrelated to information geometry, such as image processing, machine
learning and data analysis.

Examples of symmetric spaces that became popular in these areas are, for
instance: the Graßmann manifold, each point of which is associated to a set of
images; the Essential manifold, which parameterizes the epipolar constraint
encoding the relation between correspondences across two images of the same
scene taken from two different locations; the manifold of special orthogonal
matrices which plays an important role in biomedical applications, ranging
from feature and object detection tasks to image enhancement and image
restoration techniques.

Image interpolation is one of the most elementary image processing tasks.
Many image interpolation techniques have been proposed in the literature.
When the data is represented on some manifold, one approach that is quite
effective is based on the rolling motions of a manifold over another, subject
to nonholonomic constraints of “no-slip” and “no-twist”. The main idea
behind these algorithms is to use rolling motions to project the data from
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the manifold to a simpler space. Then classical methods can be applied and
thereafter one rolls back the solution in order to solve the initial problem on
the manifold.

In this paper, we concentrate on rolling motions of symmetric homogeneous
spaces over the affine tangent space at a point. Our main goal is to find
a unifying theory that incorporates all the existing scattered results and
explains the common pattern that is observed in the kinematic equations of
many rolling motions. A preliminary and shorter study of this subject is
presented in [9].

The structure of the paper is the following. Section 2 introduces the neces-
sary background, including the definition of rolling subject to the constraints
of “no-slip” and “no-twist”, and the fundamentals of homogeneous symme-
tric spaces. Our results are given in Section 3. The main result is stated
in Theorem 6, where a strong relationship between rolling maps and the
structure of the Lie algebra associated to the symmetric space is revealed.
Theorem 7 shows how to generate left-invariant parallel vector fields on sym-
metric spaces from rolling maps. These results are illustrated by several ex-
amples. The first three examples concern manifolds embedded in Euclidean
space. Example 1 shows how the Lie algebra forces the structure of the kine-
matic equations for the rolling sphere and this is also illustrated with the
Graßmann manifold in Example 2 and the Essential manifold in Example 3.
The next two examples deal with non-Euclidean manifolds of co-dimension
one, namely the Lorentzian sphere, which is a pseudo-Riemannian mani-
fold, and the ellipsoid equipped with a left-invariant metric. Finally, the
last Example 6 contains the pseudo-orthogonal groups and shows that the
theory developed in this paper can be extended to manifolds that are not
sub-manifolds of Euclidean space neither have co-dimension one. We finish
with a few concluding remarks.

2. Preliminaries
We are interested in submanifolds of a Riemannian manifold M̃. Typically,

M̃ will be the Euclidean space Rm.

2.1. Rolling Maps. In this section we introduce a rolling map of subma-
nifolds isometrically embedded in a Riemannian manifold. The definition of
rolling is a generalization of that given in [12, Appendix B] applicable to a
general situation, where the embedding space Rm is replaced by an orientable
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Riemannian manifold M̃, cf. [5]. We assume here and in the remainder of
this paper that all manifolds are connected and orientable.

Let M̃ be a Riemannian complete m-dimensional manifold and let G̃ be

the group of isometries on M̃. Let I ⊂ R be a closed interval. From now on,
we closely follow the notations used in [5].

Definition 1. Let M and M0 be two n-manifolds isometrically embedded

in an m-dimensional Riemannian manifold M̃. Then a rolling of M on
M0 without slipping or twisting is a map χ : I → G̃ satisfying the following
conditions.

Rolling: There is a piecewise smooth rolling curve on M given by σ : I →
M such that:
(a) χ(t) · σ(t) ∈M0, and
(b) Tχ(t)·σ(t)(χ(t)(M)) = Tχ(t)·σ(t)M0, for all t ∈ I.

These properties imply that at each point of contact, both manifolds,
M0 and χ(t)(M), have the same tangent space. This is identified as a

subspace of the tangent space of M̃ at the considered point. The curve
σ0 : I → M0 defined by σ0(t) := χ(t) · σ(t) is called the development
curve of σ.

No-slip: σ̇0(t) = χ(t)∗ · σ̇(t), for almost all t ∈ I. This condition ex-
presses the fact that the two curves have the same velocity at the point
of contact.

No-twist: the two complementary conditions:
tangential : (χ̇(t) χ(t)−1)∗(Tσ0(t)M0) ⊂ T⊥σ0(t)M0, and

normal : (χ̇(t) χ(t)−1)∗(T
⊥
σ0(t)M0) ⊂ Tσ0(t)M0, for almost all t ∈ I.

Figure 1 illustrates the rolling motion of S2 upon another two dimensional
manifold along development curve σ0.

We conclude this part by a crucial observation about the operator (χ̇ χ−1)∗
made by Sharpe in [12, page 379], when M̃ is the Euclidean space, and in [5]
in a more general setting. If χ is a rolling map of M upon M0, then in suitable
coordinates in a neighbourhood of p ∈M0 we may choose orthonormal basis

in TpM̃ = TpM0⊕T⊥p M0 so that the operator (χ̇ χ−1)∗ has the matrix form
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Figure 1. A sphere M is rolling upon M0 along the develop-
ment curve σ0 without slipping or twisting

(m = n+ r)

(χ̇(t) χ(t)−1)∗ =

[
0 Xn×r

−XT
n×r 0

]
TpM0

T⊥p M0

TpM0 T⊥p M0

. (1)

In essence, our main result, Theorem 6 captures the structure of (χ̇ χ−1)∗
expressed in (1), that is carried from the Lie algebra of the symmetry acting
transitively on M.

2.2. Symmetric Riemannian Homogeneous Spaces. This section gives
a very brief introduction to symmetric Riemannian homogeneous spaces. For
more details we refer to [4].

Let G be a connected Lie group with Lie algebra g. Suppose G acts transi-
tively on a Riemannian manifold M, i.e., there is a smooth map G×M→M,
denoted by (a, p) 7→ a · p, such that, for any p ∈M: a · (b · p) = (ab) · p, for
any a, b ∈ G; e · p = p, where e is the identity element of G; for any q ∈M
there exists an element a ∈ G such that q = a · p. For an arbitrary fixed
point p0 ∈M the closed subgroup

H := { a ∈ G : a · p0 = p0 }
is an isotropy group of G at p0. Then M is diffeomorphic to the space
G/H of left cosets aH, with p 7→ aH, where a ∈ G is such that p = a ·
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p0. Let the metric on M be invariant under G, i.e., for any x ∈ G the
mapping τ(x) : aH 7→ xaH of G/H onto G/H is an isometry. We will assume
further that the homogeneous space G/H is reductive, i.e., there exists a
decomposition g = h ⊕ p, invariant under Ad(H). The natural projection
π : G → M ∼= G/H induces the linear surjection π∗ : TeG → Tp0M and we
have the following isomorphisms

Tp0M
∼= TeG/ kerπ∗ ∼= g/h ∼= p.

The space M ∼= G/H is called a symmetric Riemannian homogeneous space
(symmetric space for short) if the above vector subspace p satisfies [p, p] ⊂ h.
For such spaces we have the following relations

g = h⊕ p, [p, p] ⊂ h, [p, h] ⊂ p and [h, h] ⊂ h. (2)

This decomposition is also known as a Cartan type decomposition.

3. Rolling Riemannian Symmetric Spaces
In the remainder of this paper we assume that a manifold M, isometrically

embedded in the ambient space M̃, is rolling upon its affine tangent space at
a point p0. Let G̃ = Gn V be the group of isometries preserving orientation

of M̃. For instance, if the ambient space is Rm, its isometry group is the
special Euclidean group SE(m) = SO(m)nRm. The affine tangent space to
M at a point p ∈M is defined as

Taff
p M = p+ TpM, (3)

which makes sense if the ambient space is Euclidean. In a more general
settings we regard the plus sign in (3) to be the action of an element (e, s) ∈ G̃
on p under identification of the tangent space TpM with a subspace of the
abelian group V .

If χ = (g, s) is a rolling map then χ acts as follows

I × M̃
χ−−→ M̃

I ×Tp0M̃
χ∗−−→ Tp0M̃

(
t, p
) χ−−→ g(t) · p+ s(t)(

t, V
) χ∗−−→ g(t)∗ · V

We shall assume that M is the symmetric space G/H, that is M ∼= G/H, so

that the subgroup G ⊂ G̃ acts transitively on M and H is the isotropy group
of p0 ∈M. We identify elements of Lie algebra g of G with the vector space
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of linear maps from Tp0M̃ to itself. Let µ denote the group action on M
then the above relationships can be illustrated with the following diagrams.

G× M̃
µ−−→ M̃

exp

xexp

xexp

g×Tp0M̃
µ∗−−→ Tp0M̃

(
g, p
) µ−−→ g · p

exp

xexp

xexp(
X, V

) µ∗−−→ X · V

Proposition 2. Let h be the Lie algebra of the isotropy group H of p0 ∈M.
Then h(Tp0M) ⊂ Tp0M and h(T⊥p0M) ⊂ T⊥p0M.

Proof : Let g : (−ε, ε) → H be a differentiable curve in the isotropy group

H such that g(0) is the identity. Moreover, let γ : (−δ, δ) → M̃ be a dif-
ferentiable curve in the ambient manifold, with γ(0) = p0. Then c(t, s) :=

g(t) ·γ(s) is a smooth map from (−ε, ε)× (−δ, δ) to M̃ such that c(t, 0) = p0,
for all t ∈ (−ε, ε). The derivative of c with respect to s is

∂sc(t, 0) = g(t)∗ · γ̇(0),

therefore g(t)∗ is a map from Tp0M̃ to itself. Since H is also a subgroup
of a Lie group G, that acts transitively on M, then, by restricting γ to M,
∂sc(t, 0) = g(t)∗ ·V , where V ∈ Tp0M, is a curve in the tangent space Tp0M.
Similarly g(t)∗ · Λ, where Λ ∈ T⊥p0M is a curve in the normal space T⊥p0M,
because H is an isometry. Taking derivative with respect to t, noting that
g(0) = e, yields ġ(0)∗ · γ̇(0) = ∂t∂sc(0, 0), where ġ(0)∗ ∈ h. The proof is now
complete.

The fact that ġ(0)∗ : Tp0M→ Tp0M can be also seen from the Lie algebra
decomposition (2), namely from [p, h] ⊂ p. From the proof of Proposition 2
we can draw yet another conclusion.

Remark 3. If M is of co-dimension one, i.e., m = n+1, then h maps T⊥p0M

to zero (in Tp0M̃). This easily follows from the fact that since T⊥p0M is one
dimensional and H is an isometry preserving orientation then g(t)∗ ·V = V ,
for any V ∈ T⊥p0M. Therefore its derivative with respect to t is zero.

Proposition 4. Assume that M̃ is Euclidean and let p = g/h, where h is
the Lie algebra of the isotropy group H of p0 ∈M. Then p(Tp0M) ⊂ T⊥p0M

and p(T⊥p0M) ⊂ Tp0M.
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Proof : We will show first that p(Tp0M) ⊂ T⊥p0M. For any vector V0 ∈
Tp0M and X ∈ p the curve γ(t) = π ◦ exp(tX) is a geodesic in M. Define
V (t) := γ(t)∗ · V0, then V is a parallel vector field along γ, cf. [4, page 208].
Therefore its covariant derivative DtV is zero, i.e., the tangent component
of its t derivative vanishes. Hence V̇ (0) = X · V0 ∈ T⊥p0M. The second claim

that p(T⊥p0M) ⊂ Tp0M has been proved in [2].

Remark 5. We are strongly convinced that Proposition 4 is true for general
Riemannian manifolds, although we have not been able to produce a com-
plete proof yet. Our believe is based on all the cases that we have analyzed
including some of the examples that appear later. The inclusion p(Tp0M) ⊂
T⊥p0M holds whenever M̃ is a Riemannian manifold. The second inclusion

p(T⊥p0M) ⊂ Tp0M is trivially true in co-dimension one. This is because the
holonomy group of normal vectors is Z2 = {−1, 1 }, if M is simply connected.

Differentiable field of unit normal vectors along paths in M ⊂ M̃ gives a field
of vectors that does not depend on the choice of curves, cf. [7, p. 5].

Theorem 6. Let p be as in Proposition 4 and χ be a rolling map of a sym-
metric space M ∼= G/H embedded in Euclidean space. Then (χ̇ χ−1)∗ is an
element of p.

Proof : Denote (χ̇ χ−1)∗ by u ∈ g. Let u = uh + up be a decomposition of u
into components in h and p, respectively. For any vector V ∈ Tp0M there is

u · V = (uh + up) · V = uh · V + up · V,

where uh·V ∈ Tp0M and up·V ∈ T⊥p0M, by Propositions 2 and 4, respectively.

From the tangential part of the “no-twist” conditions u · V ∈ T⊥p0M then it
follows that uh · V is zero, for all V ∈ Tp0M. By a similar reasoning with
the normal part of the “no-twist” conditions one shows that also uh · V = 0,
for all V ∈ T⊥p0M. Therefore uh ≡ 0 and u = up ∈ p. This completes the
proof.

If χ = (g, s) is a rolling map of M upon its affine tangent space at p0,
then σ(t) = g−1(t) · p0 is the rolling curve. To see this it is enough to check
that χ with σ conform to the conditions of Definition 1. We start with the
rolling conditions. The development curve is σ0 = p0 + s hence the first
rolling condition σ0 ∈ Taff

p0
M requires that s ∈ Tp0M. The second rolling

condition requires that Tχσ(χ(M)) = TχσT
aff
p0

. Since σ = g−1 · p0 then
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TσM = g−1
∗ (Tp0M) and the left hand side of the above equality is equal to

Tχσ(χ(M)) = χ∗(TσM) = g∗
(
g−1
∗ (Tp0M)

)
= Tp0M.

On the other hand, for the affine tangent space TχσT
aff
p0

M = Tp0M hence
the equality of the tangent spaces at the contact point holds. The “no-slip”
condition implies that

(χ̇ χ−1)σ0 = χ̇ χ−1χσ = χ̇σ = χ̇g−1 · p0 = ġg−1 · p0 + ṡ = 0,

giving a differential equation for s. A solution exists for s in Tp0M because
ġg−1 maps M to TM. The two “no-twist” conditions now read as

(ġg−1)∗(Tp0M) ⊂ T⊥p0M and (ġg−1)∗(T
⊥
p0

M) ⊂ Tp0M.

They are both satisfied because χ = (g, s) is a rolling map.

Theorem 7. Let χ = (g, s) be a rolling map of a symmetric space M ∼= G/H
and σ(t) = g−1(t) ·p0 be the corresponding rolling curve. For any V0 ∈ Tp0M
define a vector field along σ by

V (t) := g−1(t)∗ · V0.

Then V is a left-invariant parallel vector field along σ.

Proof : Clearly V (t) ∈ Tσ(t)M. We show first that V is left-invariant. Let La
denote the left translation by a ∈ G then V = (Lg−1)∗ · V0 and

V (f ◦ Lg) =
(
(Lg−1)∗ · V0

)
(f ◦ Lg) = V0(f ◦ Lg ◦ Lg−1) = V0(f),

for any differentiable f on M. Hence (Lg)∗V = V0 = V (0) and V is left
invariant.

The rolling map χ generates vector field Ṽ along development curve σ0(t) =
χ(t) · σ(t) and since rolling maps preserve covariant differentiation, cf. [5],

then DtV = D̃tṼ , where D̃t is the covariant derivative on the affine tangent
space. Because Ṽ (t) = χ(t)∗ · V (t) = (g(t)∗ g

−1(t)∗) · V0 = V0 is constant
therefore DtV = 0, what was to show.

3.1. Examples. Here we give a few examples of rolling symmetric spaces
on their respective affine tangent spaces. These examples illustrate the main
ideas behind the structure of the rolling maps and decomposition of a Lie al-
gebra. In all the cases considered here the manifolds are normal homogeneous
with respect to their metric, i.e., p = h⊥.
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Figure 2. A sphere S2 is rolling upon M0 along the development
curve σ0 without slipping or twisting; the infinitesimal action
(χ̇ χ−1)∗ is orthogonal to the Lie algebra of the isotropy group

Example 1 (the sphere). Consider the well studied problem of rolling the
sphere Sn on its affine tangent space. Since Sn = SO(n + 1)/SO(n) is
homogeneous space, take any p0 ∈ Sn, then H = SO(n) is an isotropy group
leaving p0 fixed.

To be more precise, choose p0 =
(
0, . . . , 0,−1

)
to be the “south pole” of Sn.

The Lie algebra g = so(n+ 1) splits into the direct sum p⊕ h, where

h =

{
x ∈ so(n+ 1) : x =

[
A 0
0 0

]
and A ∈ so(n)

}
and p = h⊥ is given by

p =

{
x ∈ so(n+ 1) : x =

[
0 m
−mT 0

]
and m ∈ Rn×1

}
∼= Tp0S

n.

It is easy to see that p · p0 = Tp0S
n and h · p0 = 0. Note that span(p0) =

T⊥p0S
n. Let χ be the rolling map and let u = (χ̇ χ−1)∗ then u ∈ g and〈

u · (p · p0), p0

〉
= −

〈
p · p0, u · p0

〉
. From the tangential part of the “no-twist”

condition it follows that u ∈ p.
Figure 2 illustrates this situation for the two dimensional sphere.
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Example 2 (the Graßmann manifold). We now look at the Graßmann man-
ifold rolling on its affine tangent space, cf. [6]. The Graßmann manifold Gk,n

is defined by Gk,n :=
{
P ∈ s(n) : P 2 = P and rank(P ) = k

}
and consid-

ered embedded in s(n), where s(n) is the set of n × n symmetric matrices.
Group G = SO(n) acts transitively on Gk,n by

(
X,P

)
7→ X · P · XT. This

action induces Lie algebra action
(
a, V

)
7→ a · V + V · aT. Take

P0 =

[
1k 0
0 0

]
and let H ⊂ G be the isotropy group leaving P0 fixed. Then

H =

{[
H1 0
0 H2

]
: H1 ∈ SO(k) and H2 ∈ SO(n− k)

}
.

Then Lie algebra h of the group H is

h =

{[
h1 0
0 h2

]
: h1 ∈ so(k) and h2 ∈ so(n− k)

}
.

The orthogonal complement p = h⊥ is therefore

p =

{[
0 m
−mT 0

]
: m ∈ Rk×(n−k)

}
.

The tangent and normal spaces at P0 are given by

TP0
Gk,n =

{[
0 Z
ZT 0

]
: Z ∈ Rk×(n−k)

}
and

T⊥P0
Gk,n =

{[
S1 0
0 S2

]
: S1 ∈ s(k), S2 ∈ s(n− k)

}
.

According to the developments in [6], if χ = (R, s) is a rolling map of Gk,n

upon its affine tangent space at P0 and A ∈ s(n), we have

(χ̇ χ−1)∗A = ṘTRA− ARTṘ =
[
Ω, A

]
,

where Ω = ṘTR ∈ so(n). Partitioning Ω as

Ω =

[
m1 m2

−mT
2 m3

]
, where m1 = −mT

1 and m3 = −mT
3 ,
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and taking A =
[
S1 0
0 S2

]
∈ T⊥p0Gk,n, the normal part of the “no-twist” condi-

tions implies that
[
Ω, A

]
∈ Tp0Gk,n. That is[

m1 m2

−mT
2 m3

] [
S1 0
0 S2

]
+

[
S1 0
0 S2

] [
mT

1 −m2

mT
2 mT

3

]
=

[ [
m1, S1

]
m2 · S2 − S1 ·m2

−mT
2 · S1 + S2 ·mT

2

[
m3, S2

] ]
yields

[
m1, S1

]
= 0 and

[
m3, S2

]
= 0, for any symmetric S1 and S2. This is

only possible when m1 = 0 and m3 = 0, hence (χ̇ χ−1)∗ ∈ p, as expected.

Example 3 (the Essential manifold). The essential manifold is defined as
E = G2,3 × SO(3). We consider this a manifold embedded in s(3) × R3×3

equipped with the Euclidean (Frobenius) norm. Points in E are represented
by pairs

(
UE0U

T, R
)
, where U,R ∈ SO(3) and E0 =

[
12 0
0 0

]
. At the point

P0 =
(
E0,1

)
the tangent and normal space to E at P0 are given by

TP0
E =

{([
0 Λ

ΛT 0

]
, C

)
: Λ ∈ R2×1 and C ∈ so(3)

}
;

T⊥P0
E =

{([
B 0
0 b

]
, S

)
: B ∈ s(2), b ∈ R and S ∈ s(3)

}
.

Rolling maps for the essential manifold have been studied in [11]. We refer
to this paper for details.

The action of the Lie group G = SO(3)×SO(3)×SO(3) on E , defined by
(U, V,W ) · (P,R) := (UPUT, V RWT), is transitive. The isotropy subgroup
of G that leaves P0 = (E0,1) invariant is the set

H =

{(
U, V, V

)
: V ∈ SO(3) and U =

[
SO(2) 0

0 0

]}
.

The Lie algebra of G, g = so(3) ⊕ so(3) ⊕ so(3), decomposes as g = p ⊕ h,
where

h :=

{(
ϑ, ζ, ζ

)
: ϑ =

[
β 0
0 0

]
, β ∈ so(2), ζ ∈ so(3)

}
and

p :=

(ϑ, ζ,−ζ) : ϑ =

 0 0 m1

0 0 m2

−m1 −m2 0

 , ζ ∈ so(3)

 = h⊥.
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It is easy to check that
[
p, p
]
⊂ h, and

[
h, p
]
⊂ p. Therefore E is a symmetric

Riemannian homogeneous space, cf. [3].
Let χ be the rolling map of E on its affine tangent space at P0 and (U, V,W ) ∈

G be the first component of χ. Then, according to the developments in [11],
if (A,C) is a vector in the embedding space, we have

(χ̇ χ−1)∗ · (A,C) =
(
U̇TUA+ AUTU̇ , V̇ TV C + CWTẆ

)
,

or, defining skew-symmetric matrices ΩU := U̇TU , ΩV := V̇ TV and ΩW :=
ẆTW ,

(χ̇ χ−1)∗ · (A,C) =
([

ΩU , A
]
, ΩVC − CΩW

)
.

Since the tangential “no-twist” condition requires that

(χ̇ χ−1)∗ · (A,C) ∈ T⊥P0
E , for (A,C) ∈ TP0

E ,

we can do some computations to conclude that u = (χ̇ χ−1)∗ = (ΩU ,ΩV ,−ΩW ),

where ΩU is of the form
[

0 0 m1
0 0 m2
−m1 −m2 0

]
and ΩV = ΩW . So,

u = (χ̇ χ−1)∗ = (ΩU ,ΩV ,−ΩV ) ∈ p.

Example 4 (the Lorentzian sphere). We now look at the pseudo-Riemannian
case, cf. [8]. The embedding space is Rn+1 endowed with the Minkowski metric
with the signature (n, 1), denoted by J . Let Sn,1 be the surface defined by

Sn,1 :=
{
x ∈ Rn+1 :

〈
x, x
〉
J

= 1
}
.

Surface Sn,1 is called the Lorentzian sphere also known as de Sitter space.
The symmetry group acting transitively on Sn,1 is SO(n, 1) defined as

SO(n, 1) :=
{
X ∈ R(n+1)×(n+1) : XTJX = J and detX = 1

}
,

with its Lie algebra

so(n, 1) :=
{

Ω ∈ R(n+1)×(n+1) : ΩTJ = −JΩ
}
.

It is known that Sn,1 = SO(n, 1)/SO(n− 1, 1) is a symmetric space. Choose
p0 =

(
1, 0, . . . , 0

)
and n > 1 then the isotropy group becomes

H =

{
X ∈ SO(n, 1) : X =

[
1 0
0 SO(n− 1, 1)

]}
.
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Its Lie algebra is therefore

h =

{
x ∈ so(n, 1) : x =

[
0 0
0 so(n− 1, 1)

]}
and its orthogonal complement is

p =

{
x ∈ so(n, 1) : x = J ·

[
0 −mT

m 0

]
and m ∈ Rn×1

}
.

This is consistent with the results in [8].

Example 5 (the ellipsoid). Consider the rolling ellipsoid En isometrically

embedded in the Riemannian structure M̃ =
(
Rn+1, D−2

)
induced by a posi-

tive definite matrix D = diag(d1, d2, . . . , dn+1) � 0, cf. [10]. Then

En :=
{
p ∈ M̃ : ‖p‖D−2 = 1

}
.

Here, the group acting on En is G = D ·SO(n+1) ·D−1. Since R 7→ DRD−1

is the group isomorphism SO(n + 1) ∼= G, this example is similar to the
rolling sphere covered in Example 1. However, the metric considered here is
left-invariant.

Let p0 =
(
0, . . . , 0,−dn+1

)
= −D en+1 be the “south pole” of En. The

subgroup H = D · SO(n) ·D−1 is an isotropy group leaving p0 fixed. The Lie
algebra g = D · so(n+ 1) ·D−1 splits into the direct sum p⊕ h, where

h =

{
x ∈ g : x = D

[
A 0
0 0

]
D−1 and A ∈ so(n)

}
and p = h⊥ is given by

p =

{
x ∈ g : x = D

[
0 m
−mT 0

]
D−1 and m ∈ Rn×1

}
.

Clearly Tp0En ∼= p because

p · p0 = −D ·
[
m
0

]
= Tp0En and h · p0 = 0.

Let χ be the rolling map and let u = (χ̇ χ−1)∗. The “no-twist” conditions
become

u ·
(
Tp0En

)
⊂ T⊥p0E

n and u ·
(
T⊥p0E

n
)
⊂ Tp0En.

By the same reasoning as in the spherical case we reach the conclusion that
u ∈ p which in an agreement with results in [10].
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Example 6 (pseudo-orthogonal groups). Let J = diag(1, . . . , 1,−1, . . . ,−1)
be the diagonal matrix with k ones and (n− k) minus ones. For any matrix
A ∈ Rn×n define

AJ := JTATJ.

Then Rn×n may be endowed with the indefinite inner product〈
U, V

〉
J

:= trace(UJV ). (4)

To each J one may associate a matrix Lie group which is the connected
component containing the identity of

SO(k, n− k) :=
{
X ∈ Rn×n : XTJX = J and detX = 1

}
with its Lie algebra

so(k, n− k) :=
{

Ω ∈ Rn×n : ΩTJ = −JΩ
}
.

For simplicity, from now on we also use the notation SO(k, n − k) for the
connected component containing the identity. Let

s(k, n− k) :=
{

Ω ∈ Rn×n : ΩTJ = JΩ
}

then the tangent and normal space to SO(k, n−k) at a point P0 are given by

TP0
SO(k, n− k) = {P0Ω : Ω ∈ so(k, n− k) } and

T⊥P0
SO(k, n− k) = {P0Ω : Ω ∈ s(k, n− k) } .

Rolling maps for the pseudo-orthogonal groups have been studied in [1]. We
refer to this paper for details.

Let G = SO(k, n−k)×SO(k, n−k) then G acts transitively on SO(k, n−k)
by (

(X, Y ), R
)
7→ X ·R · Y −1.

Take any P0 ∈ SO(k, n− k) and let H ⊂ G be the isotropy group leaving P0

fixed. Then

H =
{

(X, Y ) ∈ G : X · P0 · Y −1 = P0

}
.

For the point P0 = 1 the Lie algebra of H is

h = { (x, x) ∈ so(k, n− k)× so(k, n− k) }
and its orthogonal complement p = h⊥ with respect to the product metric
induced by (4) is

p = { (x,−x) ∈ so(k, n− k)× so(k, n− k) } .
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By the normal part of the “no-twist” conditions there must be

u · Ω ∈ so(k, n− k), for any Ω ∈ s(k, n− k).

Let u =
(
m1,m2

)
∈ so(k, n− k)× so(k, n− k) then(
m1,m2

)
· Ω = m1Ω− Ωm2 ∈ so(k, n− k).

Hence (
m1Ω− Ωm2

)T
J = −J

(
m1Ω− Ωm2

)
(5)

where the left hand side of the above equality is equal to

ΩTmT
1 J −mT

2 ΩTJ = −ΩTJm1 −mT
2 JΩ = −JΩm1 + Jm2Ω

therefore the above condition (5) now reads

−J
(
Ωm1 − Jm2Ω

)
= −J

(
m1Ω− Ωm2

)
which is equivalent to[

m1,Ω
]

+
[
m2,Ω

]
=
[
m1 +m2,Ω

]
, for all Ω ∈ s(k, n− k).

Then m1 +m2 = 0 hence u ∈ p as desired.
When J = 1 we are reduced to the special orthogonal group SO(n).

4. Final Remarks
We have proven that the natural decomposition of the Lie algebra asso-

ciated to a symmetric space embedded in a Euclidean space or of co-dimension
one provides the structure for the kinematic equations that describe the
rolling motion of that space upon its affine tangent space at a point. Several
examples have been provided to illustrate the results. Based on the analysis
of several examples, one of which is included at the end of the last section,
we strongly believe that the theory developed here is more general.
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