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GRAY CODES FOR NONCROSSING AND

NONNESTING PARTITIONS OF CLASSICAL TYPES

ALESSANDRO CONFLITTI AND RICARDO MAMEDE

Abstract: In this paper we present Gray codes for the sets of noncrossing par-
titions associated with the classical Weyl groups, and for the set of nonnesting
partitions of type B. An algorithm for the generation of type D nonnesting par-
titions is developed in which a Gray code is given for those partitions having a
zero-block, while the remaining are arranged in lexicographical order.

1. Introduction

One of the fundamental topics on the area of combinatorial algorithms
is the efficiently generation of all objects in a specific combinatorial class
in such a way that each item is generated exactly once, hence producing a
listing of all objects in the considered class. A common approach to this
problem has been the generation of the objects of a combinatorial class in
such a way that two consecutive items differ in some pre–specified, usually
small, way. Such generation is usually called a Gray code and, amongst the
various applications of combination generation, Gray codes are especially
valued since they usually involve recursive constructions which provide new
insights into the structure of the combinatorial class [10].
The problem of finding a Gray code for a combinatorial class can be for-

mulated as a Hamilton path/cycle problem: the vertices of the graph are the
objects themselves, and two vertices are joined by an edge if they differ in a
pre–specified way. This graph has a Hamilton path if and only if the required
listing of the objects exist. A Hamilton cycle corresponds to a Gray code in
which the first and last objects differ in the pre–specified way.
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de Coimbra, for offering him a shelter during the preparation of this paper.
The second author was partially supported by the Centre for Mathematics of the University

of Coimbra – UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MEC
and co-funded by the European Regional Development Fund through the Partnership Agreement
PT2020.

1



2 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

In [7], Huemer et al. defined a graph structure on the set of classical non-
crossing partitions by declaring two partitions adjacent if they differ by the
move of a single element from one block to another, and showed that this set
has a Hamilton cycle. Recently, this result was also obtained for the set of all
classical nonnesting partitions [6]. Classical noncrossing and nonnesting par-
titions are members of a broader class of objects, known as Coxeter-Catalan
objects, associated with the symmetric group Sn. Coxeter-Catalan combina-
torics is an active field of research, having at its core the study of objects
associated with a Coxeter group W and counted by the W -Catalan num-
bers, a generalization of the classical Catalan numbers. Two of these objects
are the noncrosing partitions, associated to each finite Coxeter group, and
the nonnesting partitions, defined for each crystallographic reflection group
W . When W is one of the classical Weyl groups, the sets of noncrossing
and nonnesting partitions, denoted NC(W ) and NN(W ) respectively, have
nice combinatorial descriptions in terms of permutation groups: the sym-
metric group is a representative for type An−1, the hyperoctahedral group
for type Bn, and the even-signed permutation group for type Dn, and their
correspondingW -Catalan numbers are 1
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, respec-
tively. These two sets of objects are not only counted by the same numbers,
but are deeply connected as they share many enumerative and combinato-
rial properties. Nevertheless, there are many gaps in our understanding of
the relations between noncrossing and nonnesting partitions (see [1] for a
comprehensive account of these objects).
In this paper we generalize the type A results of [6, 7] for Weyl groups

of type B and D, constructing Hamilton cycles for the sets of noncrossing
partitions of types B and D, and nonnesting partitions of type B, where now
we declare two type B (or D) partitions adjacent if they differ by the move
of at most two elements from one block to another. Although computational
examples suggest that the set of type D nonnesting partitions is hamiltonian
as well, we were only able to construct a Hamilton cycle on the subset formed
by all those type D nonnesting partitions without zero-block. In [6] we de-
signed an efficient algorithm for the lexicographical combinatorial generation
of nonnesting set partitions of type A, using a characterization of such parti-
tions in terms of arcs. This characterization is used in this paper to generate
all nonnesting partitions of type B and all nonnesting partitions of type D

with zero-block in lexicographical order. The concatenation of the Hamilton
path formed by all type D nonnesting partitions without zero-block with the
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lexicographic ordering of those nonnesting partitions with zero-block gives a
generating algorithm for all nonnesting partitions of type D.
The remainder of this paper is structured as follows. In Section 2 we

review the usual combinatorial models for noncrossing and nonnesting par-
titions of types A,B and D. The algorithm which will be the main tool for
our constructions is presented in section 3, and subsequently used to obtain
Hamilton cycles for the sets of noncrosing partitions of types A,B and D,
nonnesting partitions of type B, and type D nonnesting partitions without
zero-block. Our Hamilton cycle for type A noncrossing partitions is different
from the one obtained in [7], and it is needed for the construction of a Hamil-
ton cycle in the set of noncrossing partitions of type D. The generation in
lexicographical order of type B nonnesting partitions, and of those type D

nonnesting partitions having zero-block are presented in sections 3.4 and 3.5.

2. Preliminaries and notation

Let S be a finite non empty set. Throughout this paper, let

[n] = {1, . . . , n},

[±n] = {1, 2, . . . , n, 1, 2, . . . , n}

for any positive integer n, where we set i := −i.
A partition of S is a collection of mutually disjoint nonempty subsets of

S, called blocks, whose union is the entire set S. The set of all partitions of
S is denoted by Π(S). When S = [n] or S = [±n], we simply write Π(n)
and Π(±n) instead of Π([n]) and Π([±n]). A generic set partition with no
further restriction is sometimes referred to as partition of type A, because
the lattice of all set partitions of a set of n elements can be interpreted as
the intersection lattice for the hyperplane arrangement corresponding to a
root system of type An−1, i.e. the symmetric group of n letters, Sn.
Given partitions π, σ of S, their distanceD(π, σ) is defined as the minimum

number of elements that must be deleted from S so that the two residual
induced partitions are identical:

D(π, σ) = min{|Ac| : A ⊆ S, π|A = σ|A},

where Ac is the complement of A in S and π|A is the partition of A induced
by π, obtained by removing from π all the integers not in A. In other words,
D(π, σ) is equal to the minimum number of integers that must be moved
between blocks of π, possible creating a new block, so that the resulting
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partitions is σ. We call a pair (i, j) an arc of the partition π if i and j 6= i occur
in the same block and there is no other element k in the same block satisfying
i < k < j. The first coordinate i of an arc (i, j) is called an opener and the
second coordinate j is a closer of π. For example, π = 125/34/6 ∈ Π(6)
has three blocks {1, 2, 5}, {3, 4}, and {6}, and set of arcs {(1, 2), (2, 5), (3, 4)}
(when there is no ambiguity we simplify the partition notation by removing
the parenthesis and the commas within each block of a partition). The set
of openers and closers are, respectively, {1, 2, 3} and {2, 4, 5}. The standard
representation of a partition π ∈ Π(n) is obtained placing in a horizontal line
the letters 1, 2, . . . , n, in this order, and drawing an arc between the opener
and the closer of each arc (i, j) of π.

Definition 1. A partition π ∈ Π(n) is said to be noncrossing (resp. nonnest-
ing) if it does not have two arcs (i, k) and (j, ℓ) such that i < j < k < ℓ
(resp. i < j, ℓ < k).

In other words, π is noncrossing (resp. nonnesting) if and only if the
standard representation of π does not have two arcs which cross each other
(resp. two arcs one of which nest the other). We denote by NC(n) the set
of all noncrossing partitions of [n] and by NN(n) the set of all nonnesting
partitions of [n]. See Figure 2.1 for the standard representations of π =
125/34/6 ∈ NC(6) and σ = 125/346 ∈ NN(6). Note that these partitions
have distance D(π, σ) = 1.
A noncrossing partition π of [n] can also be represented in a circular

diagram, called the circular representation, obtained by placing clockwise
around a circle the integers 1, 2, . . . , n, and drawing a direct edge from ver-
tex i to vertex j whenever (i, j) is an arc of π, or when i is the least and j is
the greater element of a block. Then, π will be noncrossing if and only if for
every pair of distinct blocks B,B′ of π, the convex hulls of the vertices rep-
resenting B and B′ are disjoint. We may view the circular representation as
obtained by bending round the horizontal line of the standard representation
of π.
In the last years, these two classes of partitions have received great atten-

tion and have been generalized in many directions, both combinatorially and
algebraically. One of these directions lead to the generalization of noncross-
ing partitions to each finite reflection group W , denoted NC(W ), by Bessis
[3], Brady and Watt [4], where NC(An−1) is identified with NC[n]. In other
direction, Postnikov [11, Remark 2] defined the set NN(W ) of nonnesting
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Figure 2.1. Circular and standard representation of
125/34/6 ∈ NC(6) and standard representation of 125/346 ∈
NN(6).

partitions for each crystallographic reflection group W , where NN(An−1) is
identified with NN(n).
In this paper we consider noncrossing and nonnesting partitions over the

classical Weyl groups, which have combinatorial descriptions in terms of per-
mutation groups: the symmetric group Sn is a representative for type An−1,
the hyperoctahedral group for type Bn, and the even-signed permutation
group for type Dn. Next, we recall the combinatorial models for the non-
crossing and nonnesting partitions of types B and D following [1, 2] and
referring to [5, 8] for any undefined terminology and comprehensive refer-
ences on Coxeter groups.

2.1. Noncrossing and nonnesting partitions of types B and D. The
combinatorial models for noncrossing and nonnesting partitions of types B

and D are based on the notion of a type B partition introduced by Reiner
in [11]. A partition of type Bn is a partition π of the set [±n] such that if B
is a block of π then −B = {i : i ∈ B} is also a block of π, and there is at
most one block, called the zero-block, which satisfies B = −B.
A partition of type Dn is a partition of type Bn with the additional prop-

erty that the zero-block, when it is eventually present, has more than two
elements. The set of all partitions of type Bn is denoted by ΠB(n), and
its subset consisting of all partitions of type Dn is denoted by ΠD(n). The
posets ΠB(n) and ΠD(n) are geometric lattices which are isomorphic to the
intersection lattice of the Bn and Dn Coxeter hyperplane arrangement, re-
spectively.
For example, π = 11/235/23 5/4/4 is a partition of type B5, but not of

type D5, with blocks {2, 3, 5}, {2, 3, 5}, {4}, {4} and zero-block {1, 1}. Its
arcs are {(5, 3), (3, 2), (1, 1), (2, 3), (3, 5)}, and its set of openers and closers
are, respectively, {5, 3, 1, 2, 3} and {3, 2, 1, 3, 5}.
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If we fix the linearly ordered ground set

[±n] = {1 < 2 < · · · < n < 1 < 2 < · · · < n},

which is isomorphic, through the map i 7→ i for i ∈ [n] and i 7→ n + i for
i ∈ {1, . . . , n}, to

[2n] = {1 < 2 < . . . < n < n+ 1 < · · · < 2n},

we may define the set NC(±n), of noncrossing partitions of [±n], as the
isomorphic image of NC(2n). This allows us to define a Bn noncrossing
partitions as an element of the intersection NC(±n)∩ΠB(n). As in type A,
we may depict a noncrossing partitions π of typeBn pictorially by placing the
numbers 1, 2, . . . , n, 1, 2, . . . , n clockwise around a circle in this order, so that
n is adjacent to 1, and for each block B of π drawing the convex hull ρ(B)
of the set of vertices labeled with the elements of B. Then π is noncrossing
if and only if ρ(B) and ρ(B′) have empty intersection for any two distinct
blocks B and B′ of π. Cutting the 2n-gon between the integers n and 1 and
stretching it along a line, we get a standard representation of the noncrossing
partition π where no two arcs cross. See Figure 2.2 for an example. The set
of all noncrossing partitions of type Bn is denoted by NCB(n).
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Figure 2.2. Two type B6 noncrossing partitions:
π = 16/16/453/4 53/2/2 without zero-block, and
σ = 55/246/2 46/3/3 with zero-block.

Consider now the type Dn case. Let us label the vertices of a regular
(2n− 2)-gon as 2, 3, · · · , n, 2, 3, · · · , n clockwise, in this order, and label its
centroid with both 1 and 1. Let π ∈ ΠD(n) and for each block B of π let
ρ(B) be the convex hull of the set of vertices labeled with the elements of
B. Two blocks B and B′ of π are said to cross if ρ(B) 6= ρ(B′) and if the
intersection of the relative interior of ρ(B) and ρ(B′) is nonempty. Note that
the case ρ(B) = ρ(B′) can occur only when B and B′ are the singletons {1}
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and {1}, and that if π has a zero-block B, then B and the block containing 1
cross unless {1, 1} ⊆ B. Thus, the zero-block of π, if it is eventually present,
contains necessarily the integers 1 and 1, and at least one more pair i, i,
with i 6= ±1. A partition π ∈ ΠD(n) is said to be noncrossing if no two of
its blocks cross. The set of all type Dn noncrossing partitions is denoted by
NCD(n). See Figure 2.3 for examples of D7 noncrossing partitions.
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Figure 2.3. Two D7 noncrossing partitions: π =
146/14 6/237/2 37/5/5 without zero-block, and σ =
13471 3 4 7/56/5 6/2/2 with zero-block.

We turn now our attention to the construction of the combinatorial models
for nonnesting partitions of type Bn and Dn. Using the usual ordering, we
can identify the set

[±n] ∪ {0} = {n < · · · < 2 < 1 < 0 < 1 < 2 < · · · < n}

with

[2n+ 1] = {1 < 2 < · · · < 2n+ 1},

through the map i 7→ n + 1 − i for i ∈ [±n] and 0 7→ n + 1. With this
identification we may define the set of nonnesting partitions of [±n]∪{0} as
the set of nonnesting partitions of [2n+1]: NN([±n]∪ {0}) ∼= NN(2n+1).
Given π ∈ ΠB(n) let π0 be the partition of [±n] ∪ {0} obtained from

π by adding 0 to the zero-block if π has a zero-block, or by adding the
singleton {0} otherwise. We say that π is a type Bn nonnesting partition if
π0 ∈ NN([±n] ∪ {0}). That is, π is nonnesting if and only if the standard
representation of π0 relative to the ground set

n < · · · < 2 < 1 < 0 < 1 < 2 < · · · < n

is nonnesting. The presence of 0 in the ground set for nonnesting partitions
of type Bn is necessary to correctly represent the arc between a positive
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number i an its negative (when it is eventually present). See Figure 2.4 for
an example. Denote by NNB(n) the set of nonnesting partitions of type Bn.

5 4 3 2 1 0 1 2 3 4 5

Figure 2.4. The nonnesting partition 4455/23/23 ∈ NNB(5).

Consider now the following partial order of the set [±n]:

[±n]′ = {n < · · · < 2 < 1, 1 < 2 < · · · < n},

in which the integers 1 and 1 are not comparable. Using the obvious map,
we identity this set with [2n], and thus we can identify the set NN([±n]′) of
nonnesting partitions of [±n]′ with the set NN(2n), for which, according to
definition 1, an arc with 1 as closer and another one with 1 as closer are not
considered nested. A partition π ∈ ΠD(n) is said to be a Dn nonnesting
partition if the zero-block, if present, contains the integers ±1 and π ∈
NN [±n]′. Denote by NND(n) the set of nonnesting partitions of type Dn.
An example of a nonnesting partition of type D5 is depicted in example 2.5.

5 4 3 2 1 1 2 3 4 5

Figure 2.5. The nonnesting partition 412/1 24/35/35 ∈ NND(5).

3. Gray codes for noncrossing and nonnesting partitions

Let TA(n) denote one of the sets NC(n) or NN(n), and let Tψ(n) denote
on of the sets NCψ(n) or NNψ(n), for ψ = B or ψ = D. We can endow TA(n)
(resp. Tψ(n)) with a graph structure by declaring two partitions adjacent if
their distance is 1 (resp. 1 or 2). An Hamilton path with distance 1 in TA(n)
(resp. 2 in Tψ(n)) corresponds to an exhaustive sequence of all partitions in
TA(n) (resp. Tψ(n)) such that the distance between two successive partitions
is 1 (resp. 1 or 2), and thus it gives a Gray code for these objects. If this path
is closed we have an Hamilton cycle. We use the same notation for the set
of partitions and the corresponding graph. We point out that the distance
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between the partition π = {±1,±2, . . . ,±n} ∈ Π(±n), with only one block,
and any other type B or type D partition is at least 2, and thus there is
no Gray code with distance 1 for the sets NCB(n), NNB(n), NCD(n) and
NND(n).
Given partitions π, σ in TA(n) or Tψ(n), we will write π ∼ σ to indicate that

π and σ are adjacent. Moreover, to simplify notation, if π′ is a partition of
some set S ⊂ [n], (resp. S ⊆ [±n]) we will often write π = π′/sing to denote
the partition of [n] (resp. [±n]) where π|S = π′ and sing is the all singleton
partition of [n] \ S (resp. [±n] \ S), that is the partition of [n] \ S (resp.
[±n] \ S) where each block has only one element. In particular, π = sing
denotes the all singleton partition of [n] (resp. [±n]).
The children of a partition π ∈ TA(n − 1) are defined as the partitions in

TA(n) obtained from π by adjoining the letter n to one of its blocks, or by
adding the singleton block {n}. We denote by π∗ = π/n this last child of π
and let C(π) be the set of all children of π. Any partition in TA(n) has a
unique parent in TA(n− 1).
Similarly, for types B and D the children of a partition π ∈ Tψ(n− 1) are

defined as the partitions in Tψ(n) obtained from π by adjoining the letters n
and n to some of its blocks, or by adding the zero-block {±n} (only possible
in type B if π has no zero-block), or the singletons blocks {n} and {n}. We
denote by π∗ = π/n/n this last child of π and let C(π) be the set of all
children of π. Any partition in TB(n) has a unique parent in TB(n − 1),
but this property is no longer valid in type D. Due to the restrictions on
the cardinality of the zero-block, there are partitions in TD(n) which have
no parent in TD(n − 1). For instance, the D3 noncrosing partition π =
{±1,±3}/2/2 is not a child of any partition in NCD(2).
The following result is immediate from the definitions.

Lemma 1. If π1 and π2 are children of the same partition π ∈ Tψ(n − 1),
then π1 ∼ π2 for any ψ = A,B or D.

The main tool for constructing the Gray codes is the following algorithm.
It transforms a sequence of sets C1, . . . , Cs, where each set Ci is a collection
of partitions of [n− 1] (or [±(n− 1)]) with two distinct elements π∗i and π⋄i
such that π∗i−1 ∼ π∗i and π⋄i−1 ∼ π⋄i for all i, into an ordered sequence of
partitions of [n] (or [±n]).

Algorithm 1.

Input: A sequence of sets C1, . . . , Cs of partitions of [n − 1] (or [±(n − 1)])
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such that for each i ∈ [s− 1] there are π∗i 6= π⋄ii ∈ Ci and π
∗
i+1 6= π⋄ii+1 ∈ Ci+1

with π⋄ii ∼ π⋄ii+1.

1. Start with π∗1 and transverse in any order all other elements of C1,
ending in π⋄11 . Let π••1 := π⋄11 .

2. For i = 2 to s− 1 do
Go to π•i and transverse, in any order, the remaining elements of

Ci, ending in π••i , where π•i =

{

π∗i , if π••i−1 = π∗i−1

π
⋄i−1

i , if π••i−1 = π
⋄i−1

i−1

and

π••i =

{

π∗i , if π•i = π
⋄i−1

i

π⋄ii , if π•i = π∗i
.

3. Go to π•s and transverse, in any order, all other elements of Cs, where

π•s =

{

π∗s , if π••s−1 = π∗s−1

π
⋄s−1

s , if π••s−1 = π
⋄s−1

s−1

.

5. End.

Note that when we apply Algorithm 1 to the input sequence C1, . . . , Cs,
then for each even (resp. odd) integer i ∈ [s− 1], the last partition of Ci to
be placed into the output sequence is π∗s (resp. π

⋄s−1

s ).

3.1. Type A noncrossing partitions. The next result shows that among
the children of two partitions with distance 1 in NC(n) there are at least
two pairs of children also with distance 1.

Lemma 2. Let σ, π ∈ NC(n − 1) with σ ∼ π and n ≥ 3. Then, there are

children σ⋄ ∈ C(σ) and π⋄ ∈ C(π) such that σ⋄ 6= σ∗, π⋄ 6= π∗, and σ⋄ ∼ π⋄.

Proof : If σ = sing is the all singleton partition, then we must have π =
ij/sing, for some i < j in [n − 1]. In this case, the partitions σ⋄ and π⋄,
obtained from σ and π by placing the letter n in the blocks containing the
letter i, satisfy the required condition. Notice also that σ⋄ is never equal to
the partition n(n− 1)/sing.
Assume now that neither σ nor π is the all singleton partition of [n − 1].

Let σ = B1/B2/σ
′ and π = B′

1/B
′
2/σ

′, such that j ∈ B1 and B′
1 = B1 \ {j}

and B′
2 = B2 ∪ {j}. If j 6= 1 then let σ⋄ and π⋄ be obtained from σ and π

by placing the letter n in the blocks containing the letter 1. Otherwise j = 1
and we let σ⋄ and π⋄ be obtained from σ and π by placing the letter n in
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the blocks containing the letter n − 1. In any case the partitions σ⋄ and π⋄

satisfy the required conditions.

1
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Figure 3.1. An Hamilton cycle in NC(3)
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Figure 3.2. An Hamilton cycle in NC(4)

Theorem 3. For n ≥ 2 there is an Hamilton cycle π1, . . . , πs−1, πs in NCA(n)
which starts with the all singleton partition π1 = sing and ends with the

partitions πs−1 = n(n − 1)(n − 2)/sing and πs = n(n − 1)/sing, where

s = 1
n+1

(

2n
n

)

.

Proof : The proof is by induction on n ≥ 2. The case n = 2 is trivial and the
cases n = 3, 4 are depicted in Figures 3.1 and 3.2. Assume the result holds
for n − 1 ≥ 3 and let π1, . . . , πs−1, πs be an Hamilton cycle in NCA(n − 1),
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with π1 = 1/2/ · · · /(n − 1), πs−1 = (n − 1)(n − 2)(n − 3)/1/2/ · · ·/(n − 4)
and πs = (n− 1)(n− 2)/1/2/ · · ·/(n− 3).

Let π†1 = n(n− 1)/sing ∈ C(π1), π
†
s = n(n− 1)(n− 2)/sing ∈ C(πs), and

consider the sequence C1, . . . , Cs, defined by C1 = C(π1) \ {π
†
1}, Ci = C(πi),

for i = 2, . . . , s− 1, and Cs = C(πs) \ {π
†
s}. For i ∈ [s− 1], consider also the

partitions π∗i 6= π⋄ii ∈ Ci and π
∗
i+1 6= π⋄ii+1 ∈ Ci+1 obtained in lemma 2 applied

to the pair πi ∼ πi+1. The construction of an Hamilton cycle for NCA(n)
results of the application of Algorithm 1 to the sequence C1, . . . , Cs, followed
by the partitions π†s and π

†
1, which satisfy π†s ∼ π†1.

Lemmas 1 and 2 show that any two consecutive partitions in the sequence
given by the algorithm above have distance 1, as well as the first and last
partition. Moreover, this sequence exhausts all elements of NC(n), since any
partition on this set has a unique parent in NC(n − 1). It remais to show

that σ†
1 6= π⋄11 and that σ†

s 6= π
⋄s−1

s when s − 1 is odd, since by construction
σ†
s 6= π∗s . The first inequality follows immediately from Lemma 2, since π⋄11

is obtained by adding the letter n to the singleton containing some letter
i < n− 1. For the second inequality, notice that again by Lemma 2, if n ≥ 4
then π

⋄s−1

s−1 and π
⋄s−1

s are obtained from πs−1 and πs by placing the letter n in
the blocks containing the letter 1, and so we must have σ†

s 6= π⋄s . Note that
when n = 3, we have π⋄s = π†s, but in this case s − 1 is even and the sets
C(πs−1) and C(πs) are linked by π∗s−1 and π

∗
s .

See Figure 3.2 for an Hamilton cycle in NC(4) constructed by applying
the algorithm described above, starting from the Hamilton cycle for NC(3)
given in Figure 3.1.

3.2. Type B noncrossing partitions. As in type A, we start by showing
that among the children of two distinct partitions with distance less that
or equal to 2 in NCB(n) there are at least two pairs of children also with
distance less that or equal to 2.

Lemma 4. Let σ, π ∈ NCB(n − 1) with σ ∼ π and n ≥ 3. Then, there are

children σ⋄ ∈ C(σ) and π⋄ ∈ C(π) such that σ⋄ 6= σ∗, π⋄ 6= π∗, and σ⋄ ∼ π⋄.

Proof : First assume that σ = sing is the all singleton partition in [±(n−1)].
Then we must have either π = ±i/sing or π = ij/ i j/sing, where in each
case sing is the appropriated all singleton partition and |i| < |j| ∈ [n − 1].
Let σ⋄ and π⋄ be obtained from σ and π by adding the letters n and n to
the blocks having the letter |i| and |i|, respectively.
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In any other case there must be an integer j ∈ [n− 1] such that j and/or
j change blocks between partitions σ and π. Now, if j 6= 1 then define σ⋄

and π⋄ as the partitions obtained from σ and π adding the letters n and n
to the blocks having the letters 1 and 1, respectively. Otherwise, σ⋄ and π⋄

are obtained by adding the letters n and n to the blocks of σ and π having
the letter n− 1 and n− 1, respectively.
In any case, the partitions σ⋄ and π⋄ are noncrossing and their distance is

2.

1
21

2 1
21

2 1
21

2 1
21

2

1
21

2 1
21

2

Figure 3.3. An Hamilton cycle in NCB(2)

The construction of a Gray code for the noncrossing partitions of type B,
given in the next result, follows the same lines used in type A.

Theorem 5. For n ≥ 2 there is an Hamilton cycle π1, . . . , πs−1, πs in NCB(n)
which starts with the all singleton partition π1 = sing and ends with the

partitions πs−1 = {±n,±(n− 1)}/sing and πs = ±n/ sing, where s =
(

2n
n

)

.

Proof : The proof is by induction on n ≥ 3. The cases n = 2, 3 are de-
picted in figures 3.3 and 3.4. Assume the result holds for n − 1 ≥ 3
and let π1, . . . , πs−1, πs be an Hamilton cycle in NCB(n − 1), with π1 =
1/ 1/ · · · /(n− 1)/ n− 1, πs−1 = {±(n− 2),±(n− 1)}/1/ 1/ · · · /n− 3/ n− 3
and πs = ±(n− 1)/1/ 1/ · · · /n− 2/ n− 2.

Consider the partitions π†1 = ±n/sing and π†s = {±n,±(n − 1)}/sing,
children of π1 and πs respectively, and construct the sets C1, . . . , Cs, where
C1 = C(π1) \ {π

†
1}, Ci = C(πi), for i = 2, . . . , s − 1 and Cs = C(πs) \ {π

†
s}.

For each i = 1, . . . , s − 1, consider also the partitions π∗i 6= π⋄ii ∈ Ci and
π∗i+1 6= π⋄ii+1 ∈ Ci+1, obtained in Lemma 4 applied to the pair πi ∼ πi+1.
Finally, consider the sequence obtained applying Algorithm 1 to the se-

quence C1, . . . , Cs, followed by π†s and π
†
1.
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We have π†s ∼ π†1 and, as in the proof of Theorem 3, we can use Lemmas
1 and 4 to show that any other two consecutive partitions in the sequence
obtained by the algorithm above have distance less that or equal to 2, as well
as the first and last partition. Moreover, this sequence exhausts all elements
of NCB(n), since any partition on this set has a unique parent in NCB(n−1).

It remais to show that π†1 6= π⋄11 and, since the integer s =
(

2(n−1)
n−1

)

is even (see

for instance [9]), that π†s 6= π
⋄s−1

s . The first inequality follows immediately
from Lemma 4, since π⋄11 is obtained by adding the letters n and n to the
singletons containing some letter i < n− 1 and i. For the second inequality,
notice that again by Lemma 4, π

⋄s−1

s−1 and π
⋄s−1

s are obtained from πs−1 and πs
by placing the letters n and n in the blocks containing the letters 1 and 1,
respectively, and so we must have π†s 6= π

⋄s−1

s .

3.3. Type D noncrossing partitions. For the construction of a Gray code
for the set of all noncrossing partitions of type Dn, we start by identifying
the partitions in NCD(n) which have a parent in NCD(n− 1).

Lemma 6. A partition π ∈ NCD(n) is a child of some partition in NCD(n−
1) if and only if its zero-block, when present, is not the set {±1,±n}.

Proof : Any partition π ∈ NCD(n) whose zero-block, when present, is not
{±1,±n}, is a child of the type Dn−1 noncrossing partition obtained from
π by removing the letters ±n. On the other hand, if {±1,±n} is the zero-
block of π, then it cannot be a child of a Dn−1 noncrossing partition, since
the zero-block of any such partition must have at least four elements, ±1 and
±j, for some |j| ≤ n− 1, and thus the distance between the children of any
such partition and π is at least equal to 4.

Lemma 7. Let σ, π ∈ NCD(n − 1) with σ ∼ π and n ≥ 3. Then, there are

children σ⋄ ∈ C(σ) and π⋄ ∈ C(π) such that σ⋄ 6= σ∗, π⋄ 6= π∗, and σ⋄ ∼ π⋄.

Proof : First assume that σ = sing is the all singleton partition in [±(n−1)].
Then we must have π = ij/ i j/sing, where |i| < |j| ∈ [n− 1]. Let σ⋄ and π⋄

be obtained from σ and π by adding the letters n and n to the blocks having
the letter |j| and |j|, respectively.
If σ = {±1,±(n− 1)}/sing and π has the same zero-block as σ, then we

must have

π = {±1,±(n− 1)}/ij/ i j/sing,
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Figure 3.4. An Hamilton cycle in NCB(3)

for some integers positive integers i, j ∈ [2, n− 1]. In this case we let σ⋄ and
π⋄ be the partitions obtained from σ and π by adding the letters n and n to
the blocks having the letters 2 and 2, respectively.
In any other case there must be an integer j ∈ [n− 1] such that j and/or

j change blocks between partitions σ and π. Now, if j 6= 2 then define σ⋄

and π⋄ as the partitions obtained from σ and π adding the letters n and n
to the blocks having the letters 2 and 2, respectively. Otherwise, σ⋄ and π⋄

are obtained by adding the letters n and n to the blocks of σ and π having
the letter n− 1 and n− 1, respectively.
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In all cases, the partitions σ⋄ and π⋄ are noncrossing and their distance is
2.

We are now ready to start the construction of an Hamilton cycle with
distance 2 in NCD(n). This construction will make use of the construction
made for An noncrossing partitions given in Theorem 3.

Theorem 8. For n ≥ 2 there is an Hamilton path π1, π2, . . . , πs−1, πs in

NCD(n) such that π1 = sing, π2 = {1, n}/{1, n}/sing, π1 ∼ π3 and πs =
{±1,±n}/sing, where s =

(

2n
n

)

−
(

2n−2
n−1

)

. Moreover, when n ≥ 4, the zero-

block of πs−1 is {±1,±n}.

Proof : The proof is by induction on n ≥ 3. The cases n = 2, 3 are depicted
in Figures 3.5 and 3.6. Assume the result holds for n − 1 ≥ 3 and let
π1, π2, . . . , πs be an Hamilton path in NCD(n− 1), with π1 = 1/ 1/ · · · /(n−
1)/ n− 1, π2 = {1, n − 1}/{1, n− 1}/sing, π1 ∼ π3 and πs = {±1,±(n −
1)}/sing. For the construction of an Hamilton path for NCD(n) we start by
ordering the elements of C(π1): start with π

∗
1, π

′
1 and transverse in any order

the remaining children of π1, ending in π′′′1 = {n − 1, n}/{n− 1, n}/sing,
where

π′1 = {1, n}/{1, n}/sing.

Next, apply Algorithm 1 to the sequence C2, . . . , Cs, followed by π†s, where
Ci = C(πi), for i = 2, . . . , s−1, and Cs = C(πs)\{π

†
s} with π†s = {±1,±(n−

1),±n}/sing, and where for each i = 2, . . . , s−1, the partitions π∗i 6= π⋄ii ∈ Ci
and π∗i+1 6= π⋄ii+1 ∈ Ci+1 are the ones obtained by Lemma 7 applied to the
pair πi ∼ πi+1.
Since the set C(π1) has more than 4 elements, by Lemma 1 the distance

between π∗1 and the third element considered in the first step of the algorithm
above is at most 2. Note that π′′′1 ∼ π∗2 = {1, n − 1}/{1, n− 1}/sing. For
the algorithm to work we need to show that π†s 6= π

⋄s−1

s whenever s − 1 is
even, that is whenever the last child of πs−1 to be placed in the sequence
is π

⋄s−1

s−1 (note that by construction, π†s 6= π∗s). When n − 1 = 3 the integer
s − 1 is odd and thus the last child of πs−1 in the sequence is π∗s−1 as we
can check in Figure 3.6. For n − 1 ≥ 4 the partitions πs−1 and πs share the
same zero-block {±1,±(n− 1)}, and thus by Lemma 7 we have π†s 6= π

⋄s−1

s .
Therefore, the construction above originates a sequence σ1, . . . , σt of type D



GRAY CODES FOR NONCROSSING AND NONNESTING PARTITIONS 17

noncrossing partitions of [±n], with

σ1 = π∗1 = sing,

σ2 = {1, n}/{1, n}/sing,

σ1 ∼ σ3 and

σt = π†s = {±1,±(n− 1),±n}/sing.

Next, use Theorem 3 and the obvious isomorphism NC[n−2] ∼= NC[2, n−
1] to obtain an Hamilton cycle ω1, . . . , ωq for type A noncrossing partitions
of [2, n−1] = {2, 3, . . . , n−1}, where ω1 = 2/ · · · /n−1 and ωq = {n−1, n−
2}/2/ · · · /n− 3. Define

σt+ℓ := {±1,±n}/ωℓ/ωℓ,

for each ℓ = 1, . . . , q, where q = #NC(n − 2) ≥ 2 since we are assuming
n− 1 ≥ 3. Finally, consider the sequence

σ1, . . . , σt, σt+q, . . . , σt+1. (3.1)

We claim that (3.1) is an Hamilton path for NCD(n).
First, note that by direct inspection we have

σt ∼ σt+q = {±1,±n}/{n− 1, n− 2}/{n− 1, n− 2}/sing.

Moreover, the distance between any other two consecutive integers of the
sequence (3.1) is 1 or 2 by Lemma 7 and Theorem 3.
Finally, by Lemma 6, any partition π ∈ NCD(n) whose zero-block, when

present, is not {±1,±n}, is a child of some type D noncrossing partition of

[n− 1], and thus it must be one of the partitions σ1, . . . , σt, π
†
1. If {±1,±n}

is the zero-block of π, then it is not a child of a type D partition of [n− 1],
and any other block B of π must satisfy B ⊆ [2, n − 1] or −B ⊆ [2, n −
1]. Therefore, the positive part of π, excluding the zero-block, is a type A

noncrossing partition of [2, n− 1]. It follows that (3.1) is an exhaustive list
of the type D noncrossing partitions of [n].

See Figure 3.6 for an Hamilton path in NCD(3) constructed by applying
the algorithm described in the theorem above, starting from the Hamilton
path for NCD(2) given in Figure 3.5. In this case, n = 3, there is only
one partition with zero-block {±1,±n} since the set of type A noncrossing
partitions NC(n− 2) = NC(1) has only one element.

Corollary 9. For n ≥ 2 there is an Hamilton cycle in NCD(n).



18 ALESSANDRO CONFLITTI AND RICARDO MAMEDE

22
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22 1
1 22 1

1
22

±1

Figure 3.5. An Hamilton cycle in NCD(2)

Proof : The case n = 2 is given in Figure 3.5. For n ≥ 3 consider the Hamilton
path π1, π2, π3, . . . , πs−1, πs of NCD(n), given by the theorem above, where
π1 = sing, π2 = {1, n}/{1, n}/sing, π1 ∼ π3, and πs = {±1,±n}/sing. Since
πs ∼ π2 ∼ π1, it follows that the sequence

π1, π3, . . . , πs−1, πs, π2

is an Hamilton cycle in NCD(n).
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Figure 3.6. An Hamilton path in NCD(3)

3.4. Type B nonnesting partitions. We turn now our attention to the
exhaustive listing of nonnesting partitions of types Bn and Dn, starting with
the construction of an Hamilton cycle in type B.
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Lemma 10. Let σ, π ∈ NNB(n− 1) with σ ∼ π and n ≥ 3. Then, there are

children σ⋄ ∈ C(σ) and π⋄ ∈ C(π) such that σ⋄ 6= σ∗, π⋄ 6= π∗, and σ⋄ ∼ π⋄.

Proof : If the letters n− 1 and n− 1 don’t change blocks between the parti-
tions σ and π, then let σ⋄ and π⋄ be the partitions obtained from σ and π
by placing the letters n and n in the blocks containing the letters n− 1 and
n− 1, respectively. Otherwise, set σ⋄ and π⋄ as the partitions obtained from
σ and π by placing the letters n and n in the blocks containing the letters
n− 2 and n− 2, respectively. It is clear that σ⋄ and π⋄ satisfy the required
conditions.

Theorem 11. For n ≥ 2 there is an Hamilton cycle π1, . . . , πs−1, πs in

NNB(n) which starts with the all singleton partition π1 = sing and ends

with the partition πs = {±1}/ sing, where s =
(

2n
n

)

.

Proof : The proof is by induction over n ≥ 2. The cases n = 2 is depicted in
Figure 3.7. Assuming the result for n− 1 ≥ 2, let π1, . . . , πs be an Hamilton
cycle for the type B nonnesting partitions of [n − 1], with π1 = sing and
πs = {±1}/ sing.
Apply Algorithm 1 to the sequence C1, . . . , Cs, where Ci = C(πi) for i =

1, . . . , s− 1 and Cs = C(πs) \ {π
∗
s}, with

π∗s = ±1/n/n/sing ∈ NC(n),

and for each i = 1, . . . , s− 1, the partitions π∗i 6= π⋄ii ∈ Ci and π
∗
i+1 6= π⋄ii+1 ∈

Ci+1 are the ones obtained by Lemma 10. Let σ1, . . . , σq−1, with q =
(

2n
n

)

, be
the sequence of partitions obtained by this procedure, and add at its right
end the partition σq = π∗s .

Note that since the integer s =
(

2(n−1)
n−1

)

is even (see for instance [9]), the

first child of C(πs) to be placed in the sequence is π
⋄s−1

s . By Lemmas 1 and
10, any two consecutive partitions of σ1, . . . , σq have distance at most 2, and
σq ∼ σ1 = π∗1 = sing. Finally, since each partition in NNB(n) is a child of a
unique partition in NNB(n− 1), the sequence σ1, . . . , σq is a complete list of
all Bn nonnesting partitions. Thus it forms an Hamilton cycle with distance
2 for the set NNB(n).

In [6], an algorithm GenTot(n) was presented to generate all type A

nonnesting partitions of [n] in lexicographic order of their arcs, i.e. first
according to the number of arcs and then, for partitions with the same num-
ber of arcs, according to their openers.
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2 1 0 1 2 2 1 0 1 2 2 1 0 1 2

2 1 0 1 22 1 0 1 22 1 0 1 2

Figure 3.7. An Hamilton cycle in NNB(2)

Using the identification of type Bn nonnesting partitions with type Bn

partitions of NN([±n]∪{0}) ∼= NN(2n+1), we may define a type B lexico-
graphic order on the set NNB(n) as in typeA, that is, we order the partitions
first according to the number of arcs and then, for partitions with the same
number of arcs, according to the openers of their arcs.
With this definition, we can use the GenTot(n) algorithm of type An to

generate in lexicographic order all type Bn nonnesting partitions as follows.
First, apply GenTot(2n+1) to list all nonnesting partitions of [2n+1] in lex-
icographic order. Using the identification [2n+1] ∼= [±n]∪{0}, translate all
partitions in the list into partitions of the set NN([±n]∪{0}). Then, accord-
ing to the definitions, the sublist formed by all those partitions with at most
one zeroblock and for which for each arc (i, j) there is also the arc (−j,−i) is
the list of all type Bn nonnesting partitions arranged in lexicographic order.

Proposition 12. The procedure above combinatorially generates all type B

nonnesting partitions of [n] in lexicographic order.

2 1 0 1 2
≤ℓ

2 1 0 1 2
≤ℓ

2 1 0 1 2

[ℓ

2 1 0 1 2
≥ℓ

2 1 0 1 2
≥ℓ

2 1 0 1 2

Figure 3.8. The elements of NNB(2) in lexicographic order.

3.5. Type D nonnesting partitions. We were not able to construct a
Gray code for type D nonnesting partitions, but we present a construction
for the generation of all partitions in NND(n). This construction has two
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steps. First we construct a Gray code for all type D nonnesting partitions
without zero-block, and then we give a list in lexicographic order of all those
nonnesting partitions having zero-block. The union of these two lists gener-
ates all elements in NND(n).
As for noncrossing partitions of type Dn, we can identify the nonnesting

partitions in NND(n) which have a parent in NND(n− 1).

Lemma 13. A partition π ∈ NND(n) is a child of some partition in NND(n−
1) if and only if its zero-block, when present, is not the set {±1,±n}.

Proof : Analogous to the proof of Lemma 6.

Lemma 14. Let σ, π ∈ NND(n− 1) with σ ∼ π and n ≥ 3. Then, there are

children σ⋄ ∈ C(σ) and π⋄ ∈ C(π) such that σ⋄ 6= σ∗, π⋄ 6= π∗, and σ⋄ ∼ π⋄.

Proof : If the letters n− 1 and n− 1 don’t change blocks between the parti-
tions σ and π, then let σ⋄ and π⋄ be the partitions obtained from σ and π
by placing the letters n and n in the blocks containing the letters n− 1 and
n− 1, respectively. Otherwise, set σ⋄ and π⋄ as the partitions obtained from
σ and π by placing the letters n and n in the blocks containing the letters
n− 2 and n− 2, respectively. It is clear that σ⋄ and π⋄ satisfy the required
conditions.

Proposition 15. For n ≥ 2 there is an Hamilton cycle π1, . . . , πs−1, πs in

the subset of NND(n) formed by those partitions without zero-block with π1 =
sing, πs = 12/1 2/sing and πs−1 = 12n/1 2n/sing if n ≥ 3, or πs−1 = 12/12
if n = 2.

Proof : The proof is by induction over n ≥ 3. The cases n = 2 and n = 3
are depicted in Figures 3.9 and 3.10. Assuming the result for n − 1 ≥ 3,
let π1, . . . , πs−1, πs be an Hamilton cycle for the type Dn nonnesting par-
titions of [±(n − 1)] without zero-block, with π1 = sing, πs−1 = 12(n −
1)/1 2(n− 1)/sing and πs = 12/1 2/sing. Next, apply the first two steps of
Algorithm 1 to the first s−1 sets of the sequence C1 = C(π1), . . . , Cs = C(πs).
Following the application of Algorithm 1, if the sets C(πs−1) and C(πs) are

to be linked by π
⋄s−1

s−1 and π
⋄s−1

s , then by Lemma 14 we must have π
⋄s−1

s =
12/1 2/(n−2)n/(n− 2)n/sing. Transverse the remaining children of πs end-
ing with 12n/1 2n/sing and π∗s = 12/1 2/sing. On the other hand, if C(πs−1)
and C(πs) are to be linked by π∗s−1 and π

∗
s , then replace π∗s with its sibling

σ = 12/1 2/(n− 1)n/(n− 1)n/sing ∈ C(πs),
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which satisfy π∗s−1 ∼ σ. Transverse the remaining children of πs ending with
12n/1 2n/sing and π∗s = 12/1 2/sing.
By Lemmas 1 and 14, any two consecutive partitions in the sequence gen-

erated by this algorithm have distance at most 2. Since by Lemma 13 anyDn

nonnesting partition without zero-block is the child of a uniqueDn−1 nonnest-
ing partition without zero-block, it follows that the sequence obtained by the
procedure above is an exhaustive list of the elements of NND(n) with no
zero-block.

2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

Figure 3.9. An Hamilton path in NND(2) with an Hamilton
cycle for the partitions without zero-block.

Since a type Dn nonnesting partition with zero-block must have an arc
(1, 1), then no arc (i, j) linking a negative integer i to a positive integer j
can exist in such partition, since otherwise we would have a nest: i < 1, 1 <
j. Thus, if we restrict ourselves to the subset of NND(n) formed by those
nonnesting partition π having a zero-block, then any other block B of π
satisfy B ⊂ [2, n] or −B ⊂ [2, n]. This property can be used to order all
type Dn nonnesting partition with zero-block, according to the openers of its
positive arcs.
Apply the algorithm GenTot(n) given in [6] to generate in lexicographic

order the list of all type A nonnesting partitions of [n], and consider the
sublist π1, . . . , πk formed by those nonnesting partitions in which the integer
1 is in a non-singleton block. For each partition πi = B1/ · · · /Bℓ in this
sublist, where 1 ∈ B1, let −πi = −B1/ · · · /−Bℓ be the nonnesting partition
of [−n,−1] obtained by negating all integers of π, and let

π′i = B1 ∪ −B1/B2/ · · · /Bℓ/− B2/ · · · /− Bℓ

be the partition of [±n] obtained from the union of πi with −πi with the
blocks containing 1 and −1 merged. It follows that π′i is a typeDn nonnesting
partition with zero-block B1 ∪ −B1. Moreover, from the discussion above,
all type Dn nonnesting partition with zero-block arise from this process. It
follows that π′1, . . . , π

′
k is a list of all type D nonnesting partitions of [n] that
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have zero-block, arranged in lexicographic order according to the openers
of its positive arcs. Note also that by construction and definition of the
lexicographic order, we must have π′1 = {±1,±2}/sing.

Proposition 16. The procedure above combinatorially generates all type D

nonnesting partitions of [n] that have zero-block, in lexicographic order, start-

ing with the partition {±1,±2}/sing.

Concatenating the Hamilton path π1, . . . , πs formed by all nonnesting par-
titions of NND(n) without zero-block given by Proposition 15 with the se-
quence πs+1, . . . , πs+t, of all nonnesting partitions of NND(n) with zero-block
obtained in Proposition 16, we get the sequence

π1, . . . , πs, πs+1, . . . , πs+t

of all partitions in NND(n), where

πi ∼ πi+1, for i = 1, . . . , s,

and

πi ≤ℓ πi+1, for i = s+ 1, . . . , s+ t− 1 (lexicographical order).

See Figure 3.10 for the list of partitions in NND(3) with an Hamilton
cycle for the partitions without zeroblock, and the partitions with zero-block
arranged in lexicographic order.

3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3

3 2 1 1 2 33 2 1 1 2 33 2 1 1 2 3

3 2 1 1 2 33 2 1 1 2 33 2 1 1 2 3

3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3

Figure 3.10. The list of partitions inNND(3) with an Hamilton
cycle for the partitions without zeroblock.
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