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Universidade de Coimbra
Preprint Number 15–32
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ABSTRACT: It is well known that a locale is subfit iff each of its open sublocales
is a join of closed ones, and fit iff each of its closed sublocales is a meet of open
ones. This formulation, however, exaggerates the parallelism between the behavior
of fitness and subfitness. For it can be shown that a locale is fit iff each of its
sublocales is a meet of closed ones, but it is not the case that a locale is subfit iff
each of its sublocales is a join of closed ones.

Thus we are led to take up the very natural question of which locales have the
feature that every sublocale is a join of closed sublocales. In this note we show that
these are precisely the subfit locales which are scattered in the pointfree sense of
[13], and we add a variation for spatial frames.
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Introduction

The problem we solve in this paper is one of point-free topology, but it
can be explained in terms familiar to a reader unacquainted with this area.
Think of the objects of point-free topology, the locales, as generalized (topo-
logical) spaces and of their sublocales as generalized subspaces. It is impor-
tant to understand that a locale that represents a classical space typically
has more sublocales then just those that correspond to classical subspaces.
In fact, only very special spaces, the so called weakly scattered ones, have
only classical subspaces ([18, 9]; see also 4.2 below.) Nevertheless, the
family of all sublocales of a given locale constitutes a nice complete lattice,
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although in general not a Boolean algebra, as subspaces of space do. How-
ever, there are well-defined open and closed sublocales which, in the case of
spaces, correspond precisely to classical open and closed subspaces.

Two separation properties, subfitness and fitness – see 1.3 below – play an
important role in pointfree topology. Subfitness, when applied to a space, is
a condition slightly weaker than T1, and fitness is akin to, but weaker than,
regularity. These properties have the following elegant characterizations in
terms of the lattice of sublocales:

• A locale is subfit iff each of its open sublocales is a join of closed
ones.

• A locale is fit iff each of its closed sublocales is a meet of open ones.

In fact, these were the original definitions given by Isbell when he intro-
duced these concepts in [7]. One also has a formally stronger condition
characterizing fitness.

• A locale is fit iff each of its sublocales is a meet of open ones.

This immediately begs the question of which locales have the feature that
every sublocale is a join of closed ones. One sees at once that this is too
strong to be equivalent to subfitness; in fact, it is not even equivalent for
spaces and subspaces (see, e.g., [12] – of course such a strong parallelism
could have been hardly expected: we do not have the necessary De Morgan
law in the coframe of sublocales).

In this paper we show that the property that every sublocale is a join of
closed sublocales is equivalent to the point-free variant of scatteredness in
the sense of [13, 14]), together with subfitness. Furthermore, we show
that in the case of locales representing classical spaces, this condition is
equivalent to classical scatteredness together with T1.

1.Preliminaries

Basic notation. For a subset A of a poset (X,6) we write

↑A ≡ {x : ∃ a ∈ A (x > a)},

and we abbreviate
x

{a} to ↑a . The subsets A for which A = ↑A are referred
to as up-sets. Down-sets are defined and designated dually. If we wish to
emphasize the context, we write ↑XA for {x ∈ X : ∃a ∈ A (x > a)}.
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Monotone maps f : (X,61) → (Y,62) and g : (Y,62) → (X,61) are in a
Galois adjunction, f to the left and g to the right, if

f(x) 6 y ⇐⇒ x 6 g(y).

Recall that left adjoints preserve suprema and right adjoints preserve in-
fima, and conversely, if the posets are complete lattices then any monotone
map preserving suprema (infima) has a right (left) adjoint. The dual of a
poset P = (X,6) will be designated by Pop, and the dual of a category C
will be designated by Cop.

A frame is a complete lattice L satisfying the distributive law

(
∨

i∈J

ai)∧ b =
∨

i∈J

(ai ∧ b)

for all subsets {ai : i ∈ J} ⊆ L and elements b ∈ L. A frame homomorphism
h : L → M preserves all joins and all finite meets.

A typical frame is the lattice Ω(X) of all open sets of a topological space X,
and if f : X → Y is a continuous map then we have a frame homomorphism
Ω(f) = (U 7→ f−1[U]) : Ω(Y) → Ω(X). This constitutes a functor

Ω : Top → Frmop;

the category Frmop is often referred to as the category of locales, designated
Loc. If L is isomorphic to an Ω(X) we speak of a spatial frame L.

The Heyting structure. The frame distributivity law given above can be
interpreted as saying that each map (−) ∧ b preserves all suprema. Thus
there are right adjoints b → (−) providing the frame with a Heyting struc-
ture such that

a∧ b 6 c ⇐⇒ a 6 b → c.

In particular, the symbol x → y will receive heavy use in the sequel.
Note that the Heyting structure also provides self-adjunctions (−) →

c : L → Lop and (−) → c : Lop → L, which yield the formula
∨

i

ai → b =
∧

i

(ai → b).

In particular, each frame is pseudocomplemented with the pseudocomple-
ments given by

a∗ = a → 0.
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In Ω(X) this works out to U∗ = XrU. If a happens to have a complement
then it coincides, of course, with the pseudocomplement, and we use the
symbol a∗ in that case as well.

We write a ≺ b to mean that a∗ ∨ b = ⊤. Note that in Ω(X),

U ≺ V ⇐⇒ U ⊆ V.

A frame L is regular if

a =
∨

b≺a

b, a ∈ L.

We immediately see that Ω(X) is regular iff the space X is regular in the
standard sense.

A frame L is zero-dimensional if it is join-generated by its complemented
elements. Obviously Ω(X) is zero-dimensional iff X is zero-dimensional
in the standard sense, namely that each open set is a union of its clopen
subsets. Since for a complemented a we have a ≺ a, each zero-dimensional
frame is regular.

Both the Heyting arrow and the pseudocomplementation operation have
useful reformulations in regular frames. The following theorem appears in
the literature proved for the zero-dimensional case. It holds more generally,
however, so we prove it here.

Theorem 1.1. In a regular frame,

a → b =
∧

{u : u > b,u∨ a = ⊤}.

In particular,

a∗ =
∧

{u : u∨ a = ⊤}.

Proof : We verify the first displayed equation. To do so fix a, put

U ≡ {u : u > b and u∨ a = ⊤},

and suppose that v 6 a → b so that v∧ a 6 b. If u ∈ U then

v = v∧ (u∨ a) = (v∧ u)∨ (v∧ a) 6 u∨ b = u,

hence a → b 6
∧

U. Now we will use the regularity. We have

a → b =
∨

x∗∨a=⊤

x → b =
∧

x∗∨a=⊤

(x → b) >
∧

U

because x → b > b and x → b > x → 0 = x∗.
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If Lop is a frame, i.e., if the frame law holds with joins and meets inter-
changed, we speak of a coframe. From Theorem 1.1 we immediately obtain
the following.

Corollary 1.2. A regular frame which is a coframe is a Boolean algebra.

Proof : Indeed, a∨ a∗ = a∨
∧

u∨a=⊤ u =
∧

u∨a=⊤(a∨ u) = ⊤.

Primes and the spectrum. An element p ∈ L is prime if a∧ b 6 p implies
that either a 6 p or b 6 p. The functor Ω : Top → Frmop has a right adjoint
Σ, the spectrum. One of its descriptions is

ΣL =
(

{p ∈ L : p prime}, {Σa : a ∈ L}
)

,

where Σa = {p : p � a}. We easily see that Σ0 = ∅, Σ⊤ = ΣL, Σa∧b =
Σa ∩ Σb, and Σ∨

i
ai

=
⋃

i Σai
, so that {Σa : a ∈ L} is a topology. For a frame

homomorphism h : L → M we have Σh defined by Σh(p) = h∗(p), where
h∗ is the right Galois adjoint of h.

Definitions 1.3. Sobriety. A topological space X is TD (a.k.a. T 1
2
, see [1]

and also [4]) if every point x has a neighborhood U such that U r {x} is
open.

Each Xr {x} is prime in Ω(X). If there are no other primes in Ω(X), and
if X is T0, then X is said to be sober ([6]). Each spectrum ΣL is sober, and
the subcategory of sober spaces is reflective in Top, with reflector

(x 7→ Xr {x}) : X → ΣΩ(X),

the unit of the adjunction Ω ⊣ Σ.

Subfitness and fitness. In the Introduction we defined, following [7], a
frame to be subfit if each open sublocale is a join of closed ones. This
property has a first order equivalent formulation:

a � b =⇒ ∃c, (a∨ c = ⊤ 6= b∨ c).

This property was introduced in [18] under the name conjunctivity. Note
that this condition makes good sense in a classical context, for if U and V

are open sets such that U * V then there is an open W with U ∪W = X 6=
V ∪ W. This is implied by T1 because we can choose an x ∈ U r V and
take W = Xr {x}. Another equivalent in classical topology is the following
([18, 7]).
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• A space X is subfit iff for each open U and x ∈ U there is y ∈ {x}

such that {y} ⊆ U.

The following fact is important, though very easy to prove.

Proposition 1.4. A space is T1 iff it is TD and subfit.

The property of fitness, characterized above by each closed sublocale be-
ing a meet of open ones, can also be characterized by a first order sentence
(see, e.g., [10]). This is not so important here; rather, we will need the
following well known fact (see, e.g.,[7, 8]).

Proposition 1.5. A frame is fit iff each of its sublocales is subfit.

For more about subfitness, fitness, and the relationship between them,
see [11].

2.Sublocales and subspaces

Nuclei and congruences. A nucleus on a frame L is a monotone mapping
ν : L → L such that a 6 ν(a), ν(ν(a)) = ν(a), and ν(a∧ b) = ν(a)∧ ν(b).
The image ν[L] is a frame in the order inherited from L, and though meets
in ν[L] agree with those in L, joins do not. Nevertheless, ν : L → ν[L] is a
frame homomorphism. Nuclei are one way of representing subobjects in
Frm, or more precisely, in Loc; and we make use of this representation at
one juncture, although we will, as a rule, use the representation given in
Definition 2.1 below.

Another representation of subobjects in Loc uses frame congruences. The
translation between nuclei and congruences is as follows:

ν 7→ C = {(x,y) : ν(x) = ν(y)} and C 7→ ν = (a 7→
∨

Ca).

Sublocales and the coframe S(L). We will mostly use the following rep-
resentation of subobjects.

Definition 2.1. A sublocale of L is a subset S ⊆ L such that

• M ⊆ S =⇒
∧

M ∈ S, and
• ∀x ∈ L, ∀s ∈ S, x → s ∈ S.

A sublocale is a frame with the meets as in L while the joins typically
differ. The range ν[L] of a nucleus ν is a sublocale, and each sublocale S

can be obtained this way, namely as the range of the left Galois adjoint of
the embedding S → L.
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The sublocales of L constitute a complete lattice (in fact, a coframe)
which we denote by

S(L).

The bottom element of S(L), which we denote by O, is {⊤}; the first con-
dition in Definition 2.1 applies when M is taken to be the empty set, and
implies that every sublocale contains ⊤. Thus O represents the void sub-
space. The top element of S(L) is L,

∧

i Si =
⋂

i Si, and the join is given by
the rule

∨

i

Si =

{

∧

M : M ⊆
⋃

i

Si

}

.

The fact that the joins in a sublocale S ⊆ L do not coincide with those in
L should not be confused with the behavior of the joins in S(L).

Obviously a sublocale T of a sublocale S of L is also a sublocale of L, so
that S(S) ⊆ S(L). But we have more, for S(S) is a principal down-set in
S(L).

Proposition 2.2. If S is a sublocale of L then S(S) =


y

S(L)S .

Open and closed sublocales, zero-dimensionality of S(L)op. The open
and the closed sublocales are the following:

o(a) = {x : a → x = x} = {a → x : x ∈ L} and c(a) = ↑a , a ∈ L.

We will use both symbols c(a) and ↑a, the former when emphasizing its
role as a subobject and the latter in calculations. Here are a few of the
rules governing such calculations (see, e.g., [10]).

• o(⊥) = O, o(⊤) = L, o(a∧ b) = o(a) ∩ o(b), o(
∨

ai) =
∨

o(ai).
• c(⊥) = L, c(⊤) = O, c(a∧ b) = c(a)∨ c(b), c(

∨

ai) =
⋂

c(ai).

Finally, o(a) and c(a) are complements of one another in S(L).
The following well known fact (see, e.g., [8], [10]) will play an important

role in our investigation.

Lemma 2.3. Each sublocale can be represented in the form

S =
∧

i

(o(ai)∨ c(bi)).

Consequently, in S(L)op each element is a join of complemented elements. That
is, S(L)op is a zero-dimensional, and hence regular, frame.
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Definition 2.4 (Scattered frame). A frame is scattered ([13, 14], see also
[5]) if S(L) is a frame.

In view of Corollary 1.2, L is scattered iff S(L) is a Boolean algebra.

One-point sublocales. The sublocale O = {⊤} represents the empty sub-
space. Thus the smallest non-trivial sublocales are those of the form {p,⊤},
termed one-point sublocales. Note the following.

• A two-element set {p,⊤} is a sublocale iff p is a prime. Thus such
a sublocale really represents a point of L, that is, a point of the
spectrum.

• L is spatial iff it is the join
∨

{P : P is a one-point sublocale of L}.

3.When every sublocale is the join of closed sublocales:
the general case

We are interested in those frames L with the feature that every sublocale
is the join of closed sublocales, an attribute we shall refer to by the acronym

ESJC.

We begin by pointing out in Corollary 3.2 that such frames are fit.

Proposition 3.1. ESJC is a hereditary property, that is, ESJC holds in every
sublocale of a frame satisfying ESJC.

Proof : Obviously, if c(a) is a closed sublocale of L and if c(a) ⊆ S for a
sublocale S then it is a closed sublocale of S. Thus, the statement immedi-
ately follows from 2.2.

Recall Proposition 1.5. Since ESJC obviously implies subfitness, we have
this.

Corollary 3.2. A frame satisfying ESJC is fit.

We turn our attention now to showing that the frames with ESJC are
scattered, Proposition 3.5. This will require some machinery. We denote
the frame of nonempty up-sets of L by

U(L) ≡ {A ⊆ L : ∅ 6= A = ↑A}.

Note that the meets are the intersections and the joins are the unions, with
one exception, namely

∨

∅ = O = {⊤}, which does not interfere with the
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distribution law. Also note that every subset S ⊆ L contains a largest mem-
ber of U(L); we denote this by

U(S) = {a : ↑a ⊆ S} =
⋃

{↑a : ↑a ⊆ S}.

On the other hand, if A is an up-set then every sublocale containing A

contains all the c(a) = ↑a ⊆ A and hence we have the smallest sublocale
containing A,

J(A) =
∨

{↑a : ↑a ⊆ A} =
∨

{↑a : a ∈ A} =
{

∧

B : B ⊆ A
}

.

Lemma 3.3 captures two salient features of this setup.

Lemma 3.3. Let U and J be as above. Then J(A) is a join of closed sublocales
and for any up-set A and sublocale S, J(A) ⊆ S iff S ⊆ U(S). Thus we have
the Galois adjunction

U(L)
U

⇆
J

S(L).

Proof : It follows immediately from the definitions.

Lemma 3.4. The map σ ≡ UJ is a nucleus on U(L).

Proof : σ is monotone, A ⊆ UJ(A) = σ(A), and σσ = UJUJ = UJ = σ by
the adjunction. Furthermore,

J(A) ∩ J(B) =
∨

A

↑a ∩
∨

B

↑b =
∨

A,B

(↑a ∩ ↑b) =
∨

A,B

x

(a∨ b) ⊆
∨

A∩B

↑c

= J(A ∩ B) ⊆ J(A) ∩ J(B),

and

U(S) ∩U(T) = {a : ↑a ⊆ S} ∩ {a : ↑a ⊆ T } = {a : ↑a ⊆ S ∩ T }

= U(S ∩ T) ⊆ U(S) ∩U(T),

so that σ(A ∩ B) = UJ(A ∩ B) = σ(A) ∩ σ(B).

Set

Uσ(L) ≡ σ[U(L)].

Because U and J constitute an adjunction, the restrictions to their ranges
are inverse isomorphisms. The range of J is JU[S(L)] and the range of U is
UJ[U(L)] = σ[U(L)] = Uσ(L).
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Proposition 3.5. If each sublocale of L is a join of closed sublocales then U

maps S(L) isomorphically onto Uσ(L). Consequently, S(L) is a frame and L is
scattered.

Proof : To say that sublocale S is the join of the closed sublocales contained
within it is precisely to say that S = JU(S), i.e., that S lies in the range of J.
If this is the case for every sublocale of L then U provides an isomorphism
from S(L) onto Uσ(L).

Theorem 3.6. The following statements about a frame L are equivalent.

(1) L satisfies ESJC.
(2) L is scattered and subfit.
(3) L is scattered and fit.

Proof : (1)⇒(3): L is fit by 3.2 and scattered by 3.5. (3)⇒(2) is trivial.
(2)⇒(1): Take an arbitrary sublocale S and consider its complement T =
S∗. We have the standard representation (recall 2.3)

T =
∧

i∈J

(o(ai)∨ c(bi))

so that

S = T ∗ =
∨

i∈J

(c(ai)∧ o(bi)).

Then o(bi) =
∨

j∈Ji
c(bij) by virtue of the subfitness of L, hence

S =
∨

i∈Ji

(c(ai)∧
∨

j∈Ji

c(bij) =
∨

i∈Ji

∨

j∈Ji

(c(ai)∧ c(bij) =
∨

i∈J,j∈Ji

c(ai ∨ bij).

The second equality in the last line of the foregoing proof holds because
of the assumption that S(L) is a frame as well as a coframe. It is, however,
worth noting that in the case of complemented elements, and more gen-
erally of the so called linear elements, one has frame distributivity in any
S(L) (see, e.g., [7, 8, 10]).

ESJC does not follow from scatteredness alone.

Example 3.7 (A scattered frame that is not subfit). Let

L = {⊥ = a0 < a1 < · · · < an = ⊤}
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be a finite chain. It is obviously not subfit for n > 2. We have the Heyting
operation given by

x → y =

{

⊤ if x 6 y,

y if x > y

Furthermore,
∧

M = minM ∈ M for any ∅ 6= M ⊆ L. Consequently, every
S ⊆ L that contains ⊤ is a sublocale, and the family of all such subsets is a
Boolean algebra.

Note 3.8. Recall that for a frame L we have a one-to-one frame homomor-
phism

∇ : L → S(L)op = (a 7→ c(a)).

The frame S(L)op ≡ C(L) is an extension of L in which each element of L
becomes complemented. Repeating this extension, we obtain a transfinite
sequence

L → C(L) → C2(L) → · · · → Cα(L) → · · · ,

the so called assembly tower of L. This tower may grow through all ordi-
nal indices, or it may stabilize at some index. It is not known at present
whether the first step at which it stops can be greater than 4. The fact above
can be interpreted as saying that the tower of a frame with ESJC stops at
the second step at the latest.

4.The spatial case

Subspaces and sublocales. A classical subspace (subset) of a space X can
be represented as the congruence

CA = {(U,V) : A ∩U = A ∩ V}

on Ω(X). Sublocales of Ω(X) which arise in this manner are referred to as
induced sublocales. The representation of subspaces as sublocales is faithful
iff the space is TD. We have the following.

Proposition 4.1. The mapping A 7→ CA is one-to-one if and only if X is TD.

Proof : See [15] or [10, pp. 99–100].

In fact, TD is already implied by distinguishing two subspaces, one of
which is open [2]. On the other hand, aside from exceptional spaces, there
are always sublocales that are not induced. The following was proved in
[19]; see also [9] and [16].
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Theorem 4.2. All the sublocales of Ω(X) are induced iff X is weakly scattered.

A space X is weakly scattered, or corrupted, if every non-empty closed set
A contains a weakly isolated point, that is, a point x such that x ∈ A∩U ⊆
{x} for some open set U. Under TD, each weakly isolated point is isolated.
Scattered spaces are characterized by the property that every non-empty
closed set contains an isolated point. Thus a weakly scattered TD-space is
scattered. On the other hand, a scattered space is TD ([19]), so that the
scattered spaces are precisely the weakly scattered TD ones. Thus, taking
into account Proposition 4.1, we can conclude the following.

Proposition 4.3. The correspondence A 7→ CA between subspaces and sublo-
cales of a space X is invertible iff X is scattered.

It is worth noting that Simmons has a finer analysis of these conditions
in [19], showing that scattered is the same as T0 and dispersed, where dis-
persed is the combination of corrupted and TB. The last says that the topol-
ogy generated by the open sets together with the closed sets is a Boolean
algebra.

We will need the following fact (see, e.g., [10]).

Proposition 4.4. Each complemented sublocale of a spatial frame is induced.

Thus, for a spatial frame L = Ω(X), S(L) is a Boolean algebra only if there
are no non-induced sublocales, that is, if the space is scattered. Compare
this fact with the pointfree Definition 2.4 of scatteredness.

The following fact can be found in [8] (see also [3]), but to help the
reader, and because it is important in the sequel, we will present a short
proof here.

Proposition 4.5. If the spectrum ΣΩ(X) is TD then X is homeomorphic to
ΣΩ(X). In particular, X is sober.

Proof : Start with the standard observation that, for U ∈ Ω(X), U * Xr {x}

iff x ∈ U. Now consider a point p ∈ ΣΩ(X) and use the TD property to
find open subsets U,V ⊆ X be such that p ∈ ΣU and ΣU r {p} = ΣV . Hence

U * p and V ⊆ p so that UrV 6= ∅. Choose x ∈ UrV. Then U * Xr{x}. If

p 6= Xr {x} then Xr {x} ∈ ΣU r {p} = ΣV , hence x ∈ V, a contradiction.

In [17], a frame is said to be a T1-frame if each prime in L is maximal. We
have this.
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Proposition 4.6. If every sublocale of a frame is a join of closed ones then it
is a T1-frame.

Proof : Let p be prime in L. Then {p,⊤} is a sublocale, and since it can
be written as a join of closed sublocales, there is an ↑a 6= O such that
↑a ⊆ {p,⊤}. It follows that a = p and ↑p = {p,⊤}, that is, p is maximal.

Corollary 4.7. A space X such that every sublocale of its topology Ω(X) is a
join of closed ones is both T1 and sober.

Proof : By Proposition 4.6 Ω(X) is a T1-frame, making ΣΩ(X) a T1 space and
hence also a TD space. Thus X is homeomorphic to ΣΩ(X) by Proposition
4.5, and is therefore a sober T1-space.

Theorem 4.8. For a spatial frame L ∼= ΣΩ(X), all sublocales are joins of
closed ones iff X is a sober scattered T1-space, i.e., a sober T1-space such that
each of its sublocales is induced by a uniquely determined subspace. The space
X is uniquely determined by L.

Proof : ⇐ : If X is T1 it is TD and hence the induction of sublocales by
subspaces is one-to-one. If each of the sublocales of Ω(X) is induced then
S(L) is isomorphic to the Boolean algebra P(X) of all subsets of X. Because
X is T1, Ω(X) is subfit (and Boolean), and hence all the sublocales are joins
of closed ones by Theorem 3.6.
⇒ : Suppose every sublocale of L ≡ Ω(X) is a join of closed ones. Then

X is a sober T1 space by Corollary 4.7, and each sublocale of Ω(X) is com-
plemented by Theorem 4.8. By Proposition 4.3, all such complemented
sublocales are induced. The unicity follows from 4.5.
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