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Abstract: We give a new sufficient condition for the normal extensions in an
admissible Galois structure to be reflective. We then show that this condition is
indeed fulfilled when X is the (protomodular) reflective subcategory of S-special
objects of a Barr-exact S-protomodular category C, where S is the class of split
epimorphic trivial extensions in C. We give some concrete examples where our
criterion may be applied.
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1. Introduction
In the paper [30] we studied the adjunction between the category of monoids

and the category of groups, given by the group completion of a monoid, from
the point of view of categorical Galois theory. We showed that the adjunction
is admissible with respect to the class of surjective homomorphisms, and we
described the central extensions (which turn out to coincide with the normal
extensions): they are the so-called special homogeneous surjections (see [11]).
In the subsequent paper [31], we showed that special homogeneous surjections
of monoids are reflective amongst surjective homomorphisms. In order to do
so, we applied Theorem 4.2 in [23].
The adjunction between monoids and groups is an instance of a more general

situation, recently described in [11] and in [12]: the category of monoids is S-
protomodular, with respect to a suitable class S of points (= split epimorphisms
with a fixed splitting), and the category of groups is its protomodular core
relatively to the class S (see Section 3). S-protomodularity allows us to recover,
for monoids, relative versions of several important properties of Mal’tsev [14]
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and protomodular [4] categories, like the Split Short Five Lemma, or the fact
that every internal reflexive relation is transitive.
The case of monoids and groups now suggests the following general question:

given an adjunction, admissible with respect to regular epimorphisms, between
a category with “weak” algebraic properties and a reflective subcategory with
“strong” properties, like a protomodular one, such that the big category is S-
protomodular with respect to the class S of split epimorphic trivial extensions,
is it always the case that normal extensions are reflective amongst regular
epimorphisms?
The present paper gives an affirmative answer to this question for the case

of Barr-exact categories [1]. In order to do this, we needed to obtain a new
criterion for reflectiveness of normal extensions, Theorem 2.10: given a Galois
structure between Barr-exact categories, which is admissible with respect to
classes of regular epimorphisms, the category of normal extensions is reflective
in the category of all fibrations (as the morphisms in the chosen class of reg-
ular epimorphisms are called) provided that it is closed under coequalizers of
reflexive graphs.
The paper is organised as follows. In Section 2 we recall some basic notions

of categorical Galois theory and we prove our criterion for reflectiveness of
normal extensions. In Section 3 we recall the definition, some properties and
some examples of S-protomodular categories. Section 4 is devoted to the proof
that our criterion can be applied in the context of Barr-exact S-protomodular
categories. In Section 5 we describe the concrete examples of the adjunction be-
tween monoids and groups and the one between semirings and rings. Section 6
is devoted to the study of a general class of examples, namely the adjunction
between a Barr-exact unital [5] category and its abelian core.

2. Reflectiveness of normal extensions
In this section we work towards a general result on reflectiveness of normal

extensions in an admissible Galois structure: Theorem 2.10 which says that,
if the fibrations in the Galois structure are regular epimorphisms, and normal
extensions are closed under coequalisers of reflexive graphs, then the normal
extensions are reflective amongst the fibrations.

2.1. Galois structures. We begin by recalling the notion of an (admissible)
Galois structure as well as the concepts of trivial, normal and central extension
arising from it [20, 21, 22]. We consider the context of Barr-exact categories [1]
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which is general enough for our purposes and allows us to avoid some technical
difficulties.

Definition 2.2. A Galois structure Γ “ pC,X, I,H, η, ε,E ,F q consists of
an adjunction

C
I ,2
K X
H
lr

with unit η : 1C ñ HI and counit ε : IH ñ 1X between Barr-exact categories
C and X, as well as classes of morphisms E in C and F in X such that:
(G1) E and F contain all isomorphisms;
(G2) E and F are pullback-stable;
(G3) E and F are closed under composition;
(G4) HpF q Ď E ;
(G5) IpE q Ď F .

We call the morphisms in E and F fibrations [21]. The following definitions
are given with respect to a Galois structure Γ.

Definition 2.3. A trivial extension is a fibration f : AÑ B in C such that
the square

A
ηA ,2

f
��

HIpAq

HIpfq
��

B ηB
,2HIpBq

is a pullback. A central extension is a fibration f whose pullback p˚pfq along
some fibration p is a trivial extension. A normal extension is a fibration such
that its kernel pair projections are trivial extensions.

It is easy to see that trivial extensions are always central extensions and that
any normal extension is necessarily a central extension.
Given any object B in C, we can associate an adjunction

pE Ó Bq
IB ,2
K pF Ó IpBqq,
HB

lr

where pE Ó Bq denotes the full subcategory of the slice category pC Ó Bq
determined by the morphisms in E ; similarly for pF Ó IpBqq. The functor IB
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is just the restriction of I, while HB sends a fibration g : X Ñ IpBq to the
pullback

A ,2

HBpgq
��

HpXq

Hpgq
��

B ηB
,2HIpBq

of Hpgq along ηB.

Definition 2.4. A Galois structure Γ “ pC,X, I,H, η, ε,E ,F q is said to be
admissible when, for every object B in C, the functor HB is full and faithful.

In the presence of an admissible Galois structure, every trivial extension is
always a normal extension:

Proposition 2.5 ([23], Proposition 2.4). If Γ is an admissible Galois structure,
then I : C Ñ X preserves pullbacks along trivial extensions. Hence a fibration
is a trivial extension if and only if it is a pullback of some fibration in HpXq.
In particular, the trivial extensions are pullback-stable, so that every trivial
extension is a normal extension.

The admissibility condition of a Galois structure together with the proposi-
tion above give the needed conditions to have the reflectiveness of trivial ex-
tensions amongst fibrations. In fact, the replete image of the functor HB is the
category of trivial extensions over B, denoted by TrivpBq. Moreover, TrivpBq
is a reflective subcategory of pE Ó Bq, where HBIB : pE Ó Bq Ñ TrivpBq is
its reflector. So, by Proposition 5.8 in [19], we obtain a left adjoint, called the
trivialisation functor

Triv : FibpCq Ñ TrivpCq,

to the inclusion of the category TrivpCq of trivial extensions in C into the full
subcategory FibpCq of the category of arrows in C determined by the fibrations.

2.6. Reflectiveness of normal extensions. Given an admissible Galois
structure Γ as in Definition 2.4 and an object B in C, we denote by NormpBq
the full subcategory of pE Ó Bq determined by the normal extensions over B.
When it exists, the left adjoint to the inclusion functor NormpBq ãÑ pE Ó Bq
will be denoted by Norm: pE Ó Bq Ñ NormpBq and called the normalisation
functor (over B). We also write

Norm: FibpCq Ñ NormpCq
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for the left adjoint to the inclusion NormpCq ãÑ FibpCq (where NormpCq is
determined by the normal extensions in C) which exists as soon as the norm-
alisation functors over all objects B exist (again by Proposition 5.8 in [19]).
We use the construction proposed in [17] and prove that it does indeed provide

us with a normalisation functor as soon as the Galois structure Γ is admissible
and satisfies the following conditions:

(G6) the morphisms in E and in F are regular epimorphisms;
(G7) the category of normal extensions in C is closed under coequalisers of

reflexive graphs in FibpCq.

This approach is related to the results in [16] where the problem of reflectiveness
of normal extensions is studied in a much more general setting. The present
construction is essentially a simple version of the one proposed in [13], which
strictly speaking cannot be applied in the current context.

2.7. The construction. Given a fibration f : AÑ B, we pull it back along
itself, then we take kernel pairs vertically as on the left hand side of the diagram
in Figure 1. We apply the trivialisation functor to obtain the upper right part
of the diagram, then we take the coequaliser f on the right to get the morphism
Normpfq and the comparison ηNorm

f . The normality of Normpfq comes from
condition (G7) and the fact that all trivial extensions are normal extensions
(Proposition 2.5).

Eqpπ2q

ηTriv
π1
1

)/

�� ��

π1
1

,2,2 Eqpfq

�� ��

Eqpπ2qTriv
Trivpπ1

1q

lr lr

�� ��

Eqpfq /6

LR

π2
����

π1 ,2,2 A

LR

f

����

EqpfqTriv

Trivpπ1qlr lr

LR

f
����

A
f

,2,2

ηNorm
f

07B A
Normpfq

lr lr

Figure 1. The construction of Normpfq
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2.8. The universal property. Let us prove that the extension Normpfq is
universal amongst all normal extensions over B. Suppose that f “ g˝α, where
g : C Ñ B is a normal extension. First note that all steps of the construction
are functorial. Next, since g is a normal extension, we have Normpgq “ g,
C “ C and ηNorm

g “ 1C . So we get an induced morphism α : AÑ C such that
g˝α “ Normpfq and α˝ηNorm

f “ α, which proves the existence of a factorisation.
Now for the uniqueness, suppose that β, γ : AÑ C are such that

g˝β “ Normpfq “ g˝γ and β˝ηNorm
f “ α “ γ˝ηNorm

f .

We write πf1 , π
f
2 and πg1, π

g
2 for the kernel pair projections of f and g, respect-

ively. From the fact that g is a normal extension, we have Trivpπg1q “ πg1
and g “ πg2 . Since g˝α˝Trivpπf1 q “ f ˝Trivpπf1 q “ Normpfq˝f “ g˝β˝f and,
likewise, g˝α˝Trivpπf1 q “ g˝γ˝f , we find morphisms

rβ “ xα˝Trivpπf1 q, β˝fy, rγ “ xα˝Trivpπf1 q, γ˝fy : EqpfqTriv Ñ Eqpgq

such that πg2˝rβ “ β˝f and πg2˝rγ “ γ˝f while

πg1˝
rβ “ α˝Trivpπf1 q and πg1˝rγ “ α˝Trivpπf1 q.

Now rβ “ rγ follows from the uniqueness in the universal property of the trivial
extension Trivpπf1 q: indeed, rβ˝ηTriv

πf1
“ α ˆ1B α “ rγ˝ηTriv

πf1
. Hence β “ γ.

2.9. The result. Thus, keeping Proposition 5.8 in [19] in mind, we obtain:

Theorem 2.10. Let Γ “ pC,X, I,H, η, ε,E ,F q be an admissible Galois struc-
ture such that the conditions (G6) and (G7) hold. For any object B in C,
NormpBq is a reflective subcategory of pE Ó Bq. As a consequence, normal
extensions are reflective amongst fibrations.

3. S-protomodular categories
Our criterion for the reflectiveness of normal extensions (Theorem 2.10) can

be applied to a general algebraic situation, in which the category C is an S-
protomodular category. The aim of this section is to recall the definition of an
S-protomodular category, as well as the results we need in order to show that
this reflectiveness criterion is applicable.
The notion of S-protomodular category was introduced for a pointed context

in [11], and further developed in [12]. An extension to the non-pointed case
was then considered in [8].
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Let C be a finitely complete category. We denote by PtpCq the category of
points in C, whose objects pf, sq are the split epimorphisms f : AÑ B with
a chosen section s : B Ñ A as in

A
f
,2 B

slr f ˝s “ 1B

and whose morphisms are pairs of morphisms which form commutative squares
with both the split epimorphisms and their sections. Since split epimorphisms
are stable under pullbacks, the functor cod: PtpCq Ñ C, which associates
with every split epimorphism its codomain, is a fibration, usually called the
fibration of points. Let S be a class of points in C which is stable under
pullbacks. If we look at it as a full subcategory SPtpCq of PtpCq, it gives rise to
a subfibration S-cod of the fibration of points. A point pf : AÑ B, s : B Ñ Aq
in C is said to be a strong point if the pair pk, sq, where k is a kernel of f , is
jointly strongly epimorphic. Strong points were considered in [29], under the
name of regular points, and independently in [7], under the name of strongly
split epimorphisms.

Definition 3.1 ([11], Definition 8.1.1). Let C be a pointed finitely complete
category, and S a pullback-stable class of points. We say that C is S-proto-
modular when:

(1) every point in SPtpCq is a strong point;
(2) SPtpCq is closed under finite limits in PtpCq.

Remark 3.2. As mentioned in [8], in a pointed finitely complete category C a
point pf, sq is strong if and only if, for any pullback as in the diagram

P
π2 ,2

π1��

A
f
��

C g
,2

LR

B,

s

LR

the pair pπ2, sq is jointly strongly epimorphic. Thanks to this fact, the defi-
nition of S-protomodular category can be extended to the non-pointed case,
by simply replacing the notion of strong point by the property above (see [8,
Definition 4.3]).

The name S-protomodular comes from the fact that a pointed finitely com-
plete category C is protomodular if and only if every point in C is a strong
point [4]. Hence the notion above is a version of the concept of protomodular
category, relative with respect to the class S.
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Example 3.3. As observed in [11], the categories Mon of monoids and SRng of
semirings are S-protomodular with respect to the class S of Schreier split epi-
morphisms [28] (see below). Later, in [27], it was proved that every Jónsson-
Tarski variety, which is a variety whose corresponding theory contains a
unique constant 0 and a binary operation ` which satisfy the equations 0`x “
x`0 “ x for all x, is S-protomodular with respect to the class of Schreier split
epimorphisms. Let us now recall the definition of such split epimorphisms.

Definition 3.4 ([28, 27]). A split epimorphism f : AÑ B with given splitting
s : B Ñ A in a Jónsson-Tarski variety is a Schreier split epimorphism when,
for every a P A, there exists a unique α in the kernel N of f such that a “
α ` sfpaq.

In Section 6 we give an example of an S-protomodular category of a different
nature.
Let C be an S-protomodular category. We recall from [12] that an S-

reflexive graph (or S-reflexive relation)

Q
d ,2

c
,2Aelr

is a reflexive graph (respectively, a reflexive relation) such that the point pd, eq
belongs to S. A morphism f : A Ñ B is called an S-special morphism
when its kernel pair Eqpfq is an S-reflexive relation. An object X is called
an S-special object when the indiscrete relation on X is an S-reflexive re-
lation. This means that the point pp1 : X ˆX Ñ X, x1X , 1Xy : X Ñ X ˆXq,
where p1 is the first projection, belongs to S. The following result was proved,
in the pointed case, in [12], and then extended, with the same proof, in [8] to
the non-pointed case.

Proposition 3.5 ([12], Proposition 6.2). Let C be an S-protomodular category.
Any split epimorphism between S-special objects is in S and, consequently, is
an S-special morphism. The subcategory SC of S-special objects is protomod-
ular.

The protomodular subcategory SC is called the protomodular core of C
relatively to the class S.
When C is the category of monoids, and S is the class of Schreier split

epimorphisms, the protomodular core is the category of groups. Similarly, the
protomodular core of the category of semirings is the category of rings.
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4. An application to S-protomodular categories
In this section we are going to consider a Galois structure Γ as in Defini-

tion 2.4, where C is a finitely complete Barr-exact category, X is a reflective
subcategory of C, I is the reflector, H is the inclusion and E and F are the
classes of regular epimorphisms. We assume that

(1) X is also Barr-exact;
(2) H preserves regular epimorphisms, so that Γ is indeed a Galois structure;
(3) Γ is admissible;
(4) writing S for the class of split epimorphic trivial extensions, the category

C is S-protomodular.

The functor H being the inclusion functor, we omit it from writing to simplify
notation. Note that, S being the class of split epimorphic trivial extensions,
X is the S-protomodular core of C, the full subcategory determined by the
S-special objects. Indeed, it is not difficult to see that the first projection
p1 : X ˆX Ñ X is a trivial extension if and only if X P X. This implies
that X is a protomodular category by Proposition 3.5, thus a Mal’tsev category
(Proposition 17 in [5]). Since X is a Barr-exact Mal’tsev category, then any
reflexive relation is necessary the kernel pair of its coequaliser.
Applying Theorem 2.10, we shall prove that in this setting, the normal ex-

tensions are reflective amongst the fibrations. Since condition (G6) is fulfilled
by assumption, we only have to prove that condition (G7) holds.
In a regular category, a commutative square of regular epimorphisms

A1
g
,2,2

f 1

����

A
f
����

B1
h
,2,2 B

is called a regular pushout [6] when the comparison morphism to the pullback
xf 1, gy : A1 Ñ B1 ˆB A is a regular epimorphism.

Lemma 4.1. In a regular category, pulling back along a morphism of regular
epimorphisms preserves regular pushout squares.
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Proof : A square of regular epimorphisms as above is a regular pushout if and
only if it decomposes as a composite of two squares of regular epimorphisms

A1 ,2,2

����

B1 ˆB A ,2,2

����

A

����

B1 B1
h

,2,2 B,

where the square on the right is a pullback. Given a regular epimorphism
r : C 1 Ñ C and a morphism pf 1, fq : r Ñ h, pulling back the given regular
pushout square along it yields a regular pushout square over r.

We recall that kernel pairs in PtpCq are computed objectwise: if pg, hq is a
morphism of points, then Eqppg, hqq “ pEqpgq,Eqphqq. Moreover, when C is
regular, a morphism pg, hq in PtpCq is a regular epimorphism if and only if both
g and h are regular epimorphisms in C.

Lemma 4.2. The functor Triv|PtpCq : PtpCq Ñ TrivpCq preserves coequalisers
of effective equivalence relations.

Proof : Consider the coequaliser diagram

Eqpgq
g2

,2

f2

��

g1 ,2
A1lr

f 1

��

g
,2,2 A

f

��

Eqphq

s2

LR

h2

,2

h1 ,2
B1

s1

LR

lr
h
,2,2 B

s

LR

in PtpCq. Since I preserves all coequalisers, we obtain a reflexive graph in PtpXq
with its coequaliser

IpEqpgqq
Ipg2q

,2

��

Ipg1q ,2
IpA1qlr

��

Ipgq
,2,2 IpAq

��

IpEqphqq

LR

Iph2q
,2

Iph1q ,2
IpB1q

LR

lr
Iphq

,2,2 IpBq.

LR

The inclusion X Ñ C preserves regular epimorphisms (by assumption) and ker-
nel pairs, so this diagram is still a reflexive graph with its coequaliser when
considered in the category PtpCq. Indeed, if we take the (regular epimorphism,
monomorphism) factorisation of xIpg1q, Ipg2qy : IpEqpgqq Ñ IpA1qˆIpA1q in X,
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we get a reflexive relation, say xe1, e2y : E Ñ IpA1qˆIpA1q, and the coequaliser
of pe1, e2q is still Ipgq. Since X is a Barr-exact Mal’tsev category, E is neces-
sarily the kernel pair of its coequaliser Ipgq, as mentioned above. Thus, the
comparison IpEqpgqq Ñ EqpIpgqq is a regular epimorphism, and similarly for
IpEqphqq Ñ EqpIphqq.
Now we pull back along ηB, ηB1, xIph1q, Iph2qy˝ηEqphq and ηEqphq to obtain the

diagram

EqpgqTriv
,2,2

�'

Trivpf2q

��

P

�'

��

,2
,2 A
1
Triv

�'

,2,2

Trivpf 1q

��

lr ATriv

Trivpfq

��

�'

IpEqpgqq ,2,2

Ipf2q

��

EqpIpgqq

��

,2
,2 IpA

1q
Ipgq

,2,2

Ipf 1q

��

lr IpAq

Ipfq

��

Eqphq

ηEqphq
�'

LR

Eqphq

�'

LR

,2
,2 B

1 h ,2,2

η1
B �'

LR

lr B

ηB
�'

LR

IpEqphqq

LR

,2,2 EqpIphqq

LR

,2
,2 IpB

1q
Iphq

,2,2lr

LR

IpBq;

LR

we write P “ Eqphq ˆEqpIphqq EqpIpgqq to simplify notation. Since the front
left and right faces are regular pushouts (Proposition 3.2 in [6]), the dotted
arrows are regular epimorphisms by Lemma 4.1. Moreover, pullbacks preserve
kernel pairs, so that P must be the kernel pair of the regular epimorphism
A1Triv Ñ ATriv. Consequently, Trivpfq, being the coequaliser of its kernel pair,
is also the coequaliser of the reflexive graph Trivpf2q Ñ Trivpf 1q.

Proposition 4.3. Consider a reflexive graph and its coequaliser in PtpCq

R ,2

f2

��

,2
A1lr

f 1

��

g
,2,2 A

f

��

S

s2

LR

,2
,2
B1

s1

LR

lr
h
,2,2 B,

s

LR

where f2 and f 1 are split epimorphic trivial extensions. Then f is also a split
epimorphic trivial extension.

Proof : We first consider the situation where R “ Eqpgq and S “ Eqphq are
the kernel pairs of g and h, respectively. By assumption, f is the coequaliser
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of its kernel pair

Eqpgq ,2

f2

��

,2
A1lr

f 1

��

g
,2,2 A

f

��

– ,2 ATriv

Trivpfqx�

Eqphq

s2

LR

,2
,2
B1

s1

LR

lr
h
,2,2 B.

s

LR

But, applying Lemma 4.2, we conclude that Trivpfq is also its coequaliser, since
Trivpf 1q “ f 1 and Trivpf2q “ f2. Thus Trivpfq and f are isomorphic, which
proves that f is a trivial extension.
Now we prove that the above assumption can be made without any loss of

generality. Consider the diagram

R
ρ

,2

f2

��

ηR

�'

P
p2

,2

�'

��

p1 ,2
A1

ηA1

�'

lr

f 1

��

g
,2,2 A

ηA

�'
f

��

IpRq
γ

,2,2

Ipf2q

��

EqpIpgqq ,2

��

,2
IpA1qlr

Ipf 1q

��

Ipgq
,2,2 IpAq

Ipfq

��

S

ηS
�'

s2

LR

,2 Eqphq

�'

LR

,2
,2
B1

ηB1

�'

s1

LR

lr h ,2,2 B

ηB
�'

s

LR

IpSq ,2,2

LR

EqpIphqq

LR

,2
,2
IpB1q

LR

lr
Iphq

,2,2 IpBq,

LR

where P “ Eqphq ˆEqpIphqq EqpIpgqq. We shall prove that P is precisely the
kernel pair of g, so that the induced split epimorphism Eqpgq Ñ Eqphq is a
trivial extension, being a pullback of a fibration in X (Proposition 2.5).
For P to be the kernel pair of g, we just need to show that g˝p1 “ g˝p2, since

the rest of the proof is straightforward. As in the previous proof, the compar-
ison morphisms IpEqpgqq Ñ EqpIpgqq and IpEqphqq Ñ EqpIphqq are regular
epimorphisms, so that the front left square of the diagram above is a regu-
lar pushout (Proposition 3.2 in [6]). Consequently, the comparison morphism
xIpf2q, γy : IpRq Ñ IpSq ˆEqpIphqq EqpIpgqq is a regular epimorphism and so is
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the comparison morphism xf2, ρy in

R
ρ

,2
xf2,ρy

#+#+

f2

��

P

��

S ˆEqphq P

x�

pP
18

S ,2

LR

8B

Eqphq,

t

LR

as a pullback of xIpf2q, γy. The split epimorphism EqpIpgqq Ô EqpIphqq
belongs to S by Proposition 3.5, and so does the split epimorphism P Ô Eqphq
by the assumption of stability under pullbacks. Since C is an S-protomodular
category, the pair ppP , tq is jointly strongly epimorphic, thus jointly epimorphic
(Remark 3.2). Then, the pair pρ, tq is jointly epimorphic, so we get g˝p1 “ g˝p2.
This finishes the proof.

Since the class S we are considering is the class of split epimorphic trivial
extensions, then the S-special regular epimorphisms are precisely the normal
extensions with respect to the Galois structure Γ (Definition 2.3).
The following result shows that condition (G7) holds in our context.

Eqpf2q

�� ��

,2
,2
Rlr

��

f2

,2,2

��

S

�� ��

Eqpf 1q

LR

g

��

,2
,2
A1lr

LR

f 1

,2,2

g

����

B1

LR

h

����

Eqpfq ,2
,2
Alr

f
,2,2 B

Figure 2. Closedness of S-special regular epimorphisms under
coequalisers of reflexive graphs

Theorem 4.4. The category of S-special regular epimorphisms is closed under
coequalisers of reflexive graphs of regular epimorphisms.

Proof : Consider a reflexive graph of regular epimorphisms and its coequaliser
in C as in the solid part of the diagram in Figure 2. We wish to prove that,
if f2 and f 1 are S-special regular epimorphisms, then also f is an S-special
regular epimorphism.
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Taking kernel pairs to the left, we want to use Proposition 4.3 together with
the fact that S-special regular epimorphisms are precisely normal extensions
to show that the kernel pair projections of f are trivial extensions. For this
argument to be valid, we only need to show that g is a regular epimorphism.
This follows from the fact that the coequaliser of Eqpf2q Ñ Eqpf 1q

Eqpf2q
,2
,2

����

R

����

lr

Eqpf 1q
f 1
1 ,2

f 1
2

,2

����

LR

A1

g

����

lr

LR

Q
d ,2

c
,2 Alr

is an internal groupoid on A. Indeed, by Proposition 4.3, it is an S-reflexive
graph since d is a split epimorphic trivial extension. Thanks to Proposition 7.5
in [12] (and to its extension to the non-pointed context, see Proposition 4.9
in [8]), it suffices then to show that the kernel pairs Eqpdq and Eqpcq centralise
each other. The kernel pairs Eqpf 11q and Eqpf 12q centralise each other, since
Eqpf 1q is an equivalence relation. Let xd, cy “ xw1, w2y˝q be the (regular
epimorphism, monomorphism) factorisation of xd, cy. By Lemma 4.5 below,
Eqpw1q (resp. Eqpw2q) is the regular image of Eqpf 11q (resp. Eqpf 12q), so that
Eqpdq and Eqpcq centralise each other too (Proposition 1.6.4 in [2]). Hence the
regular image of this internal groupoid is an equivalence relation, so a kernel
pair, with coequalizer f , which makes it isomorphic to Eqpfq.

Lemma 4.5. Any commutative solid diagram

Eqpfq

f1
��

f2
��

h ,2 Eqpgq

g1
��

g2
��

A

f
��

h ,2,2

LR

C

g
��

LR

B
k

,2,2

LR

D,

LR

where f and g are split epimorphic trivial extensions and h and k are regular
epimorphisms is a regular pushout. Consequently, the comparison morphism
h is also a regular epimorphism.
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Proof : By Proposition 5.4 and Theorem 5.5 in [14] it suffices to prove that
Eqphq and Eqpfq permute to show that the bottom square is a regular pushout.
The equality EqphqEqpfq “ EqpfqEqphq can be proved with an argument
which is completely analogous to the one used in the proof of Theorem 3.9
in [9].

Theorem 2.10 now implies the last result of this section.

Theorem 4.6. S-special regular epimorphisms are reflective amongst regular
epimorphisms.

We conclude this section by observing that the criterion for reflectiveness of
normal extensions given by Theorem 4.2 in [23] cannot be applied to obtain
the theorem above in our general framework, since we are not supposing that
the category C admits the colimits that are needed to apply that theorem.

5. Examples
In this section we describe some concrete examples of the general framework

developed in the previous one.

5.1. Monoids and groups. The first example we consider is the following:
C “ Mon is the category of monoids, and X “ Gp is the subcategory of groups.
The reflection Gp: Mon Ñ Gp is given by the Grothendieck group (or
group completion) [24, 25, 26]: given a monoid pM, ¨, 1q, its group completion
GppMq is defined by

GppMq “
GpFpMq

NpMq
,

where GpFpMq denotes the free group onM and NpMq is the normal subgroup
generated by elements of the form rm1srm2srm1 ¨m2s

´1. By choosing the classes
of morphisms E and F to be the surjections in Mon and Gp, respectively, we
obtain a Galois structure

ΓMon “ pMon,Gp,Gp,Mon, η, ε,E ,F q,

where Mon is just the inclusion functor from Gp to Mon. This Galois structure
was studied in [30], where it was shown to be admissible (Theorem 2.2 there).
Moreover, trivial, normal and central extensions were characterised for this
Galois structure. Let us briefly recall what they are.
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Definition 5.2 ([11], Definition 2.1.1). Let f be a split epimorphism of mon-
oids, with a chosen splitting s, and N its (canonical) kernel

N � ,2
k
,2A

f
,2B.

slr

The split epimorphism pf, sq is said to be right homogeneous when, for every
element b P B, the function µb : N Ñ f´1pbq defined through multiplication on
the right by spbq, so µbpnq “ n spbq, is bijective. Similarly, we can define a left
homogeneous split epimorphism: the function N Ñ f´1pbq : n ÞÑ spbqn is a
bijection for all b P B. A split epimorphism is said to be homogeneous when
it is both right and left homogeneous.

As observed in [11], Proposition 2.1.3, a split epimorphism is right homogen-
eous if and only if it is a Schreier split epimorphism (Definition 3.4).

Definition 5.3 ([11], Definition 7.1.1). Given a surjective homomorphism g of
monoids and its kernel pair

Eqpgq
π1 ,2

π2
,2A∆lr

g
,2,2 B,

the morphism g is called a special homogeneous surjection when pπ1,∆q
(or, equivalently, pπ2,∆q) is a homogeneous split epimorphism.

Proposition 5.4 ([30], Proposition 4.2). For a split epimorphism f of mon-
oids, the following statements are equivalent:

(i) f is a trivial extension;
(ii) f is a special homogeneous surjection.

Theorem 5.5 ([30], Theorem 4.4). For a surjective homomorphism g of mon-
oids, the following statements are equivalent:

(i) g is a central extension;
(ii) g is a normal extension;
(iii) g is a special homogeneous surjection.

Special homogeneous split epimorphisms are, in particular, Schreier split epi-
morphisms, hence strong points ([11], Lemma 2.1.6). Moreover, they are stable
under pullbacks ([11], Proposition 7.1.4). So, Mon is an S-protomodular cat-
egory with respect to the class S of special homogeneous split epimorphisms,
which are precisely the split epimorphic trivial extensions of the Galois struc-
ture ΓMon we are considering. All the other conditions we assumed in Section 4
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are clearly satisfied by ΓMon. As a consequence of Theorem 4.6, we see that
special homogeneous surjections are reflective amongst surjective monoid ho-
momorphisms. We observe that this fact was already proved in [31], using
Theorem 4.2 in [23] (although, as we already mentioned, the same theorem
cannot be applied to the general framework of Section 4).

5.6. Semirings and rings. The second example we consider is of a similar
nature. Now C “ SRng is the category of semirings, and X “ Rng is the
reflective subcategory of rings. In order to describe the reflection, we first
restrict the group completion functor to commutative monoids. This restriction
has a simpler description which we now recall. If pM,`, 0q is a commutative
monoid, then its group completion GppMq can be described as the quotient
M ˆM{„, where pm,nq „ pp, qq when there exists k PM such that

m` q ` k “ n` p` k.

Now let pM,`, ¨, 0q be a semiring; we can define a product in GppMq in the
following way:

rpm,nqs ¨ rpm1, n1qs “ rpm ¨m1
` n ¨ n1,m ¨ n1 ` n ¨m1

qs.

It is easy to check that this definition does not depend on the choice of the
representative for the class in GppMq, and that it turns GppMq into a ring.
Hence it gives the desired reflection Rng : SRngÑ Rng.
Via a simplified version of the arguments used in [30] for the Galois struc-

ture between Mon and Gp, it is not difficult to see that the reflection of the
adjunction between SRng and Rng is admissible with respect to the classes of
surjective homomorphisms both in SRng and in Rng. Hence we get an ad-
missible Galois structure. Once again, the split epimorphic trivial extensions
are precisely the special homogeneous split epimorphisms, while the normal
(= central) extensions are the special homogeneous surjections; the proofs eas-
ily follow from those of Proposition 5.4 and Theorem 5.5. Proposition 6.7.2
in [11] implies that a split epimorphism pf : AÑ B, s : B Ñ Aq in SRng is
special homogeneous if and only if the kernel N of f is a ring and A is iso-
morphic to a semidirect product of B and N . (Observe that every Schreier
split epimorphism of semirings is homogeneous, because the additive monoid
structure is commutative.) This implies, in particular, that A, as a monoid, is
the cartesian product of B and N .
It is easy to see that all the conditions of Section 4 are satisfied by this

Galois structure. Hence Theorem 4.6 implies, like for the case of monoids
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and groups, that special homogeneous surjections of semirings are reflective
amongst surjective homomorphisms. (Once again, we could also conclude this
by applying Theorem 4.2 in [23].)

6. The additive core of a unital category
This section is devoted to the description of a general example of the situation

considered in Section 4. This example is of a rather different nature from the
ones of the previous section, so that Theorem 4.2 of [23] does not apply.
We start by recalling from [5] that a pointed finitely complete category C is

unital when, for every pair of objects pA,Bq of C, the morphisms x1A, 0A,By
and x0B,A, 1By in the product diagram

A
x1A,0A,By

,2AˆB
pAlr

pB ,2B
x0B,A,1By
lr

are jointly strongly epimorphic.
Examples of unital categories are all Jónsson-Tarski varieties (Example 3.3).

Actually, as shown in [2, Theorem 1.2.15], a variety of universal algebras is a
unital category precisely when it is a Jónsson-Tarski variety.
An object X in a unital category C is called abelian when it carries an

internal abelian group structure. The full subcategory of C determined by the
abelian objects is denoted AbpCq and called the additive core of C. The
category AbpCq is indeed additive (by Corollary 1.10.13 in [2]), hence it is
protomodular (by Example 3.1.13 in [2]). If C is a finitely cocomplete regular
unital category, then AbpCq is really a core, since it is a reflective subcategory
of C by Propositions 1.7.5 and 1.7.6 of [2]

C
Ab ,2
K AbpCq;
Ą
lr

the unit is denoted by ηAb. Since AbpCq is closed in C under regular epi-
morphisms [2, Proposition 1.6.11], this adjunction gives a Galois structure with
respect to the regular epimorphisms in C and in AbpCq; we denote it by ΓAb.
We now assume C to be a finitely cocomplete Barr-exact unital category.

We can then show that the Galois structure ΓAb satisfies all the conditions of
Section 4. First of all, AbpCq is also Barr-exact [1, Theorem 5.11]. The additive
core AbpCq is then an abelian category, called the abelian core of C. Next, we
shall prove that C is an S-protomodular category, where S is the class of split
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epimorphic trivial extensions. In fact, the split epimorphic trivial extensions
for the Galois structure ΓAb have an easy description:

Proposition 6.1. Let C be a finitely cocomplete Barr-exact unital category.
A split epimorphism f : AÑ B with splitting s : B Ñ A in C is a trivial ex-
tension with respect to ΓAb if and only if the following two conditions hold:

(1) pf, sq is isomorphic, as a point, to a product

ppB : N ˆB Ñ B, x0B,N , 1By : B Ñ N ˆBq;

(2) the kernel N of f is abelian.

Proof : Let pf, sq be a split epimorphic trivial extension. Then the square

A
ηAb
A ,2

f
��

AbpAq

Abpfq
��

B

LR

ηAb
B

,2AbpBq

LR

is a pullback. So the kernel N of f is also the kernel of Abpfq, and is therefore
abelian. Moreover, a split epimorphism in AbpCq is a product projection and,
consequently, pf, sq is isomorphic to ppB, x0B,N , 1Byq.
Conversely, we must show that any product projection ppB, x0, 1Byq, where

N is abelian, is a trivial extension. To do so it suffices to show that

AbpN ˆBq – N ˆ AbpBq,

so that ηNˆB – 1N ˆ ηB. There is a comparison morphism

λ : AbpN ˆBq Ñ N ˆ AbpBq

such that λ˝ηAb
NˆB “ 1N ˆ ηAb

B . We use the fact that binary products coincide
with binary coproducts in AbpCq and consider the morphism

ξ “
v

ηAb
NˆB˝x1N , 0N,By Abpx0B,N , 1Byq

w

: N ‘ AbpBq Ñ AbpN ˆBq.

Note that for the coproduct inclusions iN and iAbpBq of N ‘ AbpBq, we have
iN “ x1N , 0N,AbpBqy and iAbpBq “ x0AbpBq,N , 1AbpBqy. Then

λ˝ξ˝iN “ λ˝ηAb
NˆB˝x1N , 0N,By “ p1N ˆ η

Ab
B q˝x1N , 0N,By “ x1N , 0N,AbpBqy “ iN
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and

λ˝ξ˝iAbpBq˝η
Ab
B “ λ˝Abpx0B,N , 1Byq˝η

Ab
B “ λ˝ηAb

NˆB˝x0B,N , 1By

“ p1N ˆ η
Ab
B q˝x0B,N , 1By “ x0B,N , η

Ab
B y

“ x0AbpBq,N , 1AbpBqy˝η
Ab
B “ iAbpBq˝η

Ab
B .

The universal property of the unit ηAb gives λ˝ξ˝iAbpBq “ iAbpBq, so that λ˝ξ “
1N‘AbpBq.
On the other hand, the equalities

ξ˝p1N ˆ η
Ab
B q˝x1N , 0N,By “ ξ˝x1N , 0N,AbpBqy “ ξ˝iN “ ηAb

NˆB˝x1N , 0N,By

and

ξ˝p1N ˆ η
Ab
B q˝x0B,N , 1By “ ξ˝x0B,N , η

Ab
B y “ ξ˝x0AbpBq,N , 1AbpBqy˝η

Ab
B

“ ξ˝iAbpBq˝η
Ab
B “ Abpx0B,N , 1AbpBqyq˝η

Ab
B

“ ηAb
NˆB˝x0B,N , 1By

show that ξ˝p1N ˆ ηAb
B q “ ηAb

NˆB since x1N , 0N,By and x0B,N , 1By are jointly
epimorphic, C being a unital category. Finally, from

ξ˝λ˝ηAb
NˆB “ ξ˝p1N ˆ η

Ab
B q “ ηAb

NˆB

we conclude that ξ˝λ “ 1AbpNˆBq by the universal property of the unit ηAb.

Thanks to this characterisation, we have that C is S-protomodular with
respect to the class of split epimorphic trivial extensions. This follows eas-
ily from the fact that a pointed finitely complete category C is unital if and
only if it is S-protomodular with respect to the class S of points of the form
ppB, x0B,N , 1Byq—an observation which is due to Sandra Mantovani.
The last condition of Section 4 we must show to hold concerns the admissib-

ility of the Galois structure ΓAb.
Proposition 6.2. Let C be a finitely cocomplete Barr-exact unital category.
The Galois structure ΓAb is admissible.
Proof : Combining Theorem 4.3 in [15] with both Definition 5.5.3 and Proposi-
tion 5.5.5 in [3], we see that the Galois structure ΓAb is admissible if and only
if every pullback

X
f
����

a ,2A
g
����

Y
b
,2B
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with g a regular epimorphism in AbpCq is preserved by the reflector Ab.
We first begin by supposing that g is a split epimorphism, hence a product

projection. Then, being its pullback, so is the split epimorphism f , and thus f
is a split epimorphic trivial extension by Proposition 6.1. It easily follows that
Ab preserves such a pullback—use Proposition 2.7 in [22].
For the general case, we consider the diagram

Eqpfq

����

ηAb
Eqpfq

,2 AbpEqpfqq

����

,2 Eqpgq

����

X

LR

ηAb
X ,2

f

����

AbpXq

Abpfq

����

LR

,2 A

LR

g

����

Y
ηAb
Y

,2 AbpY q ,2 B.

The top rectangle fits into the previous case, so we can conclude that both top
squares are pullbacks. As mentioned in Section 4, the comparison morphism
AbpEqpfqq Ñ EqpAbpfqq is a regular epimorphism. Since the top right square
above is a pullback, this comparison morphism is also a monomorphism, thus an
isomorphism. By applying a well-known result for regular categories—called
the “Barr-Kock Theorem” in [10]; see Theorem 2.17 there, or 6.10 in [1]—
to the left side of the previous diagram, we conclude that the bottom left
square is a pullback and, consequently, so is the bottom right square by [22,
Proposition 2.7].

We may conclude that all the conditions of Section 4 are satisfied. Hence
Theorem 4.6 gives the following

Theorem 6.3. Let C be a finitely cocomplete Barr-exact unital category, and
AbpCq its abelian core. Then normal extensions are reflective amongst regular
epimorphisms.

6.4. Monoids versus abelian groups. We describe the normal extensions
with respect to ΓAb in the particular case when C is the category of monoids,
so that AbpCq is the category of abelian groups. Our description is similar
to that of Theorem 5.4 concerning the Galois structure ΓMon of Section 5.
However, now we must add a commutativity condition. So, we need to recall
the following.
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Definition 6.5 ([18]). Two subobjects x : X Ñ Z and y : Y Ñ Z of Z in
a finitely complete unital category C are said to commute if there exists a
(necessarily unique) morphism ϕ : X ˆ Y Ñ Z, called the cooperator of x
and y, such that both triangles in the diagram

X
x1X ,0y,2
�(

x
�(

X ˆ Y

ϕ
��

Y
x0,1Y ylr

v�

y
v�

Z

are commutative.

When two subobjects X and Y of Z commute we write rX, Y s “ 0. In the
category of monoids, two submonoids commute if and only if every element of
the first commutes, in the usual sense, with every element of the second.

Proposition 6.6. A surjective homomorphism of monoids f : A Ñ B with
kernel k : N Ñ A, is a normal extension with respect to the Galois structure
ΓAb if and only if it is a special homogeneous surjection and rN,As “ 0.

Proof : By definition, f is a normal extension if and only if the split epimorph-
ism pπ1 : Eqpfq Ñ A,∆: A Ñ Eqpfqq is a trivial extension. By Proposi-
tion 6.1, this happens if and only if there exist isomorphisms α and β of split
extensions as in the diagram

N
x1N ,0y,2 N ˆ A

pA
,2

α
��

A
x0,1Aylr

N
x0,ky

,2 Eqpfq
π1
,2

β

LR

A.
∆lr

Via Proposition 6.1, it is easily seen that any split epimorphic trivial extension
is a special homogeneous surjection. Then, if the surjection f is a normal
extension, its kernel pair projection π1 is a special homogeneous surjection,
and hence f also is, thanks to Proposition 7.1.5 in [11]. Moreover, rN,As “ 0.
Indeed, the cooperator ϕ : N ˆAÑ A is given by ϕ “ π2˝α. Let us check that
it is actually a cooperator:

ϕ˝x1N , 0y “ π2˝α˝x1N , 0y “ π2˝x0, ky “ k,

and
ϕ˝x0, 1Ay “ π2˝α˝x0, 1Ay “ π2˝∆ “ 1A.
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Conversely, suppose that f is special homogeneous and rN,As “ 0. The
fact that rN,As “ 0 defines a morphism α : N ˆ A Ñ Eqpfq given by
αpx, aq “ pa, xaq. Let us now describe its inverse. Being f special homo-
geneous, pπ1 : Eqpfq Ñ A,∆: AÑ Eqpfqq is a special homogeneous split epi-
morphism. Using right homogeneity, we have that for every pa1, a2q P Eqpfq
there exists a unique element qpa1, a2q P N such that

pa1, a2q “ p1, qpa1, a2qqpa1, a1q “ pa1, qpa1, a2qa1q.

We define a map β : Eqpfq Ñ N ˆA by putting βpa1, a2q “ pqpa1, a2q, a1q. It
is indeed the inverse of α, because

α˝βpa1, a2q “ αpqpa1, a2q, a1q “ pa1, qpa1, a2qa1q “ pa1, a2q

and

β˝αpx, aq “ βpa, xaq “ pqpa, xaq, aq “ pqpx0, kypxq∆paqq, aq “ px, aq,

where the last equality follows from Proposition 2.1.4 in [11]. Then α is an
isomorphism. It clearly is a morphism of split extensions, and this concludes
the proof.

We end with a proof that, also in the case of monoids and abelian groups,
normal and central extensions coincide.

Proposition 6.7. A surjective monoid homomorphism f : AÑ B is a normal
extension if and only if it is a central extension.

Proof : Since every normal extension is central, we only have to prove that
central extensions are normal. Let f be a central extension. Then there exists
a surjective morphism p : E Ñ B such that the morphism f in the pullback
diagram

N

x0,ky
��

N

k
��

P
p
,2,2

f
����

A

f
����

E p
,2,2 B

is a trivial extension. Being a trivial (and hence normal) extension, f is a
special homogeneous surjection, and so f is, thanks to Proposition 7.1.5 in [11].
Moreover, rN,P s “ 0. Hence, for all x P N and all pe, aq P P , we have

p1, xqpe, aq “ pe, aqp1, xq.
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Since p is surjective, this implies that ax “ xa for all x P N and all a P A, and
hence rN,As “ 0. This proves that f is a normal extension by Proposition 6.6.
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