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Abstract: The main objective of this paper is to propose a new method to gen-
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1. Introduction
Stiefel and Graßmann manifolds arise naturally in several vision applica-

tions, such as machine learning and pattern recognition, since features and
patterns that describe visual objects may be represented as elements in those
manifolds. These geometric representations facilitate the analysis of the un-
derlying geometry of the data. The Graßmann manifold is the space of
k-dimensional subspaces in Rn and the Stiefel manifold is the space of k
orthonormal vectors in Rn. While a point in the Graßmann manifold repre-
sents a subspace, a point in the Stiefel manifold identifies exactly what frame
(basis of vectors) is used to specify that subspace.

Although these two manifolds are related, the geometry of the Graßmann
manifold is much simpler than that of the Stiefel manifold. This reflects
on solutions of simple formulated problems, such as the case of geodesics
that join two given points. A formula for the geodesic that joins two points
on Graßmann manifolds and depends explicitly only on those points was
recently presented in Batzies et al. [3]. Knowing such explicit formulas is also
a crucial step to solve other important problems such as, averaging, fitting
and interpolation of data. Results about geodesics on Stiefel manifolds are
not so easy to obtain. Even the simpler problem of finding a geodesic that
starts at a given point with a prescribed velocity is not so straightforward,
as can be seen for instance in the work of Edelman et al. in [7].

In the present paper we solve a slightly different but related problem, which
consists of joining two points on the Stiefel manifold by quasi-geodesics.
These curves have constant speed, constant covariant acceleration, and there-
fore constant geodesic curvature. Moreover, they are defined explicitly in
terms of the points they join. In some cases, depending on those points,
the quasi-geodesics are true geodesics. Interestingly enough, these special
curves can be used successfully to generate smooth interpolating curves on
the Stiefel manifold, as will be explained later. These results may have a
great impact in computer vision, since a curve that interpolates a set of
time-labeled points on the Stiefel manifold may correspond to the temporal
evolution of an event or dynamic scene from which only a limited number of
observations was captured, as nicely explained in Su et al. [18].

The organisation of this paper is the following. After this introduction
that motivates the reader to the importance of the problems studied here
in the context of applications, we introduce in Section 2 the manifolds that
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play a major role throughout the paper: Graßmann and Stiefel manifolds.
This section also includes known results about geodesics and, in particular,
a closed formula for the geodesic in the Graßmann manifold that joins two
given points. In Section 3 we present quasi-geodesics in the Stiefel mani-
fold. These curves have some interesting properties, such as constant speed,
constant intrinsic acceleration and constant geodesic curvature. We provide
an explicit formula for quasi-geodesics that join two arbitrary points in the
Stiefel manifold and show that in two particular circumstances they are true
geodesics. Interpolations problems are formulated in Section 4. We first re-
view the Casteljau algorithm on manifolds, then implement this algorithm to
generate a C1-smooth interpolating curve on the Graßmann manifold satisfy-
ing some prescribed boundary conditions and, finally, combine the Casteljau
algorithm on the special orthogonal group and on the Graßmannian in order
to generate a curve in the Stiefel manifold. Due to the fact that the projec-
tion of the Stiefel manifold onto the Graßmann manifold is many to one, the
resulting curve is not necessarily continuous. The last section contains the
main results in the paper concerning the generation of interpolating prob-
lems on the Stiefel manifold. Contrary to the algorithm contained in Section
4, we now solve the interpolation problem on the Stiefel manifold intrinsi-
cally, that is, without resorting to other manifolds. To do that we introduce
a convenient modification to the Casteljau algorithm, by replacing geodesic
interpolation by quasi-geodesic interpolation. This overcomes the difficul-
ties that arise from not knowing explicit formulas for geodesics that join
two arbitrary points on the Stiefel manifold and justifies the introduction of
quasi-geodesics. The paper ends with some concluding remarks.

2. Preliminaries
In this section we recall the main definitions associated to Graßmann and

Stiefel manifolds and several properties that will be used throughout this
paper. Due to the important role that these manifolds play in applied areas,
they have been studied in the context of numerical algorithms for instance
in Edelman et al. [7], Absil et al. [1] and Helmke et al. [8], and in a more
abstract form in Kobayashi and Nomizu [11]. Recently, Batzies et al. [3]
found a closed form expression for a geodesic in the Graßmann manifold
that joins two given points. This formula turns out to be very important for
the developments throughout the whole paper. Our main references for this
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introductory definitions and concepts are Edelman et al. [7] and Batzies et
al. [3].

2.1. The Graßmann manifold. Let s(n) and so(n) denote the set of all
n× n symmetric matrices and the set of all n× n skew-symmetric matrices
respectively.

The (real) Graßmann manifold GGG n,k is the set of all k-dimensional linear
subspaces in Rn, where n ≥ k ≥ 1. This manifold has a matrix representation

GGG n,k :=
{
P ∈ s(n) : P 2 = P and rank(P ) = k

}
so that it is considered a submanifold of Rn×n with dimension k(n − k).
Graßmann manifold GGG n,k can also be viewed as a homogeneous space

GGG n,k
∼= O(n)/(O(k)×O(n− k)),

where O(n) is the orthogonal Lie group.
Given a point P ∈ GGG n,k define the following sets

glP (n) := {X ∈ gl(n) : X = PX +XP } ,
sP (n) := s(n) ∩ glP (n) and

soP (n) := so(n) ∩ glP (n).

We will need the following properties.

Proposition 1 (Batzies et al. [3]). Let P ∈ GGG n,k and X ∈ glP (n) then

(1) PX2i−1P = 0, for any i ≥ 1,
(2) PX2i = PX2iP = X2iP , for any i ≥ 0,
(3) [P, [P,X]] = X.

The tangent space to a point P ∈ GGG n,k is given by

TPGGG n,k = { [X,P ] : X ∈ soP (n) } .

The Graßmann manifold will be equipped with the metric inherited from
the Euclidean space Rn×n, which incidentally coincides with the Frobenius
metric, cf. [8]

〈[X1, P ], [X2, P ]〉 = tr(XT
1 X2).

If P ∈ GGG n,k then ΘPΘT ∈ GGG n,k, for any Θ ∈ O(n). Thus γ : (−ε, ε)→ GGG n,k

given by γ(t) = Θ(t)PΘT(t), where Θ is a curve in O(n) satisfying Θ(0) = I,
is a curve in the Graßmann manifold passing through P at t = 0.
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A geodesic γ in GGG n,k starting from P with initial velocity γ̇(0) = [X,P ] is
given by

γ(t) = etXPe−tX .

An explicit formula for a geodesic γ : [0, 1] → GGG n,k joining a point P to a
point Q was derived in [3] and gives the initial velocity vector in terms of the
initial and final points only. This geodesic is given by

γ(t) = etXPe−tX , where X =
1

2
log((I− 2Q)(I− 2P )). (1)

Here ‘log’ stands for the principal logarithm of a matrix. If the orthogonal
matrix (I−2Q)(I−2P ) has no negative real eigenvalues then this geodesic is
unique. The following property of the velocity vector field along a geodesic
will be used later.

Proposition 2. If γ(t) = etXPe−tX is a geodesic in GGG n,k, then X ∈ soγ(t)(n).

Proof : One needs to show that

X = γ(t)X +Xγ(t). (2)

By the hypothesis, equality (2) holds for t = 0. From the commuting prop-
erties of the matrix exponential with its argument,

γ(t)X +Xγ(t) = etXPe−tXX +XetXPe−tX

= etX(PX +XP )e−tX = etXXe−tX = X.

2.2. The Stiefel manifold. The Stiefel manifold of orthonormal k-frames
in Rn has the following matrix representation:

SSSn,k :=
{
S ∈ Rn×k : STS = Ik

}
.

This is a submanifold of Rn×k, having dimension nk − (k + 1)k/2. Stiefel
manifolds SSSn,k are homogeneous spaces

SSSn,k
∼= O(n)/O(n− k).

The tangent space to SSSn,k at a point S ∈SSSn,k can be parametrized as

TSSSSn,k =
{
V ∈ Rn×k : V TS + STV = 0

}
.

The Stiefel manifold is equipped with the canonical metric, given by

〈V1, V2〉 = tr
(
V T

1 (I− 1
2SS

T)V2

)
, where V1, V2 ∈ TSSSSn,k.
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The projection onto the tangent space π> : Rn×k → TSSSSn,k is given by

π>(X) := S skew(STX) + (I− SST)X,

where, for a square matrix A, skew(A) denotes (A− AT)/2.
Geodesics in the Stiefel manifold satisfy the following second order differ-

ential equation, cf. [7]

γ̈ + γ̇γ̇Tγ + γ
(

(γTγ̇)2 + γ̇Tγ̇
)

= 0.

A geodesic γ in SSSn,k starting from a point S = Θ∆, where Θ ∈ O(n) and

∆ =

[
Ik
0

]
n×k

, is given by

γ(t) = ΘetX∆,

where X ∈ so(n) has the following structure:

X =

[
A −BT

B 0

]
.

Compared with what happens for the Graßmann manifolds, solving the geo-
desic equation for Stiefel manifolds is quite hard. Nevertheless, Edelman et
al. in [7] have included formulae for geodesics on Stiefel manifolds that start
at a given point with a prescribed velocity vector. But, as far as we know,
there are no explicit formulas for the geodesic joining two arbitrary points
that depends on these points only.

2.3. Relationships. There are some intimate relationships between SO(n),
GGG n,k and SSSn,k that can be expressed in terms of the following surjective
mappings, where ∆ is the matrix defined in the previous section and Λ =
∆∆T.

• The projection π : SO(n)→SSSn,k defined by π(Θ) := Θ∆;
• The mapping ϕ : SO(n)→ GGG n,k defined by ϕ(Θ) := ΘΛΘT;
• The mapping ψ : SSSn,k → GGG n,k defined by ψ(S) := SST.
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Clearly, (Θ∆)T(Θ∆) = ∆T∆ = Ik and (Θ∆)(Θ∆)T = ΘΛΘT.

The following commutative diagram summarizes these relationships.

SO(n)

π
��

ϕ

##

SSSn,k
ψ
// GGG n,k

(3)

This also creates relationships between geodesics on these manifolds. In par-
ticular, geodesics on Graßmann manifolds and geodesics on Stiefel manifold
are projections of special geodesics on SO(n), as explained next.

Let γ : [0, 1]→ SO(n) be a geodesic given by γ(t) = etXΘ. Define a curve
σ : [0, 1]→ GGG n,k by

σ(t) := (ϕ ◦ γ)(t) = etXΘΛΘTe−tX .

Denote P = ΘΛΘT ∈ GGG n,k and suppose that X ∈ soP (n). Then, σ is a
geodesic in GGG n,k starting from P , with initial velocity equal to [X,P ] cf. [3].
A simple calculation shows that the condition X ∈ soP (n) is equivalent to
ΘTXΘ ∈ soΛ(n), and the latter implies a particular matrix structure for
ΘTXΘ, namely

ΘTXΘ =

[
0 −BT

B 0

]
.

It has already been mentioned earlier that the minimising geodesic σ : [0, 1]→
GGG n,k joining two close enough points P,Q is given by

σ(t) = etXPe−tX ,

where X = 1
2 log((I− 2Q)(I− 2P )).

For any Θ ∈ ϕ−1(P ), it also happens that the image by ϕ of the geodesic
γ(t) = etXΘ in SO(n) is the corresponding geodesic in the Graßman manifold
GGG n,k, i.e.,

P = ΘΛΘT, Q = eXΘΛΘTe−X

and
ϕ
(
etXΘ

)
= etXΘΛΘTe−tX = etXPe−tX = σ(t).

In a similar way, one may analyse which geodesics in SO(n) project to
geodesics in the Stiefel manifold. Edelman et al. in [7] proved that the curve
defined by

α(t) = etZS = etZΘ∆ = π(etZΘ)
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is a geodesic in SSSn,k starting at S when the skew-symmetric matrix Z satisfies
the following block structure

ΘTZΘ =

[
A −BT

B 0

]
.

But a closed form expression for Z, given the initial and final points, is not
yet known.

To overcome this difficulty and being able to propose a solution for an
interpolating problem on Stiefel manifolds, we are going to introduce, in the
next section, other interesting curves in SSSn,k that will play an important role.

We end this section with two properties that are immediate consequences
of those in Proposition 1 and will be useful later on.

Proposition 3. Let S ∈SSSn,k and X ∈ glSST(n). Then

(1) STXS = 0;
(2) SSTX2S = X2SSTS = X2S.

3. Quasi-Geodesics in Stiefel Manifolds
In this section we define certain smooth curves in the Stiefel manifold SSSn,k

that join two arbitrary points S1 and S2 and have many interesting properties.
In some cases these curves are geodesics, but in general their velocity vector
field may fail to have zero covariant derivative. The generic term for these
curves will be quasi-geodesics because they have constant geodesic curvature
and are associated to certain retractions on SSSn,k. We use here the notion of
a retraction introduced in Absil et al. [2] for general manifolds.

Definition 4. A retraction R on the Stiefel manifold SSSn,k is a smooth map-
ping from the tangent bundle TSSSn,k to SSSn,k that, when restricted to each
tangent space at a point S ∈ SSSn,k (restriction denoted by RS), satisfies the
following properties:

(i) RS(0) = S.
(ii) dRS(0) = id.

If V ∈ TSSSSn,k, one can define a smooth curve βV : t 7→ RS(tV ) associated

to the retraction R. The curve βV which satisfies βV (0) = S and β̇V (0) = V
is called a quasi-geodesic. In the sequel we will present a quasi-geodesic on
the Stiefel manifold, which is different from the example included in [2] or
in [14], but has other very interesting properties. Before that, we present a
representation of the tangent space to SSSn,k at a point S, which differs from
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that considered in Edelman et al. [7] but will prove to be very important for
further derivations.

Proposition 5. Let S ∈SSSn,k, so that P = SST ∈ GGG n,k. Then,

TSSSSn,k = {XS + SΩ, where X ∈ soP (n) and Ω ∈ so(k)} . (4)

Moreover, if V = XS + SΩ ∈ TSSSSn,k, then

X = V ST − SV T + 2SV TSST and Ω = STV.

Proof : Let M := {XS + SΩ, where X ∈ soP (n) and Ω ∈ so(k)}. Notice
that the dimensions of M and of TSSSSn,k match. Indeed,

dim(sP (n)) = dim(TPGGG n,k) = k(n− k), dim(so(k)) = k(k − 1)/2,

and so,

dim(M) = k(n− k) + k(k − 1)/2 = nk − k(k + 1)/2 = dim(TSSSSn,k).

To show that (4) is a good parametrization of TSSSSn,k, we must prove that
M ⊂ TSSSSn,k and TSSSSn,k ⊂ M . For the first part, a trivial calculation
shows that if V = XS + SΩ ∈ M then, since X and Ω are skew symmetric,
V satisfies the equation V TS+STV = 0, that is, V ∈ TSSSSn,k. For the second
part, we show that if V ∈ TSSSSn,k, there exists Ω ∈ so(k) and X ∈ soP (n)
such that V = XS + SΩ. This is done by construction:

Ω := STV and X := V ST − SV T + 2SV TSST.

It is just a matter of simple calculations, using the fact that V ∈ TSSSSn,k,
to check that indeed V = XS + SΩ, Ω ∈ so(k), X ∈ so(n), and moreover
X = XSST + SSTX, that is X ∈ soP (n).

The last statement in the proposition follows from the previous considera-
tions.

Proposition 6. Let S, X, and Ω be as in the Proposition 5. Then, the map-
ping R : TSSSn,k → SSSn,k whose restriction to TSSSSn,k is defined by RS(V ) =
eXSeΩ is a retraction on the Stiefel manifold, and β : t 7→ etXSetΩ is a quasi-
geodesic in SSSn,k that satisfies

(1) β(0) = S;
(2) β̇(t) = etX(XS + SΩ)etΩ;
(3) β̈(t) = etX(X2S + 2XSΩ + SΩ2)etΩ.
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Proof : This statement is true because the mapping R satisfies both condi-
tions of the Definition 4 and β is the quasi-geodesic associated to the retrac-
tion. The formulas for the derivatives of β are also straightforward.

3.1. Joining points in the Stiefel manifold by quasi-geodesics. Given
two distinct points S1 and S2 in the Stiefel manifold, our objective now is
to choose X ∈ so(n) and Ω ∈ so(k) so that the quasi geodesic defined by
β(t) = etXS1e

tΩ joins the point S1 (at t = 0) to the point S2 (at t = 1).
Some restrictions on S1 and S2 are expected and they will be determined
by the existence of logarithms of some matrices that appear in the next
theorem. We recall that, a nonsingular matrix Y without negative eigenvalues
always has a unique logarithm whose spectrum lies in the horizontal strip
{z ∈ C : −π < Im(z) < π}. This unique matrix is called the principal
logarithm of Y and is denoted by log(Y ) (Horn and Johnson [9]).

Theorem 7. Let S1 and S2 be two distinct points in SSSn,k so that, for i = 1, 2,
Pi = SiS

T
i ∈ GGG n,k. Then, if

X =
1

2
log
(
(I− 2S2S

T
2 )(I− 2S1S

T
1 )
)

and Ω = log
(
ST

1 e
−XS2

)
, (5)

the quasi-geodesic defined by

β(t) := etXS1e
tΩ, (6)

has the following properties:

(1) β(0) = S1;
(2) β(1) = S2;
(3) ‖β̇(t)‖2 = − tr

(
ST

1 X
2S1 + 1

2Ω2
)

(constant speed);

(4) Dtβ̇(t) = Xβ(t)Ω;
(5) ‖Dtβ̇(t)‖2 = tr

(
Ω2ST

1 X
2S1

)
(constant covariant acceleration).

Proof : Before starting the proof, we show that X and Ω agree with the
parametrisation of the tangent space given in Proposition 5. According to
(1), [X,P1] is the initial velocity vector of the geodesic in the Graßmann
manifold that joins the point P1 (at t = 0) to P2 (at t = 1), so X ∈ soP1

(n).
Moreover, ST

1 e
−XS2 is orthogonal as can be easily checked. Indeed, from the

expression for X we immediately get(
ST

1 e
−XS2

)(
ST

1 e
−XS2

)T
= ST

1 e
−XS2S

T
2 e

XS1 = ST
1 S1S

T
1 S1 = Ik;(

ST
1 e
−XS2

)T(
ST

1 e
−XS2

)
= ST

2 e
XS1S

T
1 e
−XS2 = ST

2 S2S
T
2 S2 = Ik.
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Now, the first two properties follow from the definition of the curve β. To
simplify notations we omit the dependency on t. With the canonical metric
on the Stiefel manifold, we can write

‖β̇‖2 = 〈β̇, β̇〉 = tr
(
β̇T(I− 1

2ββ
T)β̇
)

= tr
(
β̇Tβ̇ − 1

2 β̇
TββTβ̇

)
But

β̇Tβ̇ = −e−tΩST
1 X

2S1e
tΩ − Ω2,

βTβ̇ = Ω, hence β̇Tβ = −Ω.

So

‖β̇‖2 = − tr
(
ST

1 X
2S1

)
− tr

(
Ω2
)

+ 1
2 tr
(
Ω2
)

= − tr
(
ST

1 X
2S1 + 1

2Ω2
)
.

This concludes the proof of (3).
To prove property (4) we take into consideration the formulas for β̇ and β̈

in Proposition 6 and the following formula for the covariant derivative of β̇
along β, given in [7]:

Dtβ̇ = β̈ + β̇β̇Tβ + β
(

(βTβ̇)2 + β̇Tβ̇
)
.

Using the properties in Proposition 3, this can be simplified to obtainDtβ̇(t) =
Xβ(t)Ω. Finally, we show that the acceleration vector field along β is cons-
tant. This requires some lengthy calculations that are partially omitted be-
cause simplifications only require properties that have already been used
before.

‖Dtβ̇‖2 = tr
(

(Dtβ̇)T(I− 1
2ββ

T)(Dtβ̇)
)

= tr
(
ΩβTX(XβΩ− 1

2ββ
TXβΩ)

)
= tr

(
ΩST

1 X
2S1Ω

)
= tr

(
Ω2ST

1 X
2S1

)
.

This completes the proof.

There are two situations when the quasi-geodesic defined in (6) is a true
geodesic, as will be detailed in the next Corollary. Figures 1 and 2 illustrate
these situations. For the situation in Figure 3, no explicit form for the
geodesic joining the frames S1 and S2 is known. In this case, what can be
easily exhibited is a two-piece broken geodesic joining those frames, each
piece being a geodesic of one of the two types illustrated in Figures 1 and 2.
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Figure 1. The frames S1 and S2 span the same subspace

Figure 2. The frames S1 and S2 span two different subspaces,
but eXS1 = S2

Figure 3. The frames S1 and S2 span two different subspaces,
but eXS1 6= S2

Corollary 8.

(1) If the frames S1 and S2 generate the same subspace, then the curve β
defined in (6) is a geodesic in SSSn,k joining S1 to S2.

(2) If the frames S1 and S2 do not generate the same subspace but the
frame eXS1, where X = 1

2 log
(
(I− 2S2S

T
2 )(I− 2S1S

T
1 )
)
, coincides with

S2, then the curve β defined in (6) is also a geodesic in SSSn,k joining
S1 to S2.

Proof : In the first case X = 0 and β(t) = S1e
tΩ. In the second case Ω = 0

and β(t) = etXS1. It follows imediatly from Theorem 7 - (4) that in both
cases Dtβ̇(t) ≡ 0.
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Remark 9. For the two extreme cases when k = 1 and k = n, the Stiefel
manifold becomes respectively a sphere and an orthogonal group. The quasi-
geodesics are then true geodesics since both cases fit into the two exceptions
above. Indeed, Ω = 0 if k = 1 and X = 0 if k = n. In this case Ω =
log(ST

1 S2) ∈ so(n).

Proposition 10. The geodesic curvature κ of the quasi-geodesic defined in
(6) is constant and given by

κ = −

√
tr
(
Ω2ST

1 X
2S1

)
tr
(
ST

1 X
2S1 + 1

2Ω2
) .

Moreover, 0 ≤ κ < 1.

Proof : We use the following formula, obtained from [12, p. 137], for compu-
ting the geodesic curvature

κ =
‖Dtβ̇‖
‖β̇‖2 −

〈Dtβ̇, β̇〉
‖β̇‖3 . (7)

Since β has constant speed, the second term in (7) vanishes and the expres-
sion for the geodesic curvature reduces to the first term that is immediately
obtained from the formulas in Theorem 7.

To show that 0 ≤ κ < 1, we use a trace inequality due to von Neumann [19],
which states that for any k×k complex matrices A and B with singular values
a1 ≥ a2 ≥ · · · ≥ ak and b1 ≥ b2 ≥ · · · ≥ bk respectively, |tr(AB)| ≤ ∑i aibi.
If we consider A = −ST

1 X
2S1 and B = −Ω2 which are real symmetric and

nonnegative definite, their singular values coincide with their eigenvalues and
so tr(AB) ≤∑i aibi. Consequently,

κ2 =
tr(AB)

tr2(A+ 1
2B)

=
tr(AB)

tr2(A) + 1
4 tr2(B) + tr(A) tr(B)

≤
∑

i(aibi)

(
∑

i ai)
2 + 1

4(
∑

i bi)
2 +

∑
i6=j(aibj) +

∑
i(aibi)

.

Since the eigenvalues of A and B are nonnegative and not simultaneously
equal to zero and κ is nonnegative, the geodesic curvature has the required
bounds.
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Note that the geodesic curvature is zero whenever A or B is zero, that
is, when X = 0 or Ω = 0. As expected, this result is consistent with the
statements in Corollary 8.

4. The Casteljau Algorithm on manifolds
The classical Casteljau algorithm, introduced independently by Castel-

jau [6] and Bézier [4], is a geometric construction to generate polynomial
curves in Rn based on successive linear interpolation techniques. After the
basic idea of Park and Ravani [15] of replacing linear interpolation by geo-
desic interpolation, the Casteljau algorithm was generalized to accommodate
geometric polynomial curves and also interpolating splines on Riemannian
manifolds (see, for instance, the work of Crouch, Kun and Silva Leite [5],
Popiel and Noakes [16], and Nava-Yazdani and Polthier [13]). We next give
a succinct description of this algorithm for generating polynomials of degree
m on a complete Riemannian manifold M, where for the sake of simplicity
we parametrize the curves on the [0, 1] interval.

If x0, . . . , xm are distinct points in M and σ1(t, xi, xi+1) is the geodesic arc
joining xi (at t = 0) to xi+1 (at t = 1), a smooth curve t 7→ σm(t), joining
x0 (at t = 0) to xm (at t = 1), may be constructed by recursive geodesic
interpolation and depends on the given points. The curves produced by this
recursive process which involves m steps are defined by

σk(t, xi, . . . , xi+k) = σ1 (t, σk−1(t, xi, . . . , xi+k−1), σk−1(t, xi+1, . . . , xi+k)) ,
k = 2, . . . ,m; i = 0, . . . ,m− k.

The curve σm obtained in the last step, that is σm(t) := σm(t, x0, . . . , xm),
generalises the Euclidean polynomials of degree m and is called geometric
polynomial in M. This curve doesn’t interpolate the points x1, . . . , xm−1.
They are only used to generate the curve that joins x0 to xm but, of course,
influence the shape of the curve. For that reason, they are called control
points . Alternatively, one can prescribe other boundary conditions, such as
m− 1 initial conditions Dk

t σ̇m(0), k = 0, . . . ,m− 2, and compute from them
the control points needed for the algorithm. This is theoretically possible,
but the complexity of the computations increases significantly with m. This
algorithm can also be used to generate geometric polynomial splines , which
are interpolating curves obtained by piecing together several geometric poly-
nomials in a smooth manner.
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Figure 4 illustrates the idea behind the Casteljau algorithm in the 2-sphere.
It shows how to generate several points of a quadratic curve.

Figure 4. Illustration of the Casteljau algorithm to generate a
quadratic polynomial in S2

4.1. A modification of the Casteljau algorithm. Although the Castel-
jau algorithm appeared as a geometric tool to construct polynomials of any
order by successive linear interpolation, it can be modified to accommodate
curves with other properties. This has been done, for instance, in [10] and
[17]. On manifolds where explicit formulas for geodesics are not available,
this is particularly useful and will also be used to generate a C1 interpolating
curve on the Stiefel manifold in the next section. For now we proceed with
some generic results for curves obtained with only one control point and two
steps and first prove a result involving the initial and final velocity of a curve
generated with two steps, but not necessarily a quadratic polynomial.

Given a set of three points {xi }2
i=0 in a manifold M, let t 7→ σ1(t, xi, xi+1)

be curves joining xi to xi+1, for i = 0, 1. Define a family of curves γ : [0, 1]×
[0, 1] → M as follows. For a fixed t0 ∈ [0, 1], the map t 7→ γ(t, t0) is a
curve joining σ1(t0, x0, x1) to σ1(t0, x1, x2), as illustrated in Figure 5. Then
σ2 : [0, 1] → M given by σ2(t) = γ(t, t) is a curve joining x0 to x2. If the
curves considered above are geodesics then σ2 is a second order polynomial.

We are interested in finding out how the velocities of σ2 at the end points
are related with the velocities of the curves used along the algorithm steps.
The answer is given in the following proposition.
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σ 1
(t,
x 0
, x

1
) σ

1 (t, x
1 , x

2 )γ(t
, t0

)

σ2(t)

x0

x1

x2

Figure 5. A modification of the two-step Casteljau algorithm

Proposition 11. Suppose that the curves σ1 are differentiable and that

γ(t, 0) = σ1(t, x0, x1) and γ(t, 1) = σ1(t, x1, x2). (8)

Then

σ̇2(0) = 2σ̇1(0, x0, x1) and σ̇2(1) = 2σ̇1(1, x1, x2).

Proof : The following identities follow from the definition of the curve γ:

γ(0, t) = σ1(t, x0, x1) and γ(1, t) = σ1(t, x1, x2). (9)

Note that

σ̇2(t) =
∂

∂s

∣∣∣∣
s=t

γ(s, t) +
∂

∂s

∣∣∣∣
s=t

γ(t, s).

Therefore, from the hypothesis (8) and by identities (9) it follows that

σ̇2(0) =
∂

∂s

∣∣∣∣
s=0

γ(s, 0) +
∂

∂s

∣∣∣∣
s=0

γ(0, s) = 2σ̇1(0, x0, x1).

Similarly

σ̇2(1) =
∂

∂s

∣∣∣∣
s=1

γ(s, 1) +
∂

∂s

∣∣∣∣
s=1

γ(1, s) = 2σ̇1(1, x1, x2).
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This result easily generalises to higher order curves.
Our main purpose is to generate simple and smooth spline curves interpo-

lating a set of data points on the manifold. We are particularly interested
in spline curves that are differentiable and obtained by piecing together qua-
dratic polynomials. This can be achieved by using, for instance, the Casteljau
algorithm in each time interval [i, i + 1], starting with an arbitrary control
point in the first interval (or, equivalently, prescribing the velocity at t = 0),
and computing the control points for the remaining intervals so that the
whole curve is C1-smooth.

Since this algorithm is based on linear interpolation, its implementation
on a specific Riemannian manifold requires that an explicit formula for the
geodesic that joins two points is available. Although this is not the case in
general, it happens that for the Graßmann manifold such a formula has been
derived recently in Batzies et al. [3].

4.2. The Casteljau algorithm on Graßmann manifolds. The generali-
sation of the classical Casteljau algorithm will be used to solve the following
problem on the Graßmann manifolds.

Problem 1. Given a set of points P0, . . . , Pm in the Graßmann
manifold GGG n,k and Ω0 ∈ soP0

(n), find a C1-smooth curve σ that
interpolates the points Pi at time i and has initial velocity equal
to [Ω0, P0], that is

σ(i) = Pi, for i = 0, 1, . . . ,m and σ̇(0) = [Ω0, P0].

4.2.1. Solving this problem using the Casteljau algorithm. The curve σ may
be generated by piecing together quadratic polynomials defined on each
subinterval [i, i+ 1], and joining Pi to Pi+1 with control point Ci, that is

σ(t)|[i,i+1] = σ2(t− i, Pi, Ci, Pi+1).

The first control point C0 is computed from P0, P1 and Ω0, Figure 6. In order
to ensure that σ is C1-smooth, the initial velocity of each subsequent spline
segment must equal the final velocity of the previous segment.
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σ 1
(t
, P
,C

)

σ
1 (t, C,Q)

σ 1
(t
,M

1
,M

2
)

σ2(t, P,C,Q)

P

C

Q

M1

M2

X

Figure 6. The generalised Casteljau algorithm; segments
σ1(t, P, C) and σ1(t, C,Q) form the first step of the algorithm.
Then, given t0 ∈ [0, 1], X = σ1(t0,M1,M2) is a point in the
spline, where M1 = σ1(t0, P, C) and M2 = σ1(t0, C,Q)

4.2.2. Generating a second order spline. Given a sequence of data points
P0, P1, . . . , Pm and an initial Ω0, the algorithm produces a second order spline
σ : [0,m]→ GGG n,k, passing through the data points, such that

σ(i) = Pi, for 0 ≤ i ≤ m and σ̇(0) = [Ω0, P0].

Each segment σ([i, i+1]) joins Pi to Pi+1. The algorithm is based on a general
version of the Casteljau algorithm described at the beginning of the section.

To find a point σ(t) of the spline, first iterate Algorithm 2 to find the
component of initial velocity vector Ωi, for the segment σ([i, i + 1]), where
t ∈ [i, i+ 1]. Then with the triple Ωi, Pi and Pi+1, apply Algorithm 1 to get
the desired point.

4.3. A modified Casteljau algorithm on Graßmann manifolds. The
objective here is to use the relationships between the rotation group SO(n),
the Graßmann manifold and the Stiefel manifold, presented in Section 2,
to produce a curve in the latter. This uses a modification of the previous
Casteljau algorithm.
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Algorithm 1: calculate a point σ(t), for t ∈ [0, 1], such that: σ(0) = P , σ(1) = Q,
and σ̇(0) = 2[Ω, P ] (note that C and Ω do not depend on t and can be pre-computed to
improve the efficiency)

Input: t ∈ [0, 1], P,Q ∈ GGG n,k, Ω ∈ soP (n)
Output: X = σ(t)

1 Calculate control point C:
C = exp(Ω) · P · exp(−Ω)

Calculate first step end points M1 and M2:

M1 = exp(tΩ) · P · exp(−tΩ)

Θ0 =
1

2
log
(
(I− 2Q) · (I− 2C)

)
M2 = exp(tΘ0) · C · exp(−tΘ0)

2 Compute the point on the geodesic from M1 to M2 at t:

Θ1 =
1

2
log
(
(I− 2M2) · (I− 2M1)

)
X = exp(tΘ1) ·M1 · exp(−tΘ1)

return X

Algorithm 2: calculate Ω̃ so that the final velocity σ̇1(1, C,Q) = [Ω̃, Q], where σ satis-
fies: σ(0) = P , σ(1) = Q, and σ̇1(0, P, C) = [Ω, P ] (note that to improve the efficiency,
all quantities can be computed in advance, once the whole data is known)

Input: P,Q ∈ GGG n,k, Ω ∈ soP (n)

Output: Ω̃ such that σ̇(1) = [Ω̃, Q]
1 Calculate control point C:

C = exp(Ω) · P · exp(−Ω)

2 Calculate a component of the initial velocity vector for a geodesic from C to Q:

Ω̃ =
1

2
log
(
(I− 2Q) · (I− 2C)

)
3 return Ω̃

Problem 2. Given a set of points P0, . . . , Pm in the Graßmann
manifold GGG n,k and Ω0 ∈ soP0

(n), find a C1-smooth curve σ that
interpolates the points Pi at time i and has initial velocity equal
to [Ω0, P0], that is

σ(i) = Pi, for i = 0, 1, . . . ,m, and σ̇(0) = [Ω0, P0].
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Additionally, we require an accompanying piecewise C1-smooth
curve β in the Stiefel manifold that satisfies

β(t) · β(t)T = σ(t), for t ∈ [0,m]. (10)

4.4. Solving Problem 2 using a modified Casteljau algorithm. To
accommodate the additional condition (10) we “lift” the problem to SO(n),
perform the Casteljau algorithm there and then project the resulting curve
onto the Graßmann and the Stiefel manifolds, as explained in Section 2.3.

Curve σ may be generated by piecing together C1-smooth curves defined
on each subinterval [i, i + 1], and joining Pi to Pi+1 with control point Ci,
that is

σ(t)|[i,i+1] = σ̃2(t− i, Pi, Ci, Pi+1),

where σ̃2 is a curve obtained from the modified Casteljau algorithm. The
first control point C0 is computed from P0, P1 and Ω0. In order to ensure
that σ is C1-smooth, the initial velocity of each subsequent spline segment
must equal the final velocity of the previous segment.

βi−1

βi

σ

Si−1 Si

S ′
i

S ′
i+1

S ′′
i+1

Pi−1

Ci−1

Pi Pi+1

Ci

Ci+1

Figure 7. A scheme of the generalised Casteljau algorithm; seg-
ments βi in the Stiefel manifold project into C1-smooth curve σ
in the Graßmann, i.e., ψ ◦ βi = σ by (3), however βi segments
depend on the initial points Si, so continuity is not guaranteed
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Figure 7 illustrates the following modification of the Casteljau algorithm.
Let

σ0(t) = etΩ0P0e
−tΩ0, where Ω0 =

1

2
log
(
(I− 2P1)(I− 2P0)

)
,

σ1(t) = etΩ1P1e
−tΩ1, where Ω1 =

1

2
log
(
(I− 2P2)(I− 2P1)

)
,

σ(t) = etX(t)σ0(t)e
−tX(t), where X(t) = log

(
etΩ1e(1−t)Ω0

)
,

β(t) = etX(t)etΩ0S0, such that S0 S
T
0 = P0.

4.4.1. Generating a second order spline. Given a sequence of data points
P0, P1, . . . , Pm and an initial Ω0, the algorithm produces a second order spline
σ : [0,m]→ GGG n,k, passing through the data points, such that

σ(i) = Pi, for 0 ≤ i ≤ m and σ̇(0) = [Ω0, P0].

As a consequence, segments σ([i, i+ 1]) join Pi to Pi+1.
To find a point σ(t) of the spline, first iterate Algorithm 2 to find the

component of initial velocity vector Ωi, for the segment σ([i, i + 1]), where
t ∈ [i, i+ 1]. Then with the triple Ωi, Pi and Pi+1, apply Algorithm 3 to get
the desired points.

Algorithm 3: calculate a point σ(t) in GGG n,k and β(t) in SSSn,k, for t ∈ [0, 1], such that:
σ(0) = P , σ(1) = Q, and σ̇1(0, P, C) = [Ω, P ] and β(t) · β(t)T = σ(t) (note that Ci and
Θi do not depend on t and can be pre-computed to improve the efficiency)

Input: t ∈ [0, 1], Ω ∈ soP (n), P,Q ∈ GGG n,k, S ∈SSSn,k such that SST = P
Output: Z = σ(t) and B = β(t)

1 Calculate control point C:
C = exp(Ω) · P · exp(−Ω)

2 Calculate first segment end points M1 and M2:

M1 = exp(tΩ) · P · exp(−tΩ)

Θ =
1

2
log
(
(I− 2Q) · (I− 2C)

)
M2 = exp(tΘ) · C · exp(−tΘ)

3 Compute the point on the spline segment from M1 to M2:

X = log
(
exp(tΘ) · exp((1− t)Ω)

)
Z = exp(tX) ·M1 · exp(−tX)

B = exp(tX) · exp(tΩ) · S
return Z, B
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5. Solving Interpolation problems on Stiefel manifolds
In the previous section we presented a procedure to find an interpolating

curve on the Stiefel manifold based on solving an interpolating problem on
the Graßmann manifold. That procedure had a major drawback due to the
fact that to each point P on the Graßmann there are multiple frames Si on
the Stiefel that satisfy SiS

T
i = P .

The objective of this section is to solve a smooth interpolation problem on
Stiefel which is intrinsic to this manifold and results from replacing geodesics
in the Casteljau algorithm by the quasi-geodesics introduced in Section 3.

Problem 3. Given a set of points {Si }mi=0 belonging to the Stiefel
manifold SSSn,k, and a vector V0 ∈ TS0

SSSn,k, find a C1 interpola-
ting curve passing through these points and having initial velocity
equal to V0.

5.1. Solving the interpolation problem using quasi-geodesics. Since
every two points on the Stiefel manifold can be joined by a quasi geodesic, we
use these curves to perform a modified Casteljau algorithm where successive
linear interpolation is replaced by successive quasi-linear interpolation.

The crucial procedure is the generation of the first curve segment, joining
S0 to S1 and having prescribed initial velocity equal to V0. Without loss of
generality, we assume that all segments are parameterized in the [0, 1] time
interval.

5.2. Generating the first curve segment. First we need to find a control
point C0, which is the end point of the quasi-geodesic that starts at the point
S0 with initial velocity equal to 1

2V0. This quasi-geodesic is given by

β0(t) = etX0S0e
tΩ0,

where, according to (11) in Proposition 5,

X0 =
1

2
V0S

T
0 −

1

2
S0V

T
0 + S0V

T
0 S0S

T
0 and Ω0 =

1

2
ST

0 V0. (11)

So, C0 = eX0S0e
Ω0 defines the control point.

We now proceed to the construction of the second quasi-geodesic β1 that
joins C0 to S1, using Theorem 7 with the obvious adaptations. The first curve
segment, joining S0 to S1 with prescribed initial velocity equal to V0 can now



SOLVING INTERPOLATION PROBLEMS ON STIEFEL USING QUASI-GEODESICS 23

be obtained from quasi-linear interpolation of β0 and β1. The procedure to
generate this curve is summarized in the algorithms 4 and 5.

Algorithm 4: calculate a point σ(t) in SSSn,k, for t ∈ [0, 1], such that: σ(0) = S, σ(1) = Q

Input: t ∈ [0, 1], S,C,Q ∈SSSn,k, V0 ∈ TSSSSn,k, where S is the initial point, Q is the
final point and C is the control point

Output: Z = σ(t), X1 ∈ soCCT(n), Ω1 ∈ so(k)
1 Calculate velocity components X0 and Ω0:

X0 =
1

2
log
(
(I− 2CCT) · (I− 2SST)

)
Ω0 = log(ST · exp(−X0) · C)

2 Calculate velocity components X1 and Ω1:

X1 =
1

2
log
(
(I− 2QQT) · (I− 2CCT)

)
Ω1 = log(CT · exp(−X1) ·Q)

3 Calculate quasi-geodesics β0(t) and β1(t):

β0(t) = exp(tX0) · S · exp(tΩ0)

β1(t) = exp(tX1) · C · exp(tΩ1)

4 Calculate velocity components X(t) and Ω(t) for the joining segment:

X(t) =
1

2
log
((

I− 2 β1(t) β
T
1 (t)

)(
I− 2 β0(t) β

T
0 (t)

))
Ω(t) = log

(
βT
0 (t) · exp(−X(t)) · β1(t)

)
5 Compute the point on the spline segment:

Z = exp(tX(t)) · β0(t) · exp(tΩ(t))

return [Z,X1,Ω1]

Algorithm 5: calculate the control point C given the initial point for the segment and
velocity components of the previous segment

Input: Q ∈SSSn,k, X1 ∈ soQQT(n) and Ω1 ∈ so(k)
Output: C ∈SSSn,k

1 Calculate the control point C:

C = exp(X1) ·Q · exp(Ω1)

2 return C

5.3. Generating consecutive segments: We now explain how to continue
in order to find a smooth curve that joins S1 to S2 and is C1 at S1. One needs
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to find the control point C1 for this segment. Since the curve must be C1

at S1, the initial velocity for the second curve segment must equal the end
velocity of the previous curve segment, which is known. So, we are reduced
to the generation of a curve segment that joins S1 to S2 and whose initial
velocity at S1 is equal to σ̇(1).

The other consecutive segments are generated similarly.

Remark 12. Note that the mapping ψ : SSSn,k → GGG n,k defined by ψ(S) := SST

transforms quasi-geodesics on the Stiefel manifold into geodesics on the Graß-
mann manifold. As a consequence, the algorithm presented in this section
projects on the Graßmann manifold GGG n,k as the true Casteljau algorithm pre-
sented in Subsection 4.2.

6. Conclusion
The generalisation of the classical Casteljau algorithm can be used to gen-

erate interpolating polynomial splines on manifolds. It is based on successive
linear interpolation and can be successfully used whenever explicit formu-
las for the geodesic joining two points are available. We have implemented
this algorithm on the Graßmann manifold, but without explicit formulas for
geodesics on the Stiefel manifold the algorithm couldn’t be applied. However,
we have been able to present a very successful alternative based on a con-
venient modification of the Casteljau algorithm, where instead of geodesics
we have used quasi-geodesics. These curves happen to have constant speed,
constant covariant acceleration and constant geodesic curvature not greater
than one. Optimal properties of these curves are under investigation.
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